首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A trial was conducted to determine pre- and postweaning performance of pigs injected with dexamethasone either 1 or 24 h after birth. In Exp. 1, 225 pigs (Triumph4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included either saline (Control), Dex1 (2 mg/kg BW i.m. injection of dexamethasone within 1 h of birth), or Dex24 (2 mg/kg BW i.m. injection of dexamethasone within 24 h after birth). Birth weights (1.56 +/- 0.06 kg) did not differ among treatments (P > 0.10) or between sexes (P > 0.10). There was a treatment x sex interaction on BW at weaning (15 d; P < 0.05) with Dex1 and Dex24 males 10% heavier than Control males (4.77 and 4.78 vs. 4.34 kg, respectively), and no significant differences in BW among the females (P > 0.05). In Exp. 2, 180 pigs from Exp. 1 were transported to a segregated early weaning nursery facility where each sex was assigned to 10 pens per treatment (60 pens total). Pigs were fed fortified corn-soybean meal diets in a three-phase feeding program. At the end of Exp. 2 (49-d period), there was a treatment x sex interaction (P < 0.01) for BW with Dex1 and Dex24 barrows being on average 8% heavier than the Control barrows (30.1 and 29.8 vs. 27.7 kg, respectively), and no significant difference in BW (P > 0.10) among the gilts. No treatment differences in feed efficiency (gain:feed) were observed during the nursery period (P > 0.10). In Exp. 3, pigs from the nursery were moved to a finishing facility where each sex was assigned to 4 pens per treatment (24 pens total). All pigs were fed fortified corn-soybean meal diets in a four-phase feeding program with sexes fed separately. Real-time ultrasound was used to measure 10th rib backfat depth and longissimus muscle area. At the end of Exp. 3 (83-d period), there was a treatment x sex interaction (P < 0.05) for final BW with Dex1 and Dex24 barrows being on average 5.45 kg heavier than Control barrows (119.6 and 120.7 vs. 114.4 kg, respectively), and no difference (P > 0.05) in BW among the gilts. No treatment differences (P > 0.10) were observed for backfat depth, longissimus muscle area or gain:feed. These studies demonstrate that dexamethasone (2 mg/kg BW) given within 24 h of birth significantly improves both pre- and postweaning performance of barrows with no beneficial effects on gilts.  相似文献   

2.
A total of 720 nursery pigs in three experiments were used to evaluate the effects of blood meal with different pH (a result of predrying storage time) and irradiation of spray-dried blood meal in nursery pig diets. In Exp. 1, 240 barrows and gilts (17 +/- 2 d of age at weaning) were used to determine the effects of blood meal pH (7.4 to 5.9) in diets fed from d 10 to 31 postweaning (7.0 to 16.3 kg of BW). Different lots of dried blood meal were sampled to provide a range in pH. Overall (d 0 to 21), pigs fed diets containing blood meal had greater ADG (P < 0.05) and ADFI (P < 0.05) than pigs fed diets without blood meal. Ammonia concentrations in blood meal rose as pH decreased. However, blood meal pH did not influence (P > 0.16) ADG, ADFI, or gain:feed (G:F). In Exp. 2, 180 barrows (17 +/- 2 d of age at weaning) were used to determine the effects of post drying pH (7.6 to 5.9) and irradiation (gamma ray, 9.5 kGy) of blood meal on growth performance of nursery pigs from d 5 to 19 postweaning (6.8 to 10.1 kg of BW). One lot of whole blood was isolated with 25% of the total lot dried on d 0, 3, 8, and 12 after collection to create a range in pH. Overall, pigs fed blood meal had improved G:F (P < 0.01) compared to pigs fed the control diet. Similar to Exp. 1, the ammonia concentration of blood meal increased with decreasing pH. Blood meal pH did not influence ADG, ADFI, or G:F (P > 0.21), but pigs fed irradiated blood meal (pH 5.9) had greater ADG and G:F (P < 0.05) than pigs fed nonirradiated blood meal (pH 5.9). In Exp. 3, 300 barrows (17 +/- 6 d of age at weaning) were used to determine the effects of blood meal irradiation source (gamma ray vs. electron beam) and dosage (2.5 to 20.0 kGy) on growth performance of nursery pigs from d 4 to 18 postweaning (8.7 to 13.2 kg of BW). Overall, the mean of all pigs fed blood meal did not differ in ADG, ADFI, or G:F (P > 0.26) compared to pigs fed the control diet without blood meal. Pigs fed irradiated blood meal had a tendency (P < 0.10) for increased G:F compared with pigs fed nonirradiated blood meal. No differences in growth performance were detected between pigs fed blood meal irradiated by either gamma ray or electron beam sources (P > 0.26) or dosage levels (P > 0.11). These studies suggest that pH alone as an indicator of blood meal quality is not effective and irradiation of blood meal improved growth performance in nursery pigs.  相似文献   

3.
Two experiments were conducted to determine the variation in response to space allocation between barrows and gilts and to examine an alternative allocation regimen for barrows and gilts. Experimental space allocations in both experiments were achieved by varying the number of pigs per pen in a fully slatted facility. In Exp. 1, barrows were given 0.58 and 0.65 m2/pig (nine and eight pigs per pen, respectively) and gilts were given 0.65 and 0.74 m2/pig (eight and seven pigs per pen, respectively). In addition, barrows at 0.58 m2/pig were fed diets formulated for barrows or diets formulated for gilts. Barrows grew 4.8% slower (P = 0.031) and ate 3.1% less feed daily (P = 0.062) at 0.58 vs. 0.65 m2/pig from 22 to 115 kg BW, with no difference in feed conversion, daily lean gain, carcass lean percent, or variation in weight within the pen at time of first pig removal to slaughter. There was no improvement in daily gain, feed intake, feed efficiency, lean gain, or carcass lean percent when gilts were given 0.74 vs. 0.65 m2/pig from 22 to 115 kg BW. There was no difference in performance between the population that consisted of barrows and gilts at 0.65 m2/pig vs. the population of barrows at 0.58 m2/pig and gilts at 0.74 m2/pig. There was no difference in performance by barrows at 0.58 m2/pig when fed either barrow or gilt diets, except for a slight increase (P = 0.078) in within-pen weight variation when the first pig was removed for slaughter for the barrows fed gilt diets. In Exp. 2, barrows and gilts were given 0.58 m2/pig or 0.74 m2/pig (18 vs. 14 pigs per pen) from weaning (mean age 17 d) to slaughter on d 168 postweaning. There were no interactions between space allocation and gender. Daily gain and feed intake were decreased by 2.8% (P = 0.037) and 2.9% (P = 0.084), respectively, with no effect on feed conversion or standardized fat-free lean daily gain for the 0.58 vs. the 0.74 m2/pig treatment, whereas total live weight gain per pen was increased 20.8% (P < 0.001). Results of Exp. 1 suggest that space allocation can be used to achieve similar growth rates between barrows and gilts, and results of Exp. 2 suggest that the response to space allocation is similar for barrows and gilts. The difference in magnitude of response to space allocation between experiments may be due in part to when the social group was formed, with a smaller difference in performance in Exp. 2 associated with a stable social group from weaning to slaughter.  相似文献   

4.
Impact of betaine on pig finishing performance and carcass composition   总被引:2,自引:0,他引:2  
Two experiments were conducted to evaluate the effect of betaine supplementation of finishing diets on growth performance and carcass characteristics of swine. Experiment 1 included 288 pigs in a 2 x 2 x 3 factorial arrangement of treatments consisting of barrows and gilts of two genetic populations fed diets with 1.25 g/kg supplemental betaine from either 83 or 104 kg to 116 kg and control pigs fed betaine-devoid diets. Pigs were housed three pigs per pen with eight replicate pens per treatment. Diets were corn-soybean meal-based with 300 ppm added choline. Genetic populations differed (P < 0.05) in fat depth (2.24 vs 2.93 cm) and longissimus muscle depth (53.8 vs 49.1 mm) at 116 kg. Betaine reduced feed intake (P < 0.05); however, real-time ultrasound measurements were not affected. In Exp. 2, 400 pigs were used in a 2 x 2 x 2 factorial arrangement of treatments to evaluate the effect of sex (barrow or gilts), betaine (0 or 1 g/kg of diet), and crude protein (CP) (0.70% lysine = 12.7% CP or 0.85% lysine = 15.0% CP) when fed from 60 to 110 kg live weight. Pigs had been assigned to either a high- or low-protein feeding regimen at an average initial weight of 11.3 kg and were maintained on their respective protein levels throughout the experiment. For a 56-d period from 61.7 kg to 113.6 kg, pigs were fed diets with 300 ppm added choline. Within each protein level, pigs were randomly assigned to diets containing 0 or 1 g/kg betaine. Pigs were group-housed (four to five pigs per pen). Pig weight and feed intake were recorded every 28 d. Real-time ultrasound measurements were recorded initially and at d 28 on 64 pigs, and on all pigs prior to slaughter. Growth rate was fastest and feed intake greatest for barrows (P < 0.05) and for pigs receiving 12.7% crude protein. A crude protein x betaine interaction (P < 0.05) was observed from d 28 to 56 with pigs fed the 15% CP diet growing fastest when supplemented with 1 g/kg betaine, and pigs receiving the 12.7% CP diet growing fastest when the diets contained 0 g/kg betaine. Gilts more efficiently (P < 0.05) converted feed into body weight gain, as did pigs receiving the 12.7% CP diet (P < 0.05). Longissimus muscle area and fat measurements were unaffected by betaine or dietary protein on d 28. However, by d 56 betaine reduced average fat depth in barrows (P < 0.05; 3.21 vs 3.40 cm), but not in gilts. Betaine may be more effective at altering body composition in barrows than in gilts.  相似文献   

5.
Four experiments were conducted to examine the effect of porcine circovirus type 2 (PCV2) vaccination on the response of growing and finishing pigs (PIC 337 × 1050) to increasing dietary Lys. Experiments 1 and 2 evaluated 38- to 65-kg gilts and barrows, respectively, and Exp. 3 and 4 evaluated 100- to 120-kg gilts and barrows, respectively. Gilts and barrows were housed separately in different barns. Treatments were allotted in a completely randomized design into 2 × 4 factorials with 2 PCV2 treatments (PCV2-vaccinated and nonvaccinated) and 4 standardized ileal digestible (SID) Lys:ME ratios (2.24, 2.61, 2.99, and 3.36 g/Mcal in Exp. 1 and 2 and 1.49, 1.86, 2.23, and 2.61 g/Mcal in Exp. 3 and 4) within each experiment. There were 5 pens per treatment. At the start of Exp. 1 and 2, there were more pigs per pen (P < 0.001) in vaccinated pens because vaccinated pigs had a greater survival rate than nonvaccinated pigs, and this increase was maintained throughout the experiments. Removal rate approached 30% in nonvaccinated barrows and more than 20% in nonvaccinated gilts. Observation suggested that the removals were largely due to PCV2-associated disease. No PCV2 vaccination × SID Lys:ME ratio interactions (P > 0.10) were observed in any of the 4 studies. In Exp. 1 and 2, PCV2-vaccinated pigs had increased (P < 0.001) ADG compared with nonvaccinated pigs. The growth response was primarily due to increases in ADFI, which suggests that vaccinated pigs have a greater Lys requirement (g/d) than nonvaccinated pigs. In Exp. 1, increasing the SID Lys:ME ratio increased (quadratic; P < 0.04) ADG and G:F, with pigs fed the 2.99 g/Mcal ratio having the greatest ADG and G:F. In Exp. 2, increasing the SID Lys:ME ratio improved (linear; P < 0.001) G:F. In Exp. 3, ADG and G:F increased (P < 0.05) in a quadratic manner as the SID Lys:ME ratio fed increased. In Exp. 4, increasing the SID Lys:ME ratio increased ADG (linear; P < 0.001) and G:F (quadratic; P = 0.03). Although PCV2 vaccination improved growth, the corresponding increase in ADFI did not increase the optimal SID Lys:ME ratio for growing and finishing barrows and gilts.  相似文献   

6.
Four experiments with 1,040 weanling pigs (17 +/- 2 d of age at weaning) were conducted to evaluate the effects of spray-dried animal plasma source, drying technique, and methods of bacterial reduction on nursery pig performance. In Exp. 1, 180 barrows and gilts (initial BW 5.9 +/- 1.8 kg) were used to compare effects of animal plasma, animal plasma source, drying technique (spray-dried or freeze-dried), and plasma irradiation in nursery pig diets. From d 0 to 10, pigs fed diets containing irradiated spray-dried animal plasma had increased ADG and ADFI (P < 0.05) compared with pigs fed diets containing nonirradiated spray-dried animal plasma. Pigs fed irradiated animal plasma Sources 1 and 2 were similar in ADG and ADFI, but pigs fed animal plasma Source 1 had greater ADG (P < 0.05) than pigs fed animal plasma Source 2 and pigs not fed plasma. Pigs fed freeze-dried animal plasma had growth performance similar (P > 0.36) to pigs fed spray-dried animal plasma. Overall (d 0 to 24), pigs fed irradiated spray-dried animal plasma were heavier (P < 0.05) than pigs fed no animal plasma, whereas pigs fed nonirradiated spray-dried plasma were intermediate. In Exp. 2, 325 barrows and gilts (initial BW 5.8 +/- 1.7 kg) were used to compare the effects of irradiation or formaldehyde treatment of animal plasma and formaldehyde treatment of the whole diet. Pigs fed diets containing irradiated animal plasma had greater ADG (P < 0.05) than pigs fed nonirradiated plasma. Pigs fed formaldehyde-treated plasma had greater ADG and ADFI (P < 0.05) than pigs fed diets with either nonirradiated plasma or whole diet treated with formaldehyde. In Exp. 3 (360 barrows and gilts; initial BW 6.3 +/- 2.7 kg) and Exp. 4 (175 barrows and gilts; initial BW 6.1 +/- 1.7 kg), the irradiation of feed (high bacteria) and food-grade (low bacteria) animal plasma in nursery pig diets was examined. Pigs fed irradiated feed-grade plasma Product 2 had increased ADG (P < 0.05) compared with pigs fed nonirradiated plasma Product 2 and pigs fed the control diet without plasma. In Exp. 3 and 4, pigs fed irradiated food-grade plasma had growth performance similar to pigs fed nonirradiated food-grade plasma (P > 0.12). These studies indicate that bacterial reduction of feed-grade, but not food-grade animal plasma, improves nursery pig performance.  相似文献   

7.
We used a total of 680 pigs to compare spray-dried blood meal and blood cells in nursery diets. In Exp. 1, 350 barrows (17 +/- 2 d of age at weaning) were used to compare three levels of spray-dried blood meal or blood cells (2.5, 5.0, and 7.5%) in the diet fed from d 5 to 19 postweaning (6.6 to 9.9 kg). Inclusion of either blood product improved ADG (P < 0.005) and G:F (P < 0.001) compared to pigs fed the control diet without added blood products. However, pigs fed spray-dried blood meal had greater ADG (P < 0.001), ADFI (P < 0.04), and G:F (P < 0.001) from d 0 to 7 compared to those fed blood cells. The greatest differences observed between the two blood products occurred at the 5 and 7.5% inclusion levels. No differences (P > 0.05) in growth performance were detected between the two blood products from d 7 to 14. In Exp. 2, 380 barrows (initial BW of 10.7 kg and 41 +/- 2 d of age) were used to determine lysine bioavailability of spray-dried blood meal and blood cells via the slope ratio procedure. With G:F ratio as the response criterion, blood meal and blood cells had similar lysine bioavailability relative to crystalline lysine. These experiments indicate that both blood products had similar lysine bioavailability, and that pigs fed spray-dried blood meal had greater performance during the initial 7 d (d 5 to 12 after weaning). However, as the pigs became heavier, there were no differences observed in performance of pigs fed either blood meal or blood cells.  相似文献   

8.
Manipulation of porcine carcass composition by ractopamine   总被引:1,自引:0,他引:1  
The effect of dietary ractopamine and protein level on growth performance, individual muscle weight and carcass composition of finishing pigs were evaluated in two experiments. Twelve barrows and 12 gilts (Exp. 1) and 32 barrows (Exp. 2) with an average initial weight of 64 kg were penned individually and offered ractopamine at 0 or 20 ppm in diets containing 13 or 17% CP in 2 x 2 factorial experiments for 28 d. In both experiments, dietary ractopamine improved daily gain (P less than .1) and gain-to-feed ratio (P less than .05) at 17% dietary protein level but depressed these response criteria at 13% protein level. Leaf fat was reduced (P less than .05) and longissimus muscle depth was increased (P less than .1) by feeding ractopamine regardless of dietary CP concentration. Longissimus, psoas major, semitendinosus, biceps and quadriceps femoris (P less than .05) and tensor facia latae (P less than .1) muscles were 8 to 22% heavier with ractopamine feeding at 17% dietary CP level. Results from both trials suggest that ractopamine improves growth rate and carcass leanness at the higher dietary protein level but improves only carcass leanness at the lower protein level.  相似文献   

9.
Effect of liquid feeding weaned pigs on growth performance to harvest   总被引:6,自引:0,他引:6  
Four experiments were undertaken to examine the effect of feeding postweaning diets as dry pelleted feed, fresh liquid feed, acidified liquid feed, and fermented liquid feed on pig performance from weaning (26 d) to harvest. In Exp. 1 (n = 12 replicates) and 2 (n = 10 replicates), the treatments were 1) dry pelleted feed and 2) fresh liquid feed. In Exp. 1, 2 kg of starter diet (16.7 MJ of DE/kg and 1.6% lysine) per pig and 5 kg of transition diet (16.7 MJ of DE/kg and 1.5% lysine) per pig followed by a weaner diet (14.0 MJ of DE/kg and 1.36% lysine) were offered to 27 d after weaning. In Exp. 3 (n = 8 replicates), the treatments were 1) dry pelleted feed, 2) fresh liquid feed, and 3) acidified liquid feed. In Exp. 4 (n = 8 replicates), the treatments were 1) dry pelleted feed, 2) acidified liquid feed, and 3) fermented liquid feed. In Exp. 2, 3, and 4, 3 kg of starter diet (16.1 MJ of DE/kg and 1.74% lysine) per pig and 6 kg of transition diet (15.3 MJ of DE/kg and 1.5% lysine) per pig followed by a weaner diet (14.0 MJ of DE/kg and 1.36% lysine) was offered to 27 d after weaning. All treatments were balanced for boars and gilts and diets were offered for ad libitum consumption. Acidified liquid feed was produced by adding lactic acid to the liquid feed so that its pH was decreased to 4.0. Fermented liquid feed was produced by adding an inoculum of Lactococcus lactis subsp. cremoris 303 (1.3%, vol/wt) to the first mix. In Exp. 1, ADG from weaning to d 27 after weaning was 338 and 286 g/d (SEM = 10; P < 0.01) and DM gain/feed in the same period was 888 and 594 g/kg (SEM = 23.1; P < 0.001) for dry pelleted feed and fresh liquid feed, respectively. In Exp. 2, ADG was 391 and 352 g/d (SEM = 6.4; P < 0.01) and DM gain/feed was 856 and 642 g/kg (SEM = 9.9; P < 0.001) for dry pelleted feed and fresh liquid feed, respectively, during the period from weaning to d 27 after weaning. In Exp. 3, ADG was 408, 416, and 433 g/d (SEM = 12.7; P > 0.05) and DM gain/feed was 865, 755, and 789 g/ kg (SEM = 14.5; P < 0.001) for dry pelleted feed, fresh liquid feed, and acidified liquid feed, respectively. In Exp. 4, ADG was 361, 389, and 347 g/d (SEM = 13.2; P = 0.11) and DM gain/feed was 888, 749, and 733 g/ kg (SEM = 15.8; P < 0.001) for dry pelleted feed, acidified liquid feed, and fermented liquid feed, respectively, during the period from weaning to d 27 after weaning. It is concluded that although feeding acidified liquid feed may have some merit in the first 27 d after weaning, this benefit is lost in the subsequent period. No benefit arose from feeding fresh liquid feed or fermented liquid feed. Growth performance from d 28 after weaning to harvest was not improved by any liquid feed treatment.  相似文献   

10.
Two experiments were conducted to determine the effect of substituting a more available dietary carbohydrate (CHO) for portions of corn or fat in the diet on growth performance, carcass traits, meat quality, and serum or plasma metabolites in growing-finishing pigs. A three-phase feeding program was used with corn-soybean meal diets formulated to provide 105% of the Lys requirement for barrows or gilts gaining 325 g of lean daily in Exp. 1 or gilts gaining 350 g of lean daily in Exp. 2. Diets were isoenergetic within experiments. All other nutrients met or exceeded suggested requirements. In Exp. 1, pigs were allotted to three dietary treatments (0, 7.5, or 15.0% sucrose), with three replications of barrows and three replications of gilts, and with three or four pigs per replicate pen; average initial and final BW were 25.2 and 106.7 kg. In Exp. 2, gilts were allotted to two dietary treatments (waxy [high amylopectin] or nonwaxy [75% amylopectin and 25% amylose] corn as the grain source), with five replications of four gilts per replicate pen; average initial and final BW were 37.7 and 100.0 kg. In Exp. 1, ADG and gain:feed ratio increased linearly (P < 0.02) as dietary sucrose increased. Minolta color scores, a* and b*, and drip loss (P < 0.06) also increased linearly with added sucrose. In Exp. 2, ADG, carcass weight and length, and the Minolta a* value were greater for pigs fed waxy corn (P < 0.08) than for those fed nonwaxy corn. Feed intake, longissimus muscle area, 10th-rib and average backfat thickness, dressing percentage, fat-free lean, percentage of lean and muscling, lean gain per day, total fat, percentage fat, lean:fat ratio, serum or plasma metabolites (Exp. 1: serum urea N; Exp. 2: serum urea N, and plasma nonesterified fatty acids, triacylglycerols, total and high-density lipoprotein cholesterol, insulin, and total protein), pH of the longissimus muscle, and subjective muscle scores (color, firmness-wetness, and marbling) were not affected by diet in either experiment. In summary, increasing availability of dietary CHO in growing-finishing pig diets improved growth performance, but it did not affect carcass traits.  相似文献   

11.
This study was conducted to evaluate the effects of dietary energy density and weaning environment on pig performance. Treatment diets were formulated to vary in DE concentration by changing the relative proportions of low (barley) and high (wheat, oat groats, and canola oil) energy ingredients. In Exp. 1, 84 pigs in each of 3 replications, providing a total of 252 pigs, were weaned at 17 x 2 d of age and randomly assigned to either an on-site or an off-site nursery and to 1 of 3 dietary DE concentrations (3.35, 3.50, or 3.65 Mcal/kg). Each site consisted of a nursery containing 6 pens; 3 pens housed 7 barrows and 3 housed 7 gilts. All pigs received nontreatment diets in phase I (17 to 19 d of age) and phase II (20 to 25 d of age), respectively. Dietary treatments were fed from 25 to 56 d of age. Off-site pigs were heavier at 56 d of age (23.4 vs. 21.3 kg; P < 0.05) and had greater ADFI (0.77 vs. 0.69 kg/d; P < 0.01) than on-site pigs. There was a linear decrease in ADG (P < 0.01) and ADFI (P < 0.001) with increasing DE concentration. Efficiency of gain improved (P < 0.01) with increasing DE concentration. There was no interaction between weaning site and diet DE concentration, indicating that on-site and off-site pigs responded similarly to changes in diet DE concentration. In Exp. 2, nutrient digestibility of the treatment diets used in Exp. 1 was determined using 36 pigs with either ad libitum or feed intake restricted to 5.5% of BW. Energy and N digestibility increased (P < 0.001) with increasing DE concentration. Nitrogen retention and daily DE intake increased with DE concentration in pigs fed the restricted amount of feed (P < 0.05). These results indicate that weaning off-site improves pig weight gain. The weanling pig was able to compensate for reduced dietary DE concentration through increased feed intake. Growth limitation in the weanling pig may not be overcome simply by increasing dietary DE concentration.  相似文献   

12.
Corn-soybean meal-based diets, consisting of a high-P control (HPC) containing supplemental dicalcium phosphate (DCP), a basal diet containing no DCP, and the basal diet plus Escherichia coli phytase at 500 or 1,000 phytase units per kilogram (FTU/kg; as-fed basis) were fed to evaluate growth performance in starter, grower, and finisher pigs. Pigs were blocked by weight and gender, such that average weight across treatments was similar, with equal numbers of barrows and gilts receiving each treatment in each block. In Exp. 1, 48 pigs with an average initial BW of 11 kg, housed individually, with 12 pens per diet, were used to evaluate growth performance over 3 wk. Overall ADG and G:F were increased linearly (P < 0.05) by dietary phytase addition. Final BW and plasma P concentrations at 3 wk also increased linearly (P < 0.05). In Exp. 2, 128 pigs with an average initial BW of 23 kg, housed four pigs per pen, with eight pens per diet, were used to evaluate growth performance over 6 wk. A linear increase in response to phytase was noted for ADG and G:F in all three 2-wk periods, as well as overall (P < 0.05). Percentage of bone ash also showed a linear increase (P < 0.01). In Exp. 3, 160 pigs (53 kg), housed five pigs per pen, with eight pens per diet, were used to evaluate growth performance over 6 wk. A linear increase was detected for final BW, as well as ADG and G:F in the first and second 2-wk periods, and overall (P < 0.01). Twenty-four 15-kg individually housed pigs were used to evaluate total-tract nutrient digestibility in Exp. 4. Daily absorption of P linearly increased (P < 0.05) with phytase supplementation. Results of this research indicate that E. coli phytase is effective in liberating phytate P for uptake and utilization by starter, grower, and finisher pigs.  相似文献   

13.
Two experiments were conducted to evaluate the effect of excess protein on growth performance, carcass characteristics, organ weights, plasma urea concentration, and liver arginase activity of finishing barrows and gilts. In Exp. 1, 35 barrows and 35 gilts with an initial BW of 51 kg were used. Five pigs of each sex were slaughtered at the start of the study to determine initial body composition. The remaining 60 pigs were allotted to a randomized complete block (RCB) experiment with a 2x5 factorial arrangement of treatments (two sexes x five protein levels: 13, 16, 19, 22, and 25% CP). The experiment continued until the average BW was 115 kg, at which time three blocks of pigs (30 total) were selected randomly and slaughtered. Feed intake decreased with increasing protein concentration (linear, P<.05), and the reduction was greater in gilts than in barrows (P<.05). There was a trend toward a linear negative effect of dietary protein on ADG (P<.10) and also a quadratic effect of protein on protein accretion (P<.10). Fat accretion decreased linearly as protein level increased (P<.05). Increased protein concentrations increased liver, kidney, and pancreas weights (linear, P<.05). Plasma urea concentration increased with each protein concentration, with the exception of the 25 vs. 22% CP treatment in gilts. In Exp. 2, 18 barrows and 18 gilts (BW 63 kg) were allotted to an RCB design consisting of a 2x2 factorial arrangement of treatments with two sexes and two dietary protein concentrations (16 and 25% CP). The experiment was terminated when the average BW of pigs reached 105 kg. Average daily feed intake was greater (P<.10) in barrows than in gilts. Average daily gain was reduced by 18% in gilts when dietary protein was increased from 16 to 25% but was only reduced 3% in barrows (sex x protein, P<.10). Barrows had lighter livers (P<.005), greater arginase activities (P<.05), and greater plasma urea concentrations (P<.005) than did gilts. Increasing dietary protein concentration from 16 to 25% increased liver weight, arginase activity, and plasma urea concentration (P<.005). These data suggest that gilts are more sensitive than barrows to excessive intakes of protein. The more negative effects in gilts may be related to liver metabolic capacity and activity of urea cycle enzymes.  相似文献   

14.
Three pig trials were carried out to determine the true digestible Ile requirement for maximal weight gain and minimal plasma urea nitrogen (PUN) of late-finishing (87 to 105 kg) pigs. In Exp. 1, an Ile-deficient basal diet was developed and confirmed to be markedly deficient in Ile, yet fully efficacious when fortified with surfeit Ile. This diet contained corn and dried red blood cells (RBC) as Ile sources, and was analyzed to contain 10.5% CP, 0.25% Ile, and 0.63% lysine; ME was calculated to be 3,475 kcal/kg. True digestibility of Ile in the basal diet was 88% based on previous digestibility trials in ileal-cannulated pigs and cecectomized roosters. Experiment 2 was a growth trial that involved five graded levels of crystalline Ile supplementation (0.02%) to generate five dose levels of true digestible Ile (0.25 to 0.33%), Diets 1 through 5, respectively. Gain and feed efficiency showed a linear response to incremental doses of Ile (P = 0.003 and 0.036, respectively), with an apparent plateau at 0.31% true digestible Ile. In Exp. 3, a replicated 5 x 5 Latin square, five barrows (Square 1) and five gilts (Square 2) were used in five 4-d feeding periods, with five levels of true digestible Ile (0.22 to 0.30%). Using feed intake as a covariate, a linear decrease in PUN occurred in gilts (8.9, 8.6, 8.0, 7.0, and 5.5; P = 0.004) and in gilts and barrows combined (9.5, 9.2, 9.2, 8.5, and 7.6; P = 0.006) as Ile increased incrementally. The PUN results for barrows (10.5, 10.0, 10.2, 9.9, and 9.7) were not affected by dietary Ile (P = 0.417). The results of these experiments suggest that the factorial requirement estimate of 0.30% true digestible Ile for high-lean, late-finishing pigs suggested by the NRC Subcommittee on Swine Nutrition is accurate.  相似文献   

15.
Crossbred pigs (n = 192) from Piétrain x Large White sires mated to Landrace x Large White dams, with a mean BW of 75 +/- 1.3 kg, were used to investigate the effects of gender and slaughter weight (SW) on growth performance, carcass characteristics, and meat quality. Pens of pigs (eight pigs/pen) were assigned randomly to one of six treatments arranged in a 2 x 3 factorial design with two genders (barrows or gilts) and three SW (116, 124, or 133 kg). Each treatment was replicated four times. Over the entire trial, barrows had higher (P < 0.001) ADFI (as-fed basis) and ADG than gilts; however, gilts had higher (P < 0.05) gain-to-feed ratios (G:F) than barrows. Barrows had lower (P < 0.01) dressing percents than gilts and produced fatter (P < 0.001) carcasses that had lower trimmed shoulder (P < 0.10) and ham (P < 0.001) yields than gilts. There was a trend for the semimembranosus muscle (SM) from barrows to have a higher (P < 0.10) 45-min pH than that of gilts, but 24-h pH was 0.11 pH unit higher (P < 0.01) in the SM of barrows than gilts. Gender had no (P > 0.10) effect on the moisture and lipid content of the longissimus muscle (LM), nor did gender affect (P > 0.10) LM color, myoglobin content, or thaw loss percentage. However, the LM from barrows had lower (P < 0.05) cooking loss percentages and tended to have lower (P < 0.10) shear force values than the LM from gilts. Pigs slaughtered at 116 kg had higher (P < 0.05) ADG than pigs slaughtered at 124 and 133 kg. Daily feed intake (as-fed basis) was not (P > 0.10) different among SW; however, pigs slaughtered at 116 and 124 kg had higher (P < 0.001) G:F than those slaughtered at 133 kg. Dressing percent, backfat depth, carcass length, and ham and shoulder weights increased (P < 0.001) as SW increased from 116 to 133 kg. The initial (45-min) pH of the SM from pigs slaughtered at 133 kg was higher (P < 0.05) than from pigs slaughtered at 116 or 124 kg; however, 24-h pH was not (P > 0.10) affected by SW. The LM from pigs slaughtered at 133 kg was darker (lower L* values; P < 0.001), redder (higher a* value; P < 0.01), and had more (P < 0.001) myoglobin than the LM of pigs slaughtered at 116 and 124 kg. Barrows and gilts of this particular crossbreed can be used to produce acceptable quality fresh pork when slaughtered at 116 kg; however, increasing SW to 124 kg, or more, decreased live pig performance and carcass leanness without any additional benefits to pork quality attributes.  相似文献   

16.
Two experiments were conducted to determine the effect of phytase on energy availability in pigs. In Exp. 1, barrows (initial and final BW of 26 and 52 kg) were allotted to four treatments in a 2 x 2 factorial arrangement. Corn-soybean meal (C-SBM) diets were fed at two energy levels (2.9 and 3.2 x maintenance [M]) with and without the addition of 500 phytase units/kg of diet. The diets contained 115% of the requirement for Ca, available P (aP), and total lysine, and Ca and aP were decreased by 0.10% in diets with added phytase. Pigs were penned individually and fed daily at 0600 and 1700, and water was available constantly. Eight pigs were killed and ground to determine initial body composition. At the end of Exp. 1, all 48 pigs were killed for determination of carcass traits and protein and fat content by total-body electrical conductivity (TOBEC) analysis. Six pigs per treatment were ground for chemical composition. In Exp. 2, 64 barrows and gilts (initial and final BW of 23 and 47 kg) were allotted to two treatments (C-SBM with 10% defatted rice bran or that diet with reduced Ca and aP and 500 phytase units/kg of diet), with five replicate pens of barrows and three replicate pens of gilts (four pigs per pen). In Exp. 1, ADG was increased (P < 0.01) in pigs fed at 3.2 x M. Based on chemical analyses, fat deposition, kilograms of fat, retained energy (RE) in the carcass and in the carcass + viscera, fat deposition in the organs, and kilograms of protein in the carcass were increased (P < 0.10) in pigs fed the diets at 3.2 vs. 2.9 x M. Based on TOBEC analysis, fat deposition, percentage of fat increase, and RE were increased (P < 0.09) in pigs fed at 3.2 x M. Plasma urea N concentrations were increased in pigs fed at 3.2 x M with no added phytase but were not affected when phytase was added to the diet (phytase x energy, P < 0.06). Fasting plasma glucose measured on d 28, ultrasound longissimus muscle area (LMA), and 10th-rib fat depth were increased (P < 0.08) in pigs fed phytase, but many other response variables were numerically affected by phytase addition. In Exp. 2, phytase had no effect (P > 0.10) on ADG, ADFI, gain:feed, LMA, or 10th-rib fat depth. These results suggest that phytase had small, mostly nonsignificant effects on energy availability in diets for growing pigs; however, given that phytase increased most of the response variables measured, further research on its possible effects on energy availability seems warranted.  相似文献   

17.
Ninety-six crossbred barrows and gilts weighing 90 +/- .67 kg were used during a 21-d study to determine the effects of a hot, diurnal temperature (H; 22.5 to 35 degrees C) compared with a constant, thermoneutral temperature (TN; 20 degrees C) and the effects of sex (barrows vs gilts) on performance. A secondary objective included the determination of weight loss as a result of a 24-h fast immediately after the 21-d feeding study of commingled vs not commingled hogs of both environmental treatments (TN and H). Pigs housed in the hot, diurnal temperature gained 16.3% more slowly (P less than .001;.77 vs. .92 kg/d) than those in the constant, thermoneutral environment. Feed intake (FI) for the H pigs was 10.9% less (P less than .001; 3.01 vs 3.38 kg/d) than that for the TN pigs. The H pigs gained 17.6 g/d less and consumed 43.5 g/d less feed for every C degrees above 20 degrees C; however, no differences were observed for feed efficiency (F/G; 3.86 vs 4.19 kg for the TN and H pigs, respectively). Average daily gain and feed/gain (F/G) were not affected by sex. Likewise, no significant interactions of temperature x sex were observed for ADG, FI, or F/G. Weight loss (shrinkage) during the 24-h fast was not affected by commingling; however, the H pigs lost 17.5% more weight (P less than .05) than the TN pigs (3.82 vs 3.25%, respectively).  相似文献   

18.
Two experiments were conducted to determine the efficacy of mannan oligosaccharides (MOS) fed at two levels of Cu on growth and feed efficiency of weanling and growing-finishing pigs, as well as the effect on the immunocompetence of weanling pigs. In Exp. 1, 216 barrows (6 kg of BW and 18 d of age) were penned in groups of six (9 pens/treatment). Dietary treatments were arranged as a 2 x 2 factorial consisting of two levels of Cu (basal level or 175 ppm supplemental Cu) with and without MOS (0.2%). Diets were fed from d 0 to 38 after weaning. Blood samples were obtained to determine lymphocyte proliferation in vitro. From d 0 to 10, ADG, ADFI, and gain:feed (G:F) increased when MOS was added to diets containing the basal level of Cu, but decreased when MOS was added to diets containing 175 ppm supplemental Cu (interaction, P < 0.01, P < 0.10, and P < 0.05, respectively). Pigs fed diets containing 175 ppm Cu from d 10 to 24 and d 24 to 38 had greater (P < 0.05) ADG and ADFI than those fed the basal level of Cu regardless of MOS addition. Pigs fed diets containing MOS from d 24 to 38 had greater ADG (P < 0.05) and G:F (P < 0.10) than those fed diets devoid of MOS. Lymphocyte proliferation was not altered by dietary treatment. In Exp. 2, 144 pigs were divided into six pigs/pen (six pens/treatment). Dietary treatments were fed throughout the starter (20 to 32 kg BW), grower (32 to 68 kg BW), and finisher (68 to 106 kg BW) phases. Diets consisted of two levels of Cu (basal level or basal diet + 175 ppm in starter and grower diets and 125 ppm in finisher diets) with and without MOS (0.2% in starter, 0.1% in grower, and 0.05% in finisher). Pigs fed supplemental Cu had greater (P < 0.05) ADG and G:F during the starter and grower phases compared to pigs fed the basal level of Cu. During the finisher phase, ADG increased when pigs were fed MOS in diets containing the basal level of Cu, but decreased when MOS was added to diets supplemented with 125 ppm Cu (interaction, P < 0.05). Results from this study indicate the response of weanling pigs fed MOS in phase 1 varied with level of dietary Cu. However, in phase 2 and phase 3, diets containing either MOS or 175 ppm Cu resulted in improved performance. Pharmacological Cu addition improved gain and efficiency during the starter and grower phases in growing-finishing pigs, while ADG response to the addition of MOS during the finisher phase seems to be dependent upon the level of Cu supplementation.  相似文献   

19.
Four growth experiments were conducted to assess the effects of organic acid supplementation on performance of starter and finisher pigs. Three 4-wk starter experiments utilized 392 pigs fed simple corn-soybean meal diets. A fourth experiment employed 135 finisher pigs in a 6-wk study. Each of the starter experiments was initiated immediately after weaning; piglets were 30 +/- 3 d of age. In Exp. 1, weanling pigs fed a 19% crude protein, simple corn-soybean meal diet were compared with pigs fed similar diets supplemented with 2% propionic, fumaric, or citric acid. Addition of each acid improved (P less than .07) efficiency of gain, while propionate depressed (P less than .05) feed intake. Additions of 1, 2, 3 or 4% fumarate were made in Exp. 2, resulting in linear daily gain and feed efficiency improvements (P less than .05). In Exp. 3, a possible protein-sparing effect of fumaric acid was investigated. Increasing protein levels from 16 to 20% improved daily gain (P less than .01) and feed efficiency (P less than .0001); fumarate supplementation (2%) increased (P less than .01) gain:feed. However, there was no protein X fumaric acid interaction. In Exp. 4, no treatment effects were noted with performance of finisher pigs fed a 14% crude protein, corn-soybean meal diet was compared with that of pigs fed similar diets supplemented with 1.5 or 3% fumaric acid.  相似文献   

20.
Digestible lysine requirement of starter and grower pigs   总被引:1,自引:0,他引:1  
Three experiments were conducted to determine the digestible lysine requirement of starter (6 kg BW initially) and of grower (21 kg BW initially) pigs. Experiment 1 used 294 starter pigs and lasted 28 d; Exp. 2 used 182 grower pigs and lasted 35 d. Protein and total lysine contents of the basal corn-peanut meal diets were 20 and .8% for Exp. 1 and 16 and .54% for Exp. 2. Basal diets were fortified with five incremental additions of lysine.HCl to provide lysine contents ranging from .8 to 1.3% in Exp. 1, and .54 to .94% in Exp. 2. Diets contained crystalline tryptophan, threonine and isoleucine (Exp. 1 only) to provide dietary concentrations equal to 18, 70 and 60% of the highest lysine level fed. Average daily gain and gain/feed of both starter and grower pigs increased (P less than .05) linearly and quadratically as dietary lysine level increased. For starter pigs, ADG and gain/feed were optimized at 1.1 to 1.2% total lysine. For grower pigs, ADG and gain/feed were optimized at .86% total lysine. In Exp. 3, barrows fitted with an ileal T-cannula were used in a 4 X 4 Latin square design. Basal diets and diets with added lysine were evaluated. Apparent lysine digestibility of the basal starter and grower diets and lysine.HCl were 79.9, 74.1 and 96.7%, respectively. Based on these values and the total lysine contents found to optimize performance, the digestible lysine requirements of starter and grower pigs are 1.03 and .71%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号