首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine (Pinus taeda L.) on many upland sites that historically were occupied by longleaf pine (Pinus palustris Mill.). There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to meet current conservation objectives. However, fast-growing natural loblolly pine regeneration may threaten the success of artificially regenerated longleaf pine seedlings. We evaluated the establishment and growth of natural loblolly pine regeneration following different levels of timber harvest using single-tree selection (Control (uncut, residual basal area ∼16 m2/ha), MedBA (residual basal area of ∼9 m2/ha), LowBA (residual basal area of ∼6 m2/ha), and Clearcut (complete canopy removal)) and to different positions within canopy gaps (approximately 2800 m2) created by patch cutting at two ecologically distinct sites within the longleaf pine range: Fort Benning, GA in the Middle Coastal Plain and Camp Lejeune, NC in the Lower Coastal Plain. The density of loblolly pine seedlings was much higher at Camp Lejeune than at Fort Benning at the end of the first growing season after harvesting. Following two growing seasons, there were no significant effects of canopy density or gap position on the density of loblolly pine seedlings at either site, but loblolly pine seedlings were taller on treatments with greater canopy removal. Prescribed fires applied following the second growing season killed 70.6% of loblolly pine seedlings at Fort Benning and 64.3% of seedlings at Camp Lejeune. Loblolly pine seedlings were generally less than 2 m tall, and completeness of the prescribed burns appeared more important for determining seedling survival than seedling size. Silvicultural treatments that include canopy removal, such as patch cutting or clearcuts, will increase loblolly pine seedling growth and shorten the window of opportunity for control with prescribed fire. Therefore, application of prescribed fire every 2-3 years will be critical for control of loblolly pine regeneration during restoration of longleaf pine in existing loblolly pine stands.  相似文献   

2.
Nitrogen fertilization in the nursery, along with altering the configuration of forest gaps, may improve the reforestation success of longleaf pine seedlings. During the very droughty 1998 growing season in Florida and Georgia, survival was higher under the forest canopy than in small (0.10 ha, 36 m diameter) and large (1.6 ha, 144 m diameter) canopy gaps. In the large gaps, survival of containerized seedlings was higher along the edges, particularly the SW edge. Shade from adult trees and the nurse effect of shrubs increased survival, while grass competition reduced survival. During dry years part of the “exclusionary zone” along the edge of canopy gaps (SW sector) may serve as a “survival zone”, at least in the short term. A model using oval-shaped gaps oriented from NW to SE, with an area of 0.25 ha is proposed to maximize the survival and growth of artificially regenerated longleaf pine seedlings.  相似文献   

3.
Species richness and evenness have greatly declined in oak–hickory forests in the central hardwood region in the U.S.A. in the past 100 years due to the rapid population growth of Acer saccharum. This study used a 50-year record of spatial dynamics to examine how demographic processes, particularly recruitment, may have contributed to this increase in an old-growth forest remnant, Brownfield Woods, Urbana, Illinois, U.S.A. The impact of canopy disturbance, including the outbreak of Dutch elm disease, on this increase was also evaluated. Historical maps of trees (≥7.6 cm DBH) from 1951, 1988, and 2001 in a 180 m × 280 m area were used to develop a series of univariate Ripley's L(d) functions to study changes in spatial patterns of three size classes of A. saccharum over time. Bivariate Ripley's L(d) functions were also utilized to evaluate spatial associations between recruitment and canopy disturbance. Our results indicated that A. saccharum was aggregated at most spatial scales up to 80 m during 1951–2001. Such aggregation arose mainly from small individuals. Furthermore, newly recruited individuals were aggregated at multiple spatial scales, and were significantly associated with canopy disturbance in general, as well as gaps created by Ulmus trees killed by Dutch elm disease. The aggregation of the 1951 initial group of small individuals changed via mortality to a random distribution over time. The results indicate that tree deaths caused by disturbances of different scales and types were the main cause of increased recruitment of A. saccharum in Brownfield Woods. The occurrence of Dutch elm disease further accelerated its population increase. This study demonstrated a direct spatial link between recruitment of A. saccharum and disturbance, and provided a long-term case study of a population explosion.  相似文献   

4.
Correct knowledge of disturbance ecology is essential for understanding the characteristic behavior of forest ecosystems and for guiding appropriate management strategies. However, the role of natural disturbances in shaping European mountain forest ecosystems has not been adequately studied, possibly because of the perception that the development of most European forests is primarily shaped by human influences and/or fine-scale gap-phase dynamics.In the present study, we investigate the long-term disturbance history of old protected forest dominated by Norway spruce in the Parangalitsa Reserve, Bulgaria. We used aerial photo interpretation and dendroecological methods to reconstruct the history of wind, insect, and fire disturbances across a topographically complex landscape. Over the past 150 years wind has been the most important disturbance agent in this ecosystem and at least 18% of the forested area shows evidence of high-severity blowdowns. Windthrow patches ranged in size from <1 ha to >10 ha (minimum 0.11 ha, mean 0.16 ha, maximum 10 ha). Although small disturbances were much more frequent, few larger blowdowns accounted for most of the disturbed area. Pure coniferous and single-cohort coniferous forest patches were more affected by blowdowns than mixed coniferous-deciduous and multi-cohort coniferous forest patches. Although bark beetle (Ips typhographus) populations were large enough to cause mortality of some live trees, the populations did not grow to epidemic proportions during recent decades. Fire disturbance was of limited importance in the last 200 years and only two patches (4% of the study area) showed evidence of fire.The present research indicates that wind disturbances have been characteristic of these ecosystems at least over the past decades to centuries. Thus, blowdowns appear integral to the normal function and structure of the Picea-dominated mountain forests in the region and such events, in and of themselves, do not represent unhealthy forest conditions or environmental emergencies. Management strategies that aim to maintain these ecosystems within a natural range of variation should incorporate wind disturbances into the management strategy. The frequency and magnitude of future wind disturbances may be considered within the historical framework described in the current study to assess potential effects of climate change on altered disturbance regimes.  相似文献   

5.
Dendrochronological approaches enable us to understand forest stand dynamics by estimation of disturbance history and age structure. The present study was conducted in an old-growth beech forest in a forest reserve in western Japan. Increment cores were taken for tree ring analysis from all canopy trees in a 50 m × 130 m study plot. Radial growth release criteria were developed to identify significant growth releases in each tree ring series and to characterize the disturbance history of the study site. The age structure of the forest was indicative of continuous establishment by Fagus crenata and simultaneous establishment by Magnolia obovata. A variety of low-intensity disturbances were identified in each decade, especially after the 1900s, but the occurrence of high-intensity catastrophic disturbance was rare, and likely played an important role in maintaining species diversity in the existing forest canopy. The results also suggest that F. crenata regenerates gradually before and after both large- and small-scale disturbances, whereas M. obovata and Betula grossa regenerate only after large-scale catastrophic disturbances.  相似文献   

6.
Competition is a major determinant of plant growth and is often used in studies of tree growth and species coexistence. However, these approaches are usually temporally static, i.e., assessed at a single point or period in time. While constantly changing forest conditions due to natural and human-induced disturbances potentially alter competition among individuals, static approaches cannot qualify the temporal variability of competitive interactions. Here we present a longitudinal analysis of competitive interactions among trees and discuss the implication of our results for ecological interpretation.Spatially-explicit tree growth data were obtained from 18 study plots (0.4 ha each) in sugar maple (Acer saccharum Marsh.) stands in Quebec, Canada. During the studied period (1980-2003), these stands had been disturbed by insect outbreaks (forest tent caterpillar, Malacosoma disstria Hubner) and by commercial partial harvest. We analyzed radial growth rates (outcome of competition) on an annual basis and as a function of tree biology (bole diameter, crown position), competition (above- and belowground competition from neighbours) and environmental conditions (light availability, harvest disturbance).Competitive interactions changed throughout the studied period. Canopy disturbance from partial harvest interacted with defoliators and influenced competition symmetry by favoring smaller trees.Competitive interactions seemed to have switched from below- to above-ground following canopy recovery after harvest. Release from competition due to partial harvest increase neighbourhood size (radius of effective competition) and enhanced the competitive pressure from larger individuals.The temporal variability in parameter estimates may be used for setting confidence intervals on competitive success (growth rates), thereby yielding a more robust basis for ecological interpretation. Our results also show that temporal variability in competitive interactions could contribute to the maintenance of high tree species diversity and structural complexity in some ecosystems by temporally altering species-specific responses to environmental change and disturbance.  相似文献   

7.
Forest recruitment is the outcome of local- and regional-scale factors such as disturbances and climate. The relative importance of local- and regional-scale factors will determine the spatial scale at which temporal pulses of recruitment occur. In seasonal tropical forests, where the annual dry-season is a critical bottleneck to seedling survival, multi-year periods of relatively cool, wet dry seasons may be required for successful tree recruitment. Consequently, when such conditions are present, region-wide synchronisation of recruitment may occur. To examine the case for regional synchronisation of forest dynamics in the seasonal tropical pine forests of northern Thailand, we investigated forest age structures at three spatial scales: stand, site and region. We compared forest age structures with instrumental climatic records beginning in 1902. We found significant statistical evidence of synchronous recruitment at the stand- and site-scales, but not at the regional-scale. While correlations between recruitment and climate were not statistically significant, recruitment success was often linked to favourable climatic conditions. For example, recruitment at all sites was associated with multi-year periods of cool-wet dry seasons. The lack of significant correlations between recruitment and climate appears to reflect complex interactions among local disturbance history, regional climate variability and pine recruitment.  相似文献   

8.
To study how fire or herbicide use influences longleaf pine (Pinus palustris Mill.) overstory and understory vegetation, five treatments were initiated in a 5–6-year-old longleaf pine stand: check, biennial arborescent plant control by directed herbicide application, and biennial burning in March, May, or July. The herbicide or prescribed fire treatments were applied in 1999, 2001, 2003, and 2005. All prescribed fires were intense and averaged 700 kJ/s/m of fire front across all 12 burns. Using pretreatment variables as covariates, longleaf pine survival and volume per hectare were significantly less on the three prescribed fire treatments than on checks. Least-square means in 2006 for survival were 70, 65, 64, 58, and 56% and volume per hectare was 129, 125, 65, 84, and 80 m3/ha on the check, herbicide, March-, May-, and July-burn treatments, respectively. A wildfire in March 2007 disproportionately killed pine trees on the study plots. In October 2007, pine volume per hectare was 85, 111, 68, 98, and 93 m3/ha and survival was 32, 41, 53, 57, and 55% on the check, herbicide, March-, May-, and July-burn treatments, respectively, after dropping trees that died through January 2009 from the database. Understory plant cover was also affected by treatment and the ensuing wildfire. In September 2006, herbaceous plant cover averaged 4% on the two unburned treatments and 42% on the three prescribed fire treatments. Seven months after the wildfire, herbaceous plant cover averaged 42% on the two previously unburned treatments and 50% on the three prescribed fire treatments. Before the wildfire, understory tree cover was significantly greater on checks (15%) than on the other four treatments (1.3%), but understory tree cover was similar across all five treatments 7 months after the wildfire averaging 1.1%. The greater apparent intensity of the wildfire on the previously unburned treatments most likely resulted from a greater accumulation of fuels on the check and herbicide plots that also collectively had a higher caloric content than fuels on the biennially prescribed burned plots. These results showed the destructive force of wildfire to overstory trees in unburned longleaf pine stands while also demonstrating the rejuvenating effects of wildfire within herbaceous plant communities. They caution for careful reintroduction of prescribed fire even if fire was excluded for less than a decade.  相似文献   

9.
The objective of this project was to identify the timing of growth release events detected from tree ring widths and compare whether two cores taken from the same tree reconstructed the same disturbance history. This research question is important because current dendroecological reconstructions of canopy disturbance rely on sampling one core per tree; however, the variation of releases from different cores from the same tree has never been evaluated. We sampled two increment cores from 20 jack pine, 17 white oak, and 19 American beech and identified release events with two commonly employed methods: radial growth averaging technique and boundary line criteria. In jack pine, 85% of the paired cores showed identical releases with the radial growth averaging technique, but 15% of the paired cores varied in reconstructed growth releases. In the jack pine, no releases were identified with the boundary line criteria for any of the paired cores. In the white oak, 65% had identical releases identified with the radial growth averaging technique and 35% of the pairs showed differences. The boundary line criteria for white oak had agreement between releases for 76% of the pairs and different release histories for 24% of the pairs. In the American beech, we were only able to use the radial growth averaging technique and this method showed identical release timing for 79% of the paired cores and differences in 21% of the paired cores. This level of within-tree growth variation is unlikely to influence identification of stand-wide disturbances; however, for reconstructions of small-scale disturbances it is likely to under-represent disturbance events. Therefore, for small-scale disturbance reconstructions, we recommend dendroecologists consider sampling two cores per tree instead of the standard sample of one core per tree.  相似文献   

10.
Since the mid-1990s the forests of central British Columbia have undergone an unprecedented Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) (MPB) epidemic that has resulted in extensive mortality of canopy lodgepole pine (Pinus contorta var. latifolia Engelm.). This study investigated how seed-source availability, seedbed substrate, overstory structure, and time since MPB attack interact to affect post-MPB seedling recruitment of the dominant tree species of these forests. In addition to post-MPB recruitment, these forests may be regenerated by trees established in the understory prior to MPB disturbance. Accordingly, we examined abundance and patterns of all regeneration less than 130 cm tall. We found post-MPB recruitment was sparse. Subalpine fir (Abies laciocarpa (Hook.) Nutt.) comprised the majority of the post-MPB recruitment. It increased with local parent tree basal area and increased strongly with proximity to a major seed source. This resulted in a patchy distribution for subalpine fir post-MPB regeneration. Lodgepole pine post-MPB recruitment was limited by overstory shading. Recruitment of pine decreased as the total overstory basal area increased. Interior spruce (Picea glauca × engelmannii) post-MPB recruitment was similarly limited by total overstory basal area. Seedbed substrates were uniform and dominated by moss. Substrate type distribution did not change as time since MPB disturbance increased. The overall low post-MPB recruitment observed was likely due to a lack of disturbance to the moss-dominated forest floor. Moss is known to be a poor substrate in northern forests. The distribution of all regeneration less than 130 cm tall showed the same trends as the post-MPB regeneration. We believe the post-MPB seedling recruitment dynamics of these forests was not substantially changed from conditions prior to MPB disturbance. There was no pulse of regeneration up to 10 years post-MPB disturbance. Unless this changes, future stand structure will be dominated by the seedling bank established prior to the MPB epidemic. Subalpine fir dominated the seedling bank (68%) and post-MPB recruitment (94%). This suggests that MPB-disturbed forests are undergoing a substantial shift in landscape-level species composition.  相似文献   

11.
lNTRODUCTloNKorcanpincforcst'asaclimaxofcastlnounta1nsinNortheast-isalt"a}simportantobjcctforforcstcrstostlld}.AIthougllman}'cxpcrtsllax'cn1assi\'cI}'stlldicdthcdy'nal11icsproccssofKorcanpincforest.thcstudlesinsolllcaspcctsstilIIackdcpth'ct'cnl1at'cgaps.Sillccslnall-dianlcterKorcanpincsplayaIinL-lllgIbrlllerandlattcrroIcinKorcanpincforcstd}'llaIl1icsproccss.tl1cstudicsaboutsn1all-dlan1ctcrKorcal1pil1cs-origlnatiol1'gro\Y1l1cllaractcrandthcirrclatiol1stostandstnICt1Ircundoubtcd1}oflbr…  相似文献   

12.
European natural mountain Norway spruce (Picea abies) forests are currently subject to extensive disturbances. An improved understanding of the self-regulated regenerative capacity of this forest type is therefore needed. We used the last remnant of natural mountain Norway spruce forests in central northwestern Europe (BNF Brocken natural forest), to analyze (1) the diversity of structure and age distribution of the tree population and (2) the effect of disturbances on self-regulated tree regeneration over the last 264 years. To this end, we combined an assessment of stand structure with dendrochronological investigations and a review of disturbance history. We hypothesized that BNF exhibits a high diversity of tree ages and dimensions and that recruitment and survival of tree regeneration were largely independent from disturbances. BNF showed a high structural and age diversity. Disturbances exhibited no regular temporal pattern. Their effect on tree regeneration was rather complex and changed with observation period. Impeding and facilitating effects of past disturbances on recruitment were significant from 1736 to 1910. From 1911 until 2000, recruitment decoupled from preceding disturbances. Subsequent disturbances facilitated survival of established trees from 1736 to 1820, while afterward no significant influence could be proved. Our study showed that in the course of self-regulated development the tree population of BNF has gradually acquired, or maintained, a diverse structure. Disturbances served as an important driver of diversification. We concluded that increasing deadwood availability and limiting browsing are the key to securing immediate regeneration.  相似文献   

13.
Knowledge about the stand structure and dynamics of subalpine forests is crucial to preserve their multifunctionality. In the present study, we reconstructed the spatiotemporal dynamics of a subalpine Pinus cembra forest in the eastern Italian Alps in response to natural disturbances and forest management. We adopted a concurrent point pattern, dendroecological and growth dominance (GD) analysis. We mapped and measured all trees of Pinus cembra and Larix decidua in a 1?ha plot. We analyzed intra- and interspecific spatial patterns and spatial autocorrelation of tree size and age. We explored establishment dynamics and shifts in competition by analyzing growth suppression/release patterns and GD trends. Results showed a clumped, uneven-aged, multilayered structure where pine was dominant. The synergic action of ecological and human-induced factors is discussed to explain the prevalence of pine over time. Spatial pattern and autocorrelation analyses suggest a different colonization strategy of the two species, in which pine established after small-scale perturbations and experienced a stronger inter- and intra-specific competition. The interruption of tree establishment and shift in GD toward large trees resulting from the lack of forest management are the most important findings of this research. This highlights the importance of an active management to avoid the homogenization of the forest structure that is generally associated with a reduction in biodiversity and protective ability of forests.  相似文献   

14.
15.
Selective logging is the most widely employed method of commercial timber production in Asia, and its impact on forest structure, composition, and regeneration dynamics is considerable. However, the successional processes in forest communities after logging in semiarid mountains are poorly understood. To provide more information on these processes, we used data from tree rings, direct and indirect age determinations, and field measurements of stand structure to reconstruct the historical disturbance regime, stand development patterns, and successional processes in a natural Picea crassifolia forest community in the Qilian Mountains of northwestern China. The results showed that the density of P. crassifolia forest increased significantly after logging. The densities of second growth forests 30 and 70 years after logging disturbance had increased to 2874% and 294% of primary forest's density, respectively. Logging disturbance did not alter tree species composition of logged stands. However, the diversity of understory species changed significantly among the successional phases. Logging disturbance decreased the spatial heterogeneity of second growth forest. The spatial distributions of recruitment were affected by the location of the remaining trees. There was less recruitment near the remaining trees than near forest that had been cut. In addition, logging disturbance also induced a growth release for the trees on the sites sampled. Our results imply that the succession and regeneration of P. crassifolia forest may be improved if the remaining trees could be retained relative uniform distribution pattern, thinning or selective logging could be performed to height density, exotic shrubs could be removed or the shrubs cover could be reduced during the earlier successional stages.  相似文献   

16.
In the last 10 years the Sri Lankan government has changed its policy regarding its remaining rain forest from one that promoted commercial exploitation to one of conservation. The growing importance of uplands as catchments for water production, biodiversity conservation and other downstream services has been recognized by the Sri Lankan government. It is therefore timely that we review 15 years of research investigating rain forest dynamics of southwest Sri Lanka with the objective of using this knowledge for forest restoration. We provide six common principles for understanding the integrity of rain forest dynamics in southwest Sri Lanka. The principles are: (i) disturbances provide the simultaneous initiation and/or release of a new forest stand; (ii) that disturbances are generally non-lethal to the groundstory vegetation; (iii) disturbances are variable in severity, type and extent across rain forest topography; (iv) guild diversity (habitat diversity) is dependent upon “advance regeneration”; (v) tree canopy stratification is based on both “static” and “dynamic” processes; and (vi) canopy dominant late-successional tree species are site specialists restricted to particular topographic positions of the rain forest. These principles are applied to determine effects of two rain forest degradation processes that have been characterized as chronic (continuous detrimental impacts) and acute (one-time detrimental impacts). Restoration pathways are suggested that range from: (i) the simple prevention of disturbance to promote release of rain forest succession; (ii) site-specific enrichment planting protocols for canopy trees; (iii) sequential amelioration of arrested fern and grasslands by use of plantation analogs of old field pine to facilitate secondary succession of rain forest, and plantings of late-seral rain forest tree species; and (iv) establishment and release of successionally compatible mixed-species plantations. We summarize with a synthesis of the restoration techniques proposed for reforestation using native vegetation on cleared conservation areas and parks, and for the stabilization of eroded upland watersheds. We conclude with a comparative analysis with restoration work done in other tropical forest regions.  相似文献   

17.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

18.
长白山林区次生阔叶林冠下红松人工更新与培育技术   总被引:2,自引:0,他引:2  
通过对长白山林区林隙环境、林隙对红松生长的影响及肛伐强度对阔叶树生长、红松更新的研究,为科学地确定上红松更佳的最佳上层郁闭度,提高林分生长量,确定红松采伐年龄,促进天然林保护工程的发展提供科学的依据和技术。  相似文献   

19.
Recovery of longleaf pine (Pinus palustris P. Mill.) is necessary to arrest the decline of many associated plants and animals, and the establishment of longleaf pine on much of its original range requires artificial regeneration and diligence. In central Louisiana, USA, two fertilization levels (No [NF] or Yes [F-36 kg/ha N and 40 kg/ha P]) in combination with three vegetation treatments (check, two prescribed fires [PF], or multi-year vegetation control by herbicidal and mechanical means [IVM]) were applied to container-grown longleaf pine plantings in two studies. In Study 1 (grass dominated), 6-year-old longleaf pine survival was 52% on the F–checks, 78% on the F–PF plots, and averaged 93% on the other four treatment combinations. Longleaf pine trees on the IVM plots (3.4 m) were significantly taller than on the other two vegetation treatments, and trees on the PF plots (1.8 m) were taller than trees on the check plots (1.2 m). In Study 2 (brush dominated), survival averaged 65% across the six-treatment combinations after 6 years. The longleaf pine trees were 4.7 m tall on the IVM plots and averaged 3.9 m tall on the check and PF plots. Fertilization increased P concentrations in the soil and longleaf pine foliage, while fertilization did not significantly affect longleaf pine height growth. Native fertility was not apparently limiting longleaf pine development contrary to prior research recommendations for these soils. In both studies, the IVM treatment reduced early herbaceous competition and the number and height of arborescent plants. The PF treatment reduced arborescent plant height on the grassy site where fires were more intense than on the brushy site.  相似文献   

20.
The single-tree selection system is an important option for management of Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) forests because it provides continuous cover, requires low investments for tending, and promotes natural regeneration as well as high stand resistance and elasticity. It is often regarded as a very conservative system that usually results in only minor spatiotemporal changes in forest structure and composition. We studied management history, structural changes, regeneration dynamics, and light climate of a traditional single-tree farmer selection silver fir-Norway spruce forest (site typology Bazzanio-Abietetum). Stand structure was analyzed on five 0.25 ha permanent plots in 1994, 2001, and 2008. Regeneration density and height growth, forest floor vegetation, and light climate were also assessed on 1.5 × 1.5 m regeneration subplots in 2001 and 2008. Tree cores extracted from dominant trees from both species in two plots were used for reconstructing stand history and age structure of the canopy layer. We documented the forest response to three types of selection management regimes: excessive, normal, and conservative. Excessive management with harvest intensity significantly above the increment was documented until the late 1950s, including two peaks of heavy fellings (diameter limit cut) in the 1880s and 1930s, which favoured establishment of Norway spruce and released regeneration. The period that followed was characterized by normal selection management, but was nevertheless marked by a decline of silver fir as a result of air pollution and several droughts. This led to sanitary fellings that were carried out from the late 1970s to the early 1990s. In the last two decades conservative management followed, which led to suppression and decline of regeneration, especially of Norway spruce, and loss of selection structure. Although we recorded lower regeneration potential of silver fir compared with Norway spruce within the seedling category, silver fir outcompeted Norway spruce within the small-sized tree category (1 cm < dbh ? 10 cm) because of its superior height growth in low light levels (diffuse light <6%) and occupied a greater share of the canopy. Nevertheless, we anticipate that over the long-term the low light regime will also cause regeneration decline of silver fir and broadleaves. Our research revealed significant structural changes in a single-tree farmer selection forest during the last 150 years. These were a result of variable management regime and environment. A farmer single-tree selection system could better mimic the natural disturbance regime if spatiotemporal combinations of diverse felling regimes would be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号