首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Contribution of sesbania green manure, rice straw, and FYM (farm yard manure) was studied along with that of urea and A/SO4 (ammonium sulphate) for the cultivation of lowland rice and for the residual soil fertility. The results revealed that A/SO4 application resulted in a larger number of productive tillers, higher straw production, and higher grain yield compared to urea. Among the organic manures, sesbania green manure and FYM exerted almost similar effects on the number of productive tillers and paddy yield while the yield increase compared to the incorporation of rice straw. A similar affect of these organic manures on nitrogen uptake by rice straw, grain, and straw + grain was observed. Additional uptake of N due to the application of sesbania green manure, FYM and rice straw amounted to 15, 13, and 2.85 kg ha?1, respectively. Residual N fertility was the highest when of sesbania green manure was applied followed by FYM and rice straw. Residual P fertility was higher in the case of FYM than other treatments whereas the residual K fertility was the highest in the case of rice straw incorporation.  相似文献   

2.
Summary A pot experiment was conducted to study the availability of soil and fertilizer N to wetland rice as influenced by wheat straw amendment (organic amendment) and to establish the relative significance of the two sources in affecting crop yield. Straw was incorporated in soil at 0.1, 0.2, and 0.3% before transplanting rice. Inorganic N as 15N-ammonium sulphate was applied at 30, 60, and 90 g g-1 soil either alone or together with wheat straw in different combinations. After harvesting the rice, the plant and soil samples were analyzed for total N and 15N. Straw incorporation significantly decreased the dry matter and N yield of rice, the decrease being greater with higher rates of straw. The reduction in crop yield following the straw incorporation was attributed mainly to a decrease in the uptake of soil N rather than fertilizer N. The harmful effects of organic matter amendment were mitigated by higher levels of mineral N addition. The uptake of applied N increased and its losses decreased due to the straw incorporation. Mineral N applied alone or together with organic amendment substantially increased the uptake of unlabelled soil N. The increase was attributed to a real added N interaction.  相似文献   

3.
Methane emission from flooded rice fields under irrigated conditions   总被引:11,自引:0,他引:11  
In a study on CH4 emission from flooded rice fields under irrigated conditions, fields planted with rice emitted more methane than unplanted fields. The CH4 efflux in planted plots varied with the rice variety and growth stage and ranged from 4 to 26 mg h-1m-2. During the reproductive stage of the rice plants, CH4 emission was high and the oxidation power of rice roots, in terms of -naphthylamine oxidation, was very low. The CH4 emission reached a maximum at midday and declined to minimum levels at midnight, irrespective of the rice variety. The peak CH4 emission at midday was associated with higher solar radiation and higher soil/water temperature.  相似文献   

4.
A field experiment was conducted for 3 years during 2006–2009 in India to study the effects of plant nutrient recycling through crop residue management, green manuring, and fertility levels on yield attributes, crop productivity, nutrient uptake, and biofertility indicators of soil health in a rice–wheat cropping system. The study revealed that soil microbial biomass carbon (SMBC) and carbon dioxide (CO2) evolution were significantly greatest under crop residue incorporation (CRI) + Sesbania green manuring (SGM) treatment and were found at levels of 364 μg g?1 soil and 1.75 μg g?1 soil h?1, respectively; these were increased significantly by recycling of organic residues. Activities of dehydrogenase and phosphatase enzymes increased significantly after 3 years, with maximum activity under CRI + SGM treatment. The CRI with or without SGM significantly influenced the plant height, number of tillers m?2, number of grains panicle?1 or ear?1, and 1000-grain weight. Mean yield data of rice and wheat revealed that CRI or crop residue burning (CRB) resulted in slightly greater yield over crop residue removal (CRR) treatment. The CRI + SGM treatment again observed significantly greatest grain yields of 7.54 and 5.84 t ha?1 and straw yields of 8.42 and 6.36 t ha?1 in rice and wheat, respectively, over other crop residue management treatments. Total nitrogen (N), phosphorus (P) and potassium (K) uptake in rice–wheat system was greatest with amounts of 206.7, 37.2, and 205.6 kg ha?1, respectively, in CRI + SGM treatment. Fertility levels significantly influenced the rice and wheat yield with greatest grain yields of 6.66 and 5.68 t ha?1 and straw yields of 7.94 and 5.89 t ha?1 in rice and wheat, respectively, with the application of 150% of recommended NPK. Total NPK uptake in rice–wheat system also increased significantly with increase in fertility levels with greatest magnitude by supplying 150% of recommended NPK. Overall, nutrient recycling through incorporation of crop residues and Sesbania green manuring along with inorganics greatly improved the crop productivity, nutrient uptake, and biofertility indicators of soil health with substantial influence on SMBC, CO2 evolution, and dehydrogenase and phosphatase enzyme activities. This indicates that crop residue management along with Sesbania green manuring practice could be a better option for nutrient recycling to sustain the crop productivity and soil health in intensive rice–wheat cropping system in India as well as in similar global agroecological situations, especially in China, Pakistan, and Bangladesh.  相似文献   

5.
An innovative method was used to treat rice straw based on a mixed dilute acid treatment followed by neutralization with ammonia water. This treatment decreased the Si content of the rice straw, thus improving its degradation by soil microorganisms. The plant-available N of soil was greatly improved after the application of the treated rice straw with urea. Soil microbial biomass N was about 50 mg kg–1 in the soil amended with the treated rice straw and urea but only 40 mg kg–1 in the soil amended with untreated rice straw and urea. Better synchronization of N supply with the plant requirement for N uptake was obtained when treated rice straw was applied with urea. Recovery of urea-N was 61% when soil was amended with treated rice straw and urea, whereas it was only 46% in soil amended with untreated rice straw and urea, and only 30% in soil treated with urea alone.  相似文献   

6.

Purpose

Genetic modification of Bt rice may affect straw decomposition and soil carbon pool under flood conditions. This study aims to assess the effects of cry gene transformation in rice on the residue decomposition and fate of C from residues under flooded conditions.

Materials and methods

A decomposition experiment was set up using 13C-enriched rice straws from transgenic and nontransgenic Bt rice to evaluate the soil C dynamics and CH4 or CO2 emission rates in the root and non-root zones. The concentrations and stable carbon isotope compositions of the soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), CH4, and CO2 of the root and non-root zones were determined from 7 to 110 days after rice straw incorporation.

Results and discussion

Rice straw incorporation into soil significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates. The percentage of 13C-SOC remaining in the root zone was significantly lower than that in the non-root zone with rice straw decomposition. The DOC and MBC concentrations significantly increased in both the root and non-root zones between 0 and 80 days after rice straw incorporation. However, no significant differences were found after Bts (Bt rice straw added into soil) and Cks (nontransgenic Bt rice straw added into soil) incorporation in the root and non-root zones. This result may be attributed to the priming effects of sufficient oxygen and nutrients on straw degradation in the root zone.

Conclusions

Bt gene insertion did not affect the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates in both the root and non-root zones. However, rice straw incorporation and root exudation significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates.  相似文献   

7.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

8.
Summary Increasing the sulfate concentration and concomitant increases in the organic S concentration failed to exert any effect on organic S mobilization in samples collected from all depths within the mineral soil profile, from 15 sites differing in soil type, vegetation, and geographic location. Mobilization capacities at saturating concentrations of sulfate for organic S formation generally tended to increase with increasing depth. The potentials for the accumulation of organic S with various sulfate inputs exhibited saturation kinetics similar to those observed for organic S formation; values for the former parameter ranged from 3×10-3 to 12.6 mol S g–1 dry weight 24 h-1 for the uppermost (A, E) soil horizons, 3 nmol to 10 mol S g-1 dry weight 24 h–1 for intermediate (primarily AB) soil horizons, and from 3 nmol to 13.4 mol S g-1 dry weight 24 h–1 for the lowermost (B, C) soil horizons. Irrespective of depth, the Fullerton, Tarklin, and Loblolly sites in Tennessee and the Florida site showed the least net accumulation of organic S at saturation (<0.2 mol S g-1 dry weight 24 h–1 for all horizons examined), while the Duke Forest (North Carolina), Douglas Fir (Washington), Whiteface (New York) and the Howland (Maine) sites had the highest potential net accumulation of organic S at saturation (>1.0 mol S g-1 dry weight 24 h-1 for most horizons examined).  相似文献   

9.
油菜秸秆还田腐解变化特征及其培肥土壤的作用   总被引:26,自引:3,他引:23  
为促进油菜秸秆腐解,推进农村作物秸秆的资源化利用,减少秸秆焚烧对环境的负面影响,培养与提高土壤肥力,采用尼龙网袋和田间试验相结合方法,设置了油菜秸秆不同还田量处理和不同还田深度处理,研究了油菜秸秆腐解百分率和腐解速率变化特征,分析了油菜秸秆还田对土壤性质及作物产量的影响。结果表明,油菜秸秆还田的腐解百分率随时间延长而逐渐增大,秸秆腐解速率则早期快后期慢;随秸秆还田量增加,腐解速率降低,表现为全量还田的秸秆腐解速率<2/3量还田秸秆腐解速率<1/2量还田秸秆腐解速率<1/3量还田秸秆腐解速率;在种植水稻条件下油菜秸秆还田深度在10 cm时腐解速度最慢,在表层还田腐解速度最快,20 cm深还田腐解速度居中。相比对照处理来说,油菜秸秆还田降低了土壤容重,增加了土壤有机质含量,一定程度上提高了土壤氮磷钾含量(P<0.05)。油菜秸秆还田对水稻作物有极显著增产作用(P<0.01),增产幅度在6.02%~21.17%之间。本试验对水稻油菜轮作体系下油菜秸秆还田腐解特征进行的研究可为调控油菜秸秆还田腐解速度,改善农业生态环境提供参数依据。  相似文献   

10.
The influence of exogenous organic inputs on soil microbial biomass dynamics and crop root biomass was studied through two annual cycles in rice-barley rotation in a tropical dryland agroecosystem. The treatments involved addition of equivalent amount of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of each annual cycle: Sesbania shoot (high-quality resource, C:N 16, lignin:N 3.2, polyphenol+lignin:N 4.2), wheat straw (low-quality resource, C:N 82, lignin:N 34.8, polyphenol+lignin:N 36.8) and Sesbania+wheat straw (high-and low-quality resources combined), besides control. The decomposition rates of various inputs and crop roots were determined in field conditions by mass loss method. Sesbania (decay constant, k=0.028) decomposed much faster than wheat straw (k=0.0025); decomposition rate of Sesbania+wheat straw was twice as fast compared to wheat straw. On average, soil microbial biomass levels were: rice period, Sesbania?Sesbania+wheat straw>wheat straw?fertilizer; barley period, Sesbania+wheat straw>Sesbania?wheat straw?fertilizer; summer fallow, Sesbania+wheat straw>Sesbania>wheat straw?fertilizer. Soil microbial biomass increased through rice and barley crop periods to summer fallow; however, in Sesbania shoot application a strong peak was obtained during rice crop period. In both crops soil microbial biomass C and N decreased distinctly from seedling to grain-forming stages, and then increased to the maximum at crop maturity. Crop roots, however, showed reverse trend through the cropping period, suggesting strong competition between microbial biomass and crop roots for available nutrients. It is concluded that both resource quality and crop roots had distinct effect on soil microbial biomass and combined application of Sesbania shoot and wheat straw was most effective in sustained build up of microbial biomass through the annual cycle.  相似文献   

11.

Purpose

Sorption of heavy metals on soil components plays an important role in reducing their mobility and bioavailability. Organic matter is an important sorbent of heavy metals in soil. Crop residues which are important sources of soil organic matter will undergo decomposition after addition to the soil. However, few studies reported the effect of organic matter decomposition on heavy metal sorption. This study aimed to investigate the effect of straw decomposition on the sorption of Cu.

Materials and methods

Rice straw was decomposed in aerobic conditions for 1, 3, 6, and 12 months, respectively. Solid organic matter in decomposed rice straw was collected and marked OM-1, OM-3, OM-6, and OM-12, respectively. Sorption isotherms and kinetics of Cu on solid organic matter were studied by batch experiments. The sorption of Cu was calculated by the difference between the amount of Cu added initially and that remained in the supernatant. Sorption thermodynamics of Cu were studied by isothermal titration calorimetry technique. Potential mechanisms of Cu sorption were analyzed by combining the information from sorption thermodynamics, desorption experiments, and Fourier transform infrared spectroscopy observations. All sorption experiments were carried out at pH 5.0.

Results and discussion

The maximum sorption of Cu was 165.8, 170.5, 186.6, and 226.9 mmol kg?1, and the rate constant of Cu sorption was 0.80, 0.58, 0.50, and 0.32 kg mmol?1 h?1 on OM-1, OM-3, OM-6, and OM-12, respectively, indicating that the maximum sorption of Cu increased while sorption rate of Cu decreased with increasing the duration of straw decomposition from 1 to 12 months. The negative values of Gibbs free energy change and positive values of enthalpy change and entropy change revealed that Cu sorption was spontaneous, endothermic in nature, and the randomness was increased during sorption. Carboxyl and hydroxyl in solid organic matter were involved in Cu sorption. The percentage of Cu desorbed by NH4Ac from OM-1, OM-3, OM-6, and OM-12 was 45.0, 43.5, 42.8, and 37.8 %, respectively.

Conclusions

In the current study, the decomposition of straw promoted the sorption capacity but reduced the sorption rate of Cu on solid organic matter. Copper sorption was an endothermic and spontaneous process. The formation of inner-sphere complexes was the main mechanism of Cu sorption, and its role in Cu sorption tended to increase with increasing the duration of straw decomposition. The information will facilitate the understanding of the contamination and remediation of heavy metal in cropland.
  相似文献   

12.
The influence of Cd on the decomposition of various types of organic materials in soil was studied. CdCl2 or CaCl2 (control) was added to a Gley soil at a level of 10 mmol kg-1 soil. Three days later, organic materials including glutamic acid, glucose, casein, starch, cellulose, lignin, rice straw, rice straw compost, or 3 kinds of sludges were mixed with the soil in a proportion of 1%, respectively. During an 8-week period of incubation at 28°C, CO2 evolution was measured periodically. At the end of the incubation period, the form of Cd in the soil was analyzed by successive extractions with water, CaCl2, CH3COOH, Na4P2O7, and with hot HCl after HNO3-HClO4 digestion.

The decomposition of all the organic materials was inhibited by the addition of Cd, but the degree of inhibition varied considerably among the types of organic materials. The decomposition of rice straw, rice straw compost, and sludges was markedly inhibited by Cd. The amount of water-soluble Cd was less in the soils treated with rice straw, rice straw compost, and sludges than in the soils treated with other types of organic materials, while the amounts of CaCI2-extractable Cd were much larger in the latter soils. In the case of rice straw, rice straw compost, and sludges Cd was easily adsorbed from the CdCl2 solution.

These results suggest that the inhibition of organic matter decomposition by Cd is caused by the adsorption of Cd onto organic matter.  相似文献   

13.
Phenol oxidase (Pox) plays a key role in soil C cycle and its presence may affect soil C mineralization during crop residue decomposition. To examine soil dynamics and relationships between Pox, phenols, Fe2+, and C mineralization, we designed a 53‐d laboratory experiment conducted with and without rice straw addition and under non‐flooded and flooded conditions. The results demonstrate that rice straw can indeed decompose faster under flooded conditions. The addition of rice straw significantly increased soil Pox activity (up to 15‐fold), but only under flooded conditions. Rice straw application increased alkali extractable phenol (AEP) concentration by 129% at day 4. However, flooded conditions reduced soil AEP by 61% and 49% at day 53 with and without rice straw application, respectively. Phenol oxidase activity was positively correlated with dissolved organic C and Fe2+, while negatively related to AEP, which itself was positively correlated with C mineralization (i.e., CO2 emission rates). Also, all relationships between soil Pox, AEP, Fe2+, and C were stronger under flooded conditions. We therefore conclude that flooded conditions in paddy soil may promote straw decomposition as a result of the stimulation of Pox activity and phenol decomposition.  相似文献   

14.

Purpose

Directly returning straw back to the paddy field would significantly accelerate methane (CH4) emission, although it may conserve and sustain soil productivity. The application of biochar (biomass-derived charcoal) in soil has been proposed as a sustainable technology to reduce methane (CH4) emission and increase crop yield. We compared the effects of either biochar or rice straw addition with a paddy field on CH4 emission and rice yield.

Materials and methods

A 2-year field experiment was conducted to investigate a single application of rice straw biochar (SC) and bamboo biochar (BC) (at 22.5 t ha?1) in paddy soil on CH4 emission and rice yield as compared with the successive application (6 t ha?1) of rice straw (RS). Soil chemical properties and methanogenic and CH4 oxidation activities in response to the amendment of biochar and rice straw were monitored to explain possible mechanism.

Results and discussion

SC was more efficient in reducing CH4 emission from paddy field than BC. Incorporating SC into paddy field could decrease CH4 emission during the rice growing cycle by 47.30 %–86.43 % compared with direct return of RS. This was well supported by the significant decrease of methanogenic activity in paddy field with SC. In comparison to a non-significant increase with BC or RS application, rice yield was significantly raised with SC amendment by 13.5 % in 2010 and 6.1 % in 2011. An enhancement of available K and P and an improvement in soil properties with SC amendment might be the main contributors to the increased crop yield.

Conclusions

These results indicated that conversion of RS into biochar instead of directly returning it to the paddy field would be a promising method to reduce CH4 emission and increase rice yield.  相似文献   

15.
Combined application of synthetic nitrogen (N) fertilizers and organic materials can enhance soil quality, but little is known about the distribution of fertilizer N among different soil fractions after crop harvest. A pot experiment using 15N tracer was employed to address this question with three treatments, i.e., labeled urea-only (15NU), labeled urea + rice straw (15NU-S) and labeled rice straw + urea (15NS-U) applied to a Ferallic Cambisol (1:1 type soil clay mineral) and a Calcaric Fluvisol (2:1 clay mineral). Soil microbial biomass N, fixed ammonium (fixed NH4+), exchangeable ammonium and soil organic N fractions by hydrolysis (6 N HCl) and their isotope abundance were determined after the rice harvest. Soil newly formed N in urea + straw (U-S) treatments (15NU-S, 15NS-U) was the sum of labeled urea-N in 15NU-S and labeled straw-N in 15NS-U. Compared with 15NU, U-S significantly (P < 0.05) increased the content and percentage of newly formed total soil N, acid insoluble N, amino acid N, and hydrolysable unknown N in both soils. In U-S treatment, straw amendment significantly (P < 0.05) reduced the content and percentage of newly formed fixed-NH4+-N in Fluvisol as compared with 15NU treatments. Soil microbes contributed to the larger percentage of newly formed amino acid N (P < 0.01) in Cambisol as compared with Fluvisol. Fertilizer N in various soil fractions was therefore strongly affected by clay mineral type and microbes after the combined application of organic materials and synthetic N fertilizer.  相似文献   

16.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (< 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars.  相似文献   

17.
Nitrogen (N) is one of the most yield limiting nutrients in lowland rice production. Improving N use efficiency is essential to reduce cost of crop production and environmental pollution. A greenhouse experiment was conducted with the objective to compare conventional and polymer coated urea for lowland rice production. Grain yield, straw yield, panicle density, maximum root length, and root dry weight were significantly increased in a quadratic fashion with the increase of N rate from 0 to 400 mg kg?1 soil. Nitrogen source X N rate interactions for most of these traits were not significant, indicating that lowland rice responded similarly to change in N rates of two N sources. Based on regression equations, maximum grain yield was obtained with the application of 258 mg N kg?1 soil and maximum straw yield was obtained with the addition of 309 mg N kg?1 soil. Nitrogen use efficiency (grain yield per unit of N applied) was maximum for polymer coated urea compared to conventional urea. Root length and root dry weight improved at an adequate N rate, indicating importance of N fertilization in the absorption of water and nutrients and consequently yield. Polymer coated urea had higher soil exchangeable calcium (Ca) and magnesium (Mg), Ca saturation, Mg saturation, base saturation, and effective cation exchange capacity compared to conventional urea. There was a highly significant decrease in soil exchangeable potassium (K) with increasing N rates at harvest of rice plants.  相似文献   

18.
Summary Laboratory batch incubation experiments were conducted to determine in fate of urea-15N applied to floodwater of four rice soils with established oxidized and reduced soil layers. Diffusion-dependent urea hydrolysis was rapid in all soils, with rates ranging from 0.0107 to 0.0159 h-1 and a mean rate of 0.0131 h-1. Rapid loss of 53%–65% applied urea-15N occurred during the first 8 days after application, primarily by NH3 volatilization. At the end of 70 days, an additional 20%–30% of applied urea-15N was lost, primarily through nitrification-denitrification processes. The soil types showed significant differences in total applied urea-15 recovery. Conversion of urea-15N to N2-15N provided direct evidence of urea hydrolysis followed by nitrification-denitrification in flooded soils.Joint contribution from the University of Florida and Louisiana State University. Florida Experimental Stations Journal Series No R-00501  相似文献   

19.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   

20.
Rice is the staple food for nearly 40% of the world's population. In Malawi, rice is ranked second only to maize as a cereal food crop. In rainfed areas of Malawi, grain yields typically average 1.0–1:5 t ha‐1 while potential yield is 4–5 t ha1. To bridge the gap between current and potential yields, several novel nutrient management systems were studied. Many research reports indicate that rice responds to silicon (Si) application as well as to nitrogen (N), phosphorus (P), and potassium (K) which are commonly applied. Rice crop residues (straws and hulls) are rich in Si and K, but are not utilized currently in rice production. The effect of rice‐hull ash, rice straw, and method of N application (prilled or briquetted urea) on a transplanted rice crop was studied through field experiments in Malawi during 1995 and 1996. Application of urea in briquette form increased rice grain yield by 1056 and 122 kg ha‐1 compared to prilled urea in the 1995 winter and 1996 summer experiments, respectively. However in the 1996 winter experiment, prilled urea was superior to urea briquette and increased the rice grain yield by 307 kg ha1. Incorporation of rice straw significantly increased rice grain yields over the control in three consecutive experiments. Rice‐hull ash alone increased the rice grain yields in all three experiments up to 12%; however, the increase was not statistically significant. The combination of rice straw and rice‐hull ash along with optimum N rates (60 kg ha‐1) increased the rice grain yields significantly in 1996 winter season but the increase was not significant in the other two experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号