首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the effects of human bone morphogenetic protein 2 (BMP2) and BMP9 on the proliferation, apoptosis and migration of human gastric carcinoma cell line MNK-45. METHODS: Immunocytochemical staining, MTT assay, wound-healing test, Transwells migration test, Hoechst 33258 staining and flow cytometry (FCM) were used to determine the infection of AdBMP2 and AdBMP9 on the proliferation, apoptosis and migration of MNK-45 cells. The expression of GSK-3β (including p-GSK-3β and total GSK-3β) and β-catenin in MNK-45 cells was also detected by Western blotting. RESULTS: The proliferation of MNK-45 cells was inhibited from the third day on and in a time-dependent manner after infected with AdBMP2 and AdBMP9. The results of Hoechst 33258 staining and FCM proved that apoptosis rates in BMP2 group and BMP9 group were higher than that in GFP group. Both wound-healing test and Transwell experiment indicated that up-regulating the expression of BMP2 and BMP9 inhibited the migration of MNK-45 cells. The phosphorylation levels of GSK-3β in BMP2 group and BMP9 group were higher than that in GFP group. However, no significant change of β-catenin among groups was observed. CONCLUSION: Up-regulation of BMP2 and BMP9 expression inhibits the proliferation of MNK-45 cells.  相似文献   

2.
AIM:To investigate the effects of siRNA targeting integrin-linked kinase (ILK) on the expression of glycogen synthase kinase 3β (GSK-3β) and β-catenin during epithelial-mesenchymal transition (EMT) in human kidney proximal tubular epithelial cell line HKC induced by high glucose. METHODS:HKC cells were divided into 4 groups:normal glucose (NG) group, high glucose (HG) group, HG+HK (a vector containing the non-specific siRNA designed as negative control) group and HG+ILK siRNA group. The inverted fluorescence microscope was used to examine the expression of green fluorescent protein (GFP). The expression of ILK at mRNA and protein levels was detected by RT-PCR and Western blotting. The expression of p-GSK-3β and β-catenin was observed by immunocytochemical staining. The protein expression of total GSK-3β, p-GSK-3β, nuclear β-catenin, total β-catenin, E-cadherin and α-smooth muscle actin (α-SMA) was measured by Western blotting. RESULTS:GFP was observed in HKC cells, indicating that the transfection was successful. Both the protein and mRNA of ILK were down-regulated in HG+ILK siRNA group compared with HG group and HG+HK group, but still higher than those in NG group. Silencing of ILK down-regulated the expression of p-GSK-3β and nuclear β-catenin. No difference of total GSK-3β or total β-catenin was observed among the 4 groups. CONCLUSION:These data support a functional role of ILK, GSK-3β and β-catenin in tubular EMT induced by high glucose. ILK may promote tubular EMT by regulating the activity of GSK-3β and β-catenin, the downstream effectors of the Wnt/β-catenin pathway.  相似文献   

3.
AIM:To investigate the roles of the canonical Wnt pathway in autism. METHODS:Using an autistic model induced by prenatal exposure to valproic acid (VPA), we detected the expression of the signaling molecules of the canonical Wnt pathway in the prefrontal cortex (PFC) and hippocampus formation (HF) of autistic rats. The expression levels of glycogen synthase kinase 3β (GSK-3β), phosphorylated GSK-3β, β-catenin and phosphorylated β-catenin were observed by Western blotting. The mRNA expression of GSK-3β, β-catenin, c-Myc and cyclin D1 was assessed by semi-quantitative RT-PCR. RESULTS:The results of Western blotting showed that inactivated GSK-3β (Ser9) phosphorylation was significantly increased, and inhibitory β-catenin (Ser33/37/Thr41) phosphorylation was obviously decreased compared with control group. The results of RT-PCR showed that the mRNA levels of β-catenin, c-Myc and cyclin D1 increased, and GSK-3β was significantly enhanced in VPA-exposed rats compared with the controls. CONCLUSION:Increased activity of canonical Wnt pathway in the PFC and HF of autistic rats may contribute to the susceptibility to autism.  相似文献   

4.
AIM: To investigate the effect of miR-496 over-expression on the growth and metastasis of colon cancer cells and its molecular mechanism.METHODS: The proteins interacting with miR-496 were screened by bioinformatic method. The levels of miR-496, CTNNB1 mRNA and β-catenin protein in colon cancer cell lines, HT29, HCT116 and SW480, and normal colonic epithelial cell line NCM460 were detected by real-time PCR and Western blot. HT29, HCT116 and SW480 cells were transfected with miR-496 mimics using Lipofectamine 2000 and named as HT29-miR-496 mimics, HCT116-miR-496 mimics and SW480-miR-496 mimics cells, respectively, and the cells transfected with the scramble served as negative control. The cell viability, lactate dehydrogenase (LDH) leakage, and colony formation and metastatic abilities were determined by MTT assay, LDH assay, colony formation assay and Transwell method, respectively. The promoter activity of miR-496 was measured using luciferase reporter gene assay. The protein levels of β-catenin, eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), p-4E-BP1, low-density lipoprotein receptor-related protein 6(LRP6), p-LRP6, MMP-7, MMP-9, MMP-13 and TIMP-2 were monitored by Western blot.RESULTS: Endogenous miR-406 interacted with β-catenin was found in the colon cancer cells. Low miR-496 expression in the HT29, HCT116 and SW480 cells and high miR-496 expression in NCM460 cells were detected. In contrast, high β-catenin expression was found in the HT29, HCT116 and SW480 cells and low β-catenin expression was observed in the NCM460 cells. Compared with control group, the cell viability, colony formation rate and the number of metastatic cells remarkably decreased in the HT29-miR-496 mimics, HCT116-miR-496 mimics and SW480-miR-496 mimic cells (P<0.05). The promoter activity of miR-496 was significantly increased in colon cancer cells transfected with miR-496 mimics, and was 1.75, 2.04 and 1.61 times as high as control group. miR-496 over-expression inhibited β-catenin levels, and p-4E-BP1 and p-LRP6 protein levels were also reduced. siRNA- or over-expressed miR-496-mediated β-catenin down-regulation inhibited MMP-7 and MMP-9 expression, but promoted TIMP-2 expression.CONCLUSION: The expression level of miR-496 in the colon cancer cells is low, but in the normal colonic epithelial cells is high. miR-496 over-expression inhibits the protein levels of MMP-7 and MMP-9, and promotes the protein expression of TIMP-2 via inhibiting Wnt/β-catenin pathway, thus suppressing malignant phenotype in the colon cancer cells.  相似文献   

5.
AIM: To investigate the mechanism and the effect of glycogen synthase kinase 3β (GSK-3β) inhibitor (2’Z,3'E)-6-bromoindirubin-3'-oxime (BIO) on the protein expression of β-catenin and Bcl-2, and proliferation and apoptosis in colon carcinoma SW480 cells.METHODS: The immunohistochemical staining and Western blotting were performed to detect the protein expression of β-catenin, cyclin D1 and Bcl-2. The cell cycle distribution and apoptotic rate were detected by flow cytometry. The morphologic features of SW480 cells before and 24 h after BIO exposure at different concentrations were observed under microscope with HE staining.RESULTS: Compared with the untreated SW480 cells, the protein expression of β-catenin significantly increased and some β-catenin positive nuclear staining positive cells appeared in BIO treated cells. and The cells exposed to BIO showed that the cyclin D1 protein and the cells in S stage and G2/M stage moderately increased, the protein level of Bcl-2 moderately decreased, and the cell apoptosis rate was significantly lower than those in control cells. Furthermore, the morphological changes of the SW480 cells were observed 24 h after BIO treatment. CONCLUSION: Our results indicate that GSK-3β inhibitor BIO participates in the cellular processes of promoting proliferation and inhibiting apoptosis in colon carcinoma cells. The mechanisms are mainly associated with activating the β-catenin pathway and regulating the balance of Bcl-2 pathway, and the up-regulation of β-catenin is most likely the possible factor for SW480 cell regression.  相似文献   

6.
AIM: To study the effects of adiponectin on H2O2-induced cell injury and tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells. METHODS: Cell viability was determined by MTT assay. H2O2-induced cell injury and morphological changes in the SH-SY5Y cells with or without adiponectin treatment were observed. The level of tau phosphorylation as well as the activities of protein phosphatase 2A(PP2A) and of glycogen synthase kinase-3β(GSK-3β) were examined by Western blotting. RESULTS: Adiponectin significantly attenuated H2O2-induced cell injury(P<0.01). Adiponectin upregulated the activity of PP2A and decreased phosphorylation levels of tau under the stimulation with H2O2 (P<0.01). Okadaic acid, a specific inhibitor of PP2A, blocked the protective effects of adiponectin(P<0.01). Adiponectin increased the phosphorylation level of GSK-3β at Ser9 site under H2O2 stimulation(P<0.01). CONCLUSION: Adiponectin protects SH-SY5Y cells against H2O2-induced cell injury and decreases tau hyperphosphorylation by activating PP2A and inactivating GSK-3β.  相似文献   

7.
AIM: To explore the effect of Wnt/β-catenin signaling pathway in airway smooth muscle cells (ASMC) on asthmatic airway remodeling.METHODS: The asthmatic airway remodeling model in rats was established and the ASMC was isolated and cultured. The protein expression of β-catenin, glycogen synthase kinase-3β (GSK-3β), c-Myc and cyclin D1 in the ASMC was determined by Western blot. After depressing the interaction between β-catenin and p300/CBP, the cell activity was measured by CCK-8 assay and the change of cell cycle distribution was analyzed by flow cytometry. Meanwhile, the protein expression of c-Myc and cyclin D1 in the ASMC was determined by Western blot after inhibiting P38 mitogen-activated protein kinase (MAPK) activity.RESULTS: The protein levels of β-catenin, c-Myc and cyclin D1 were significantly increased in asthma group while the protein level of GSK-3β was decreased in the same group (P<0.05). After depressing the interaction between β-catenin and p300/CBP, the cell activity of ASMC was decreased in asthma group compared with control group (P<0.05), and the change of the cell cycle distribution in asthma group was also more obvious (P<0.05). After inhibiting P38 MAPK activity, the protein levels of c-Myc and cyclin D1 were all decreased compared with control group in ASMC asthma and control rats (P<0.05).CONCLUSION: Wnt/β-catenin signaling pathway may participates in airway remodeling in asthma by increasing the protein expression of c-Myc and cyclin D1, reacting with the P38 MAPK signaling pathway and regulating the growth of ASMC.  相似文献   

8.
AIM: To study the effect of paired-related homeobox 2 (PRRX2) gene on the viability and migration ability of gastric cancer cells, and to analyze the underlying mechanism of regulating Wnt/β-catenin signaling pathway.METHODS: The expression of PRRX2 in gastric cancer and normal gastric tissue and the correlation between PRRX2 expression in gastric cancer tissues with the overall survival rate of gastric cancer patients were analyzed by bioinformatics. The small interfering RNA (siRNA) and over-expressed plasmids of PRRX2 were transfected into gastric cancer cells MGC-803 and SGC-7901, respectively. MTT assay and Transwell assay were used to detect the viability and migration ability of gastric cancer cells. Western blot and TOPflash/FOPflash dual-luciferase reporter gene assay were used to detect the activity of Wnt/β-catenin signaling pathway. Co-immunoprecipitation was used to detected the interaction between PRRX2 and β-catenin proteins.RESULTS: Knockdown of PRRX2 attenuated the viability and migration ability of gastric cancer cell line MGC-803 (P<0.05). Over-expression of PRRX2 enhanced the viability and migration ability of SGC-7901 cells (P<0.05), increased the protein levels of β-catenin, c-Myc and cyclin D1 (P<0.05) and the activity of TOPflash/FOPflash dual-luciferase reporter gene (P<0.05). PRRX2 interacted with β-catenin protein in gastric cancer cells.CONCLUSION: PRRX2 promotes the viability and migration ability of gastric cancer cells, which may be related to Wnt/β-catenin signaling pathway.  相似文献   

9.
AIM: To explore the effects of kaempferol on the proliferation, invasion and migration abilities of HBx-HepG2 cells and to examine the underlying molecular mechanisms. METHODS: The expression levels of related genes at mRNA and protein levels were determined by RT-qPCR and Western blot. The cell apoptotic rate was analyzed by flow cytometry. The cell proliferation, growth, invasion and migration abilities were measured by MTT assay, colony formation assay, Transwell invasion assay and wound healing assay, respectively. RESULTS: Kaemferol inhibited HBx-HepG2 cell proliferation in a concentration-and time-dependent manner. Kaempferol at 100 μmol/L significantly inhibited the colony formation, invasion and migration abilities of the HBx-HepG2 cells. Kaemferol at 100 μmol/L also increased cell apoptotic rate, increased the protein levels of cleaved caspase-3, cleaved caspase-9 and Bax, and decreased the expression level of Bcl-2. In addition, kaemferol at 100 μmol/L suppressed the mRNA and protein expression levels of β-catenin, c-Myc and cyclin D1 in the HBx-HepG2 cells. Kaemferol at 100 μmol/L also suppressed the protein level of p-GSK-3β and the β-catenin protein levels in both cytoplasm and nucleus. LiCl treatment reversed the inhibitory effect of kaempferol on the growth, invasion and migration of the HBx-HepG2 cells. CONCLUSION: Kaempferol inhibits cell proliferation, invasion and migration via activating Wnt/β-catenin signaling in HBx-HepG2 cells.  相似文献   

10.
11.
AIM: To investigate the molecular mechanism and downstream signaling pathway by which AKT1 inhibition regulates breast cancer cell migration. METHODS: RNA interference was used to knockdown the expression of AKT1. Western blot assay was performed to examine the expression of AKT1 total protein, β-catenin total protein and β-catenin nuclear protein. Immunofluorescence was used to examine the cellular localization of β-catenin. Transwell assay was used to investigate whether β-catenin nuclear accumulation as an alternative pathway was responsible for breast cancer metastasis induced by AKT1 inhibition. RESULTS: The total protein expression of AKT1 was decreased in MCF-7 and MDA-MB-231 cells treated with AKT1 siRNA. A significant increase in the protein expression of β-catenin was observed in MCF-7 cells and MDA-MB-231 cells treated with AKT1 siRNA. Immunofluorescence staining showed that MCF-7 cells and MDA-MB-231 cells displayed strong β-catenin staining in the cytoplasm and nucleus after knockdown of AKT1 expression. The ability of tumor cell migration increased dramatically after treated with AKT1 specific siRNA in the breast cancer MCF-7 cells and MDA-MB-231 cells in Transwell assay. XAV-939 reversed breast cancer cell migration induced by knockdown of AKT1 expression. CONCLUSION: β-catenin nuclear accumulation contributes to AKT1 inhibition-mediated breast cancer cell migration.  相似文献   

12.
Ying-Hua ZHANG 《园艺学报》2014,30(12):2161-2165
AIM: To investigate the effects of sulindac on oxidative stress in autism. METHODS: With an autistic model induced by prenatal exposure to valproic acid (VPA), we detected the expression of the signaling molecules of canonical Wnt pathway in the prefrontal cortex (PFC) and hippocampus (HC) of autistic rats treated with sulindac. The protein expression levels of glycogen synthase kinase 3β (GSK-3β), β-catenin and 4-hydroxynonenal (4-HNE) were observed by Western blotting. The mRNA expression of thioredoxin(Trx)1 and Trx2 was assessed by semi-quantitative RT-PCR.RESULTS: The protein level of GSK-3β and mRNA levels of Trx1 and Trx2 were lower, whereas the protein expression levels of β-catenin and 4-HNE were higher in VPA group than those in control group. In contrast, the protein levels of GSK-3β were significantly higher in the animals treated with both VPA and sulindac than those in VPA group, while the levels of β-catenin and 4-HNE were decreased.CONCLUSION: Sulindac attenuates oxidative stress in the pathogenesis of autism, suggesting the up-regulation of the Wnt/β-catenin signaling pathway disrupts oxidative homeostasis and further facilitates susceptibility to autism.  相似文献   

13.
AIM: To study the effect of WT1 silencing by small interfering RNA (siRNA) on podocyte vitality and expression of Wnt/β-catenin and nephrin in mouse podocytes. METHODS: Conditionally immortalized mouse podocytes were cultured at 33 ℃ in RPMI-1640 medium for proliferation and induced for differentiation at 37 ℃. The podocytes were transfected with WT1 siRNA. The cell vitality was detected by MTT assay. The expression of WT1,Wnt1,β-catenin and nephrin at mRNA and protein levels was determined by real-time qRT-PCR and Western blotting. RESULTS: WT1 siRNA induced the increase in the expression of Wnt1 at mRNA and protein levels, inhibited the phosphorylation of β-catenin, and reduced the cell vitality. Meanwhile, the expression of nephrin at mRNA and protein levels was decreased. CONCLUSION: WT1 siRNA reduces the expression of nephrin in podocytes and the vitality of the cells by activating Wnt/β-catenin signaling pathway.  相似文献   

14.
AIM: To study the suppressive effect of glycogen synthase kinase-3β (GSK-3β) knockdown by RNA interference on the formation of keloid. METHODS: Human keloid fibroblasts (KFB) in vitro were transfected with 3 pairs of specific GSK-3β small interfering RNA (siRNA). The best siRNA to inhibit the GSK-3β expression in human KFB was screen by RT-PCR and Western blot. The expression of GSK-3β and related proteins at mRNA and protein levels in the KFB was determined by RT-PCR and Western blot.RESULTS: The GSK-3β siRNA1434 remarkably inhibited the expression of GSK-3β at mRNA and proteins levels in the human KFB. After transfection with GSK-3β siRNA, the protein levels of β-catenin, p-GSK-3β, Wnt2 and cyclin D1 were all decreased. KFB growth became slow. With the extension of time, the inhibition of cell growth increased, and the cell doubling time was significantly delayed. CONCLUSION: siRNA targeting GSK-3β efficiently knocks down the expression of GSK-3β in the human KFB, and inhibits the activation of Wnt signaling pathway, thus inhibiting the growth of keloid. GSK-3β may be a potential therapeutic target for keloid.  相似文献   

15.
AIM: To investigate the effect of enhancer of zeste homolog 2 (EZH2) regulating Wnt/β-catenin signaling pathway on the apoptosis of brain glioma cell lines. METHODS: The expression level of EZH2 in glioma cell lines U87, H4 and U251 and normal human astrocytes (NHA) was detected by RT-qPCR and Western blot. The EZH2 siRNA and siRNA control were transfected into the H4 cells. The cell viability was measured by MTT assay. The apoptosis was analyzed by flow cytometry. Caspase-3 activity was detected by spectrophotometry. The expression levels of the key protein β-catenin of the Wnt/β-catenin signaling pathway and the downstream target molecule c-Myc were determined by Western blot. After the H4 cells transfected with EZH2 siRNA were treated with an activator of Wnt/β-catenin signaling pathway, the apoptosis rate was measured by flow cytometry, and the expression of β-catenin and c-Myc was determined by Western blot. RESULTS: The mRNA and protein expression levels of EZH2 in the glioma cell lines U87, H4 and U251 were significantly higher than those in NHA (P<0.05). The expression of EZH2 at mRNA and protein levels in the H4 cells was higher than that in U87 cells and U251 cells (P<0.05). EZH2 siRNA obviously inhibited the expression of EZH2 at mRNA and protein levels in the H4 cells. Knockdown of EZH2 expression decreased the viability of H4 cells, the apoptotic rate was significantly increased, and the activity of caspase-3 was significantly increased in the cells (P<0.05). Knockdown of EZH2 expression also inhibited the expression of β-catenin and c-Myc. The activator of Wnt/β-catenin signaling pathway reduced the apoptosis rate of H4 cells induced by down-regulation of EZH2, and reduced the activity of caspase-3 in the cells. CONCLUSION: EZH2 is over-expressed in glioma cells. Down-regulation of EZH2 expression induces apoptosis of glioma cells by inhibiting the activation of Wnt/β-catenin signaling pathway.  相似文献   

16.
AIM: To investigate whether the PI3K/Akt signaling pathway regulates the expression of ABC transporter through the downstream glycogen synthase kinase-3β (GSK-3β) pathway and participates in the multidurg resistance of colorectal cancer (CRC) HCT-15 cells. METHODS: Colorectal cancer HCT-15 cells were cultured and then treated with GSK-3β inhibitor (HY-19807) and PI3K/Akt pathway inhibitor (HY-13898), respectively. The median inhibitory concentration (IC50) of oxaliplatin for HCT-15 cells in each group was detected by CCK-8 assay, the inhibition rate and resistance index were also calculated. The protein levels of Akt, p-Akt, GSK-3β, p-GSK3β-Ser9 and ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP-2) in the HCT-15 cells were determined by Western blot. The mRNA expression of ABC transporter in the HCT-15 cells was detected by RT-qPCR. The cell cycle distributions were analyzed by flow cytometry assasy. RESULTS: After GSK-3β inhibitor HY-19807 was used in the HCT-15 cells, the median inhibitory concentration of oxaliplatin was significantly increased, the protein levels of p-GSK3β-Ser9, P-gp and MRP-2 were up-regulated compared with control group (P<0.05), the changes of Akt and p-Akt were not obvious compared with control group (P>0.05). The results of RT-qPCR also showed that the mRNA levels of ABCB1 and ABCC2 were increased (P<0.01). Meanwhile, analysis of the cell cycle distribution showed that GSK-3β inhibitor HY-19807 promoted HCT-15 cell transition from G1 phase to S phase, and cell proliferation was vigorous. After the PI3K/Akt pathway inhibitor HY-13898 was applied to HCT-15 cells, the IC50 of oxaliplatin was decreased compared with control group (P<0.05). Moreover, the protein levels of p-Akt, p-GSK3β-Ser9, P-gp and MRP-2 were down-regulated (P<0.01). RT-qPCR results also showed that the mRNA expression of ABCB1 and ABCC2 was decreased (P<0.01). At the same time, G1 phase was prolonged, which inhibited cell transition from G1 phase to S phase, and inhibited cell proliferation. The protein expression of total GSK-3β was consistent in each group. CONCLUSION: The PI3K/Akt signaling pathway is involved in the proliferation and multidrug resistance of colorectal cancer HCT-15 cells by regulating the phosphorylation of GSK-3β and changing the expression of ABC transporter.  相似文献   

17.
AIM: To study the effect of SCUBE2 on epithelial-mesenchymal transition (EMT) in colorectal cancer cells and its mechanism. METHODS: The expression of SCUBE2 in human colorectal cancer cell line HCT116 and normal colonic cell line FHC was detected by real-time PCR and Western blot. HCT116 cells were transfected with GV144-SCUBE2 to over-express SCUBE2, and then the cell viability, migration, and apoptosis were determined by MTT assay, Transwell assay and flow cytometry, respectively. The expression of EMT markers (E-cadherin, vimentin, and Snail), β-catenin, c-Myc and cyclin D1 in the HCT116 cells was analyzed by real-time PCR or Western blot after transfection with GV144-SCUBE2 for 6 h, followed by the stimulation of 10 μg/L recombinant TGF-β1 protein for 48 h. Additionally, the EMT process of HCT116 cells, which were stimulated by TGF-β1, over-expressed SCUBE2, and treated with Wnt/β-catenin pathway activator lithium chloride (LiCl) or inhibitor XAV93920, was analyzed by Western blot. RESULTS: Compared with FHC cells, the expression of SCUBE2 in the HCT116 cells was significantly decreased. The viability and migration ability of the HCT116 cells were suppressed by SCUBE2 over-expression, but the apoptosis was not markedly changed. Elevated expression of SCUBE2 increased E-cadherin expression, and decreased the expression of vimentin, Snail, β-catenin, c-Myc and cyclin D1 induced by TGF-β1. Treatment with LiCl blocked but treatment with XAV93920 enhanced the effects of SCUBE2 on EMT. CONCLUSION: Over-expression of SCUBE2 may inhibit the cell growth and migration, and suppress EMT through Wnt/β-catenin signaling pathway.  相似文献   

18.
AIM: To examine the effects of high glucose (HG) on the expression of Snail1 and protein kinase B (Akt)/glycogen synthase kinase 3β (GSK-3β) in primary renal tubular epithelial cells (RTECs). METHODS: The primary RTECs were randomly treated with normal glucose, high glucose or D-mannitol for 30 min~72 h. RT-PCR and Western blotting were used to observe the expression of Snail1, Akt and GSK-3β at mRNA and protein levels in these cells. The primary cultured RTECs were pretreated with LY294002 (a PI3K inhibitor, 25 μmol/L) to observe the specific inhibitory effects of phosphatidylinositol 3-kinase (PI3K) on HG-induced expression of Snail1 protein. RESULTS: Treatment of RTECs with HG resulted in increased mRNA and protein levels of Snail1, Akt1, and phosphorylation of Akt and GSK-3β. LY294002 blocked the HG-induced up-regulation of p-Akt, p-GSK-3β and Snail1 expression at protein level, but no effect of LY294002 was seen on the total protein expression of Akt1 and GSK-3β. HG did not affect the expression of GSK-3β at mRNA and protein levels. CONCLUSION: HG-induced up-regulation of Snail1 may be regulated by Akt/GSK-3β pathway in RTECs.  相似文献   

19.
AIM: To investigate the effects of chronic hypoxia on the aggressiveness of MCF-7, a human breast cancer cell line, and the underlying mechanisms.METHODS: MCF-7 cells were cultured under hypoxia (1% O2, 5% CO2 and 94% N2) or control (95% O2 and 5% CO2) condition. The viability, proliferation, and invasion and migration abilities of the MCF-7 cells were determined by MTT assay, CCK-8 assay, cell counting, and cell invasion and migration assays. Anchorage-independent growth and the alteration of cellular polarization of the MCF-7 cells were tested by soft agar colony formation assay and Matrigel-3D culture assay, respectively. The effects of chronic hypoxia on the growth and metastasis of MCF-7 cells in vivo were investigated by xenograft in nude mice. The morphological changes of the MCF-7 cells were observed under an inverted microscope. Hypoxia-induced alterations in the levels of hypoxia inducible factor-1 (HIF-1) and phosphorylated glycogen synthase kinase-3β (p-GSK-3β) as well as epithelial-mesenchymal transition (EMT) molecules, such as E-cadherin, N-cadherin, vimentin, matrix metalloproteinase (MMP)-3 and MMP-9, were determined by Western blot.RESULTS: Chronic hypoxia significantly increased the viability, proliferation, and invasion and migration abilities of MCF-7 cells in vitro, enhanced the anchorage-independent growth, facilitated cellular polarization alteration in Matrigel-3D culture, and promoted cancer metastasis in vivo. Hypoxia up-regulated HIF-1, activated GSK-3β, down-regulated E-cadherin and increased the protein levels of N-cadherin, vimentin, MMP-3 and MMP-9. CONCLUSION: Chronic hypoxia enhances the aggressiveness of breast cancer cells probably through EMT.  相似文献   

20.
FU Liang  PAN Rui  CHEN Zhao 《园艺学报》2019,35(4):606-613
AIM:To investigate the role of HMGA2 in the epithelial-mesenchymal transition (EMT) in gastric cancer cells. METHODS:The expression of HMGA2 in human gastric cancer cell lines with different degrees of differen-tiation (MKN45, MKN28 and SGC7901) and immortalized human gastric epithelial cell line GES-1 was determined by Western blot and RT-qPCR. pcDNA3.0-HMGA2 plasmid was transfected into the MKN28 cells by liposome method. Transfection of si-HMGA2 interference fragments into MKN45 cells was also performed. The transfection efficiency was evaluated by Western blot and RT-qPCR. The effects of HMGA2 over-expression in the MKN28 cells and knock-down in the MKN45 cells on the cell viability were measured by CCK-8 assay. The effects of HMGA2 over-expression in the MKN28 cells on the cell migration and invasion abilities were detected by wound healing and Transwell invasion assays. The effects of HMGA2 over-expression in the MKN28 cells and knock-down in the MKN45 cells on the expression of EMT-related markers E-cadherin, N-cadherin, vimentin at mRNA and protein levels were determined by RT-qPCR and Western blot. The changes of Wnt/β-catenin signaling pathway-related molecules in the MKN28 cells with HMGA2 over-expression were also determined by RT-qPCR. RESULTS:The expression levels of HMGA2 were quite different in different differentiation levels of gastric cancer cells (P<0.05). The increased expression level of HMGA2 in MKN28 cells inhibited the cell viability (P<0.05), while the decreased expression level of HMGA2 in MKN45 cells promoted the cell viability (P<0.05). The increased expression level of HMGA2 in MKN28 cells promoted cell migration and invasion (P<0.05), changed the expression of EMT-related markers (P<0.05), while the decreased expression level of HMGA2 in the MKN45 cells changed the expression of EMT-related markers (P<0.05). The increased expression level of HMGA2 in the MKN28 cells significantly increased the mRNA levels of β-catenin in the Wnt/β-catenin pathway and the downstream molecules c-Myc and cyclin D1 (P<0.05). CONCLUSION:HMGA2 is closely related to the migration and invasion abilities of gastric cancer cells. Moreover, it promotes the EMT process of gastric cancer cells by activating Wnt/β-catenin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号