首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
AIM: To study whether salidroside plays a protective role in hypoxia-induced pulmonary hypertension by suppressing oxidative stress. METHODS: Sprague-Dawley rats were randomly divided into 4 groups:normoxia (N) group, hypoxia for 4 weeks (H4) group, low-dose salidroside (hypoxia for 4 weeks and treatment with salidroside at 16 mg/kg, H4S16) group and high-dose salidroside (hypoxia for 4 weeks and treatment with salidroside at 32 mg/kg, H4S32) group. The mean pulmonary arterial pressure (mPAP), the weight ratio of right ventricle/(left ventricle+septum)[RV/(LV+S)] and vessel wall area/vessel total area (WA/TA) were evaluated. The levels of malondialdehyde (MDA) in the serum and lung tissues were detected by colorimetric method. The levels of 8-iso-prostaglandin F (8-iso-PGF) in the serum and lung tissues were measured by ELISA. The activity of superoxide dismutase (SOD) in the serum was analyzed by hydroxylamine method. The expression of NAPDH oxidase 4 (NOX4) and SOD1 in the lung tissues was determined by Western blot. RESULTS: Compared with N group, the levels of mPAP, RV/(LV+S) and WA/TA in H4 group were significantly increased, which were apparently attenuated by salidroside injection in a dose-dependent manner. Meanwhile, salidroside administration apparently decreased the levels of MDA and 8-iso-PGF in the serum and lung tissues, as well as the expression of NOX4 in the lung tissues. Besides, compared with N group, the activity of SOD in the serum and the expression of SOD1 in the lung tissues in H4 group were significantly decreased, while administration of salidroside increased the activity of SOD in the serum and the expression of SOD1 in the lung tissues in a dose-dependent manner. CONCLUSION: Salidroside protects the pulmonary vessels from remodeling and attenuates hypoxia-induced pulmonary hypertension by inhibiting oxidative stress.  相似文献   

2.
AIM: To observe the effect of Panax notoginoside (PNS) on the pulmonary artery pressure and the p38 mitogen-activated protein kinase(p38 MAPK) in lung tissues of rats treated with hypoxia. METHODS: Thirty adult male SD rats were randomly divided into 3 groups. The rats in normal control group were exposed to normal conditions, the rats in hypoxia group were exposed to isobaric hypoxia, and the rats in hypoxia+PNS group were treated with PNS under the condition of hypoxia. After 4 weeks of treatment, the mean pulmonary arterial pressure (mPAP) and the mean carotid arterial pressure (mCAP) were measured by cardiac catheterization. The heart was isolated, and the right ventricle (RV), left ventricle plus ventricular septum (LV+S) were weighed to calculate the ratio of RV/(LV+S).The quantity of phospho-p38 MAPK(p-p38 MAPK) in rat pulmonary arterioles was determined by the method of immunohistochemistry and the mRNA content of p38 MAPK was tested by RT-PCR. RESULTS: The mPAP and RV/(LV+S) in hypoxia group were higher than those in normal control group. The expression of p-p38 MAPK in rat pulmonary arterioles and p38 MAPK mRNA in the lung tissues were higher than those in normal control group (P<0.05). The mPAP, RV/(LV+S), the expression of p-p38 MAPK in rat pulmonary arterioles and p38 MAPK mRNA in the lung tissues in hypoxia+PNS group were significantly lower than those in hypoxia group (P<0.05).CONCLUSION: PNS possesses the preventive and therapeutic effect on hypoxic pulmonary hypertension by decreasing p-p38 MAPK and down-regulation of p38 MAPK mRNA in the lungs.  相似文献   

3.
AIM: To investigate the effect of hypercapnia on hypoxia-induced pulmonary hypertension and the changes of lysyl oxidase (LOX) and extracellular matrix collagen cross-links in the rat. METHODS: Sprague-Dawley rats were randomly divided into 4 groups:normoxia group, hypoxia group, hypercapnia group and hypoxia+hypercapnia group. LOX activity was detected by fluorescence spectrophotometry. LOX protein expression was detected by immunohistochemistry and Western blot. The mRNA expression of LOX in the pulmonary artery was detected by real-time PCR. RESULTS: The levels of mean pulmonary artery pressure (mPAP), RV/(LV+S) and WA/TA in hypoxia group were significantly higher than those in normoxia group (P<0.01). Moreover, the levels of mPAP and RV/(LV+S) in hypoxia+hypercapnia group were significantly lower than those in hypoxia group (P<0.01). However, no significant difference of mPAP and RV/(LV+S) between hypercapnia group and normoxia group was observed. In hypoxia group, the collagen cross-links in the lung tissue was significantly higher than that in normoxia group and hypercapnia group (P<0.01). Importantly, collagen cross-links in the lung tissue of hypoxia+hypercapnia group was significantly lower than that in hypoxia group (P<0.01). There was no significant difference in collagen cross-links between hypercapnia group and normoxia group. The expression of LOX at mRNA and protein levels and its activity in the pulmonary arteries of hypoxia group were significantly increased as compared with normoxia group (P<0.01). Furthermore, the expression of LOX at mRNA and protein levels and its activity in the pulmonary arteries in hypoxia+hypercapnia group were lower than those in hypoxia group (P<0.01). CONCLUSION: Hypoxia not only up-regulates LOX but also promotes collagen cross-linking in the rat lung, which contributes to the development of pulmonary hypertension. Hypercapnia inhibits hypoxia-induced LOX expression and collagen cross-linking, therefore impairing the progress in hypoxia-induced pulmonary hypertension.  相似文献   

4.
5.
AIM: To observe the change of CX3CL1/fractalkine (FKN) in the rats with monocrotaline-induced pulmonary hypertension, and to study the intervention of puerarin. METHODS: The pulmonary hypertension model was established in vivo by intraperitoneal injection of monocrotaline. Thirty male Sprague-Dawley rats (270-310 g) were randomly divided into 3 groups: control group (C), monocrotaline model group (M)and puerarin treatment group (M+P). The mean pulmonary arterial pressure (mPAP), mean right ventricular pressure (mRVP), mean carotid arterial pressure (mCAP) and the weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) were also detected. The structural changes of pulmonary arterioles were observed under optical microscope. Remodeling of lung blood vessels was determined by measuring the ratio of vessel wall area to total area (WA/TA) and the medium thickness of pulmonary artery (PAMT). The concentration of soluble fractalkine(sFKN) in plasma was measured by ELISA. The expression of FKN in the pulmonary artery wall was measured by immunohistochemistry. The mRNA level of FKN in the lung tissues was detected by RT-PCR.RESULTS: mPAP, mRVP, RV/(LV+S), WA/TA and PAMT in M group were higher than those in C group (P<0.01). RV/(LV+S), WA/TA and PAMT in M+P group were significantly lower than those in M group (P<0.01). No significant difference of mCAP among the 3 groups was observed. The levels of sFKN, FKN mRNA and FKN protein in M group were higher than those in C group (P<0.01), and the above data in M+P group were lower than those in M group(P<0.05). The serum level of sFKN had a positive correlation with PAMT and RV/(LV+S) (r=0.719, r=0.685,respectively, P<0.01).CONCLUSION: Puerarin down-regulates the expression of FKN and suppresses the development of pulmonary hypertension and pulmonary vessel remodeling.  相似文献   

6.
7.
AIM:To investigate the expression of matrix metalloproteinases(MMPs) in pulmonary arterioles of rats with chronic hypoxia and hypercapnia-induced pulmonary hypertension.METHODS:MMP-2, MMP-9 and MMP-2 mRNA, MMP-9 mRNA were observed in pulmonary arterioles by the techniques of immunohistochemistry and in situ hybridization.RESULTS:①The mean pulmonary artery pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) of hypoxia-hypercapnia groups were higher than those of normal control group (P<0.01). ②Light microscopy showed that vessel wall and media of pulmonary arterioles were thicker in rats of hypoxia-hypercapnia groups than normal control group. There were vessel smooth muscle cell hypertrophy, vessel cavity straitness in hypoxia-hypercapnia group, but no same performance was found in normal control group. ③The expression of MMP-2, MMP-9 and MMP-2 mRNA, MMP-9 mRNA in pulmonary arterioles were significantly higher in rats of hypoxia-hypercapnia groups than control group (P<0.01).CONCLUSION:Expression of matrix metalloproteinases in pulmonary arterioles is enhanced by hypoxia hypercapnia. This may be involved in pulmonary vascular remodeling in rats with pulmonary hypertension.  相似文献   

8.
AIM: To explore the effects of hydroxylamine on the pulmonary arterial pressure in chronic hypoxic hypercapnic rats. METHODS: Twenty-four male Sprague-Dawley rats were randomly divided into 3 groups (8 rats in each group): the normal control group (NC), hypoxic hypercapnia+normal saline group (NS), hypoxic hypercapnia+hydroxylamine group (HA). The animals in NS and HA groups were kept in the O2 (9%-11%) and CO2 (5%-6%) cabin, 8 h a day and 6 days a week for 4 weeks. Before entering the cabin, the rats in HA group were administered with 1 mL hydroxylamine (12.5 mg/kg) by intraperitoneal injection, while the rats in NS group were given intraperitoneal injection of 1 mL saline solution. The mean pulmonary arterial pressure (mPAP) was measured by external jugular vein cannulation. The heart was removed, and the right ventricle (RV) and the left ventricle plus the septum (LV+S) were dissected. The ratio of the wet weight of the RV to that of the LV+S was calculated. The changes of the pulmonary vascular construction were observed under optical microscope. The concentration of H2S in the plasma was measured with a spectrometer. The expression of cystathionine-γ-lyase (CSE) in the pulmonary arterioles and bronchi was measured by immunohistochemistry and RT-PCR. RESULTS: The values of mPAP, RV/(LV+S),vessel wall area/total area (WA/TA) and media thickness of pulmonary arterioles (PAMT) in NS group and HA group were significantly higher than those in NC group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in NC group were significantly lower than those in NS group (P<0.05). The values of mPAP, RV/(LV+S), WA/TA and PAMT in HA group were significantly lower than those in NS group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in HA group were significantly higher than those in NS group (P<0.05). CONCLUSION: Hydroxylamine may decrease the pulmonary arterial hypertension induced by chronic hypoxic hypercapnia in rats by increasing the level of H2S in the plasma, the content of CSE protein and the mRNA expression of CSE, thus improving the pulmonary vascular structural remodeling.  相似文献   

9.
AIM: To investigate whether asiaticoside attenuates hypoxic pulmonary hypertension by inhibiting p38/NF-κB signaling pathway. METHODS: BALB/c mice (n=30) were randomly divided into normoxia (N) group, hypoxia (H) group, and hypoxia+asiaticoside group. Right ventricular systolic pressure (RVSP), mean carotid artery pressure (mCAP), the weight ratio of right ventricle/(left ventricle+ventricular septum)[RV/(LV+S)], the ratio of right ventricle/body weight (RV/BW), vessel wall area/vessel total area (WA/TA) and vessel wall diameter/vessel wall total diameter (WT/TT) were determined after the model was established. The protein levels of p38, p-p38, NF-κB and p-NF-κB in the lung tissues were detected by Western blot. The fluorescence intensity of p-p38 and p-NF-κB were measured by immunofluorescence method. The serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by ELISA. RESULTS: Compared with N group, the levels of RVSP, RV/(LV+S), RV/BW, WA/TA and WT/TT were significantly increased in H group, while administration of asiaticoside decreased the levels of RVSP, RV/(LV+S), RV/BW, WA/TA and WT/TT (P<0.05). Compared with N group, the relative protein levels of p-p38 and p-NF-κB in H group were significantly increased (P<0.05), and the concentrations of IL-6 and TNF-α were significantly increased, which were apparently attenuated by asiaticoside injection. CONCLUSION: Inhibition of p38/NF-κB signaling pathway and reduction of inflammatory responses may be the important mechanisms of asiaticoside in the prevention and treatment of hypoxic pulmonary hypertension.  相似文献   

10.
AIM: To investigate the changes of 5-hydroxytryptamine(5-HT)levels and to observe the expression and distribution of 5-HT1B receptors in the lung tissues of hypoxic pulmonary hypertension(HPH) rats for exploring the mechanisms of hypoxic pulmonary hypertension.METHODS: Forty male Sprague-Dawley rats were randomly divided into 4 groups: normoxia control(control group), 3 weeks hypoxia group, 4 weeks hypoxia group and 5 weeks hypoxia group. The rats in normoxia control group stayed in normal environment. The rats in 3 weeks hypoxia group, 4 weeks hypoxia group and 5 weeks hypoxia group were kept respectively in hypoxia chamber for 3 weeks, 4 weeks and 5 weeks respectively to establish the HPH animal model. After HPH was established, the mean pulmonary pressure(mPAP) and the right ventricular systolic pressure(RVSP) were recorded by a micro-catheter. RV/(LV+S) ratio was calculated to assess the right ventricular hypertrophy. 5-HT levels in plasma and lung tissues of HPH rats were measured by ELISA. The expression and distribution of 5-HT1B receptors in the lung tissues were measured by the methods of immunohistochemistry and Western blotting. RESULTS: Compared to the normoxia controls, mPAP, RVSP and RV/(LV+S)% in 3 weeks hypoxic rats increased significantly(P<0.05), and continued to increase following prolonged hypoxia. The results of ELISA showed that 5-HT levels in plasma and lung tissues of HPH rats continued to increase following prolonged hypoxic exposure(P<0.05). The 5-HT1B receptors were localized mainly in the intima of the pulmonary arteries in normal rats. Exposed to hypoxia, the immuno-reactivity for 5-HT1B receptors increased in the media of pulmonary arteries in 3 weeks hypoxic rats, particularly those bordering the adventitia. The increase in the expression of 5-HT1B receptor was observed following prolonged hypoxic exposure. The results of Western blotting showed the same changes of 5-HT1B receptor expression in the lung tissues as that of 5-HT1B immuno-reactivity in pulmonary arteries.CONCLUSION: Hypoxia induces the high 5-HT levels and the over-expression of 5-HT1B receptors in the pulmonary arteries of HPH rats, indicating the underlying mechanism of 5-HT in the development of HPH.  相似文献   

11.
AIM:To study the relationship between the activity of phospholipase A2 (PLA2) and chronic hypoxic pulmonary hypertension. METHODS:29 healthy SD rats were randomly divided into normal control group, chronic hypoxic group and hypoxia plus Polidatin (PD) group. The model of rat chronic hypoxic pulmonary hypertension was made by method of intermittent isobaric hypoxia for 21 days. The mean pulmonary arterial pressure (mPAP) was measured by inserting a microcatheter into the pulmonary artery. RESULTS:After exposing hypoxia for 21 days, the mPAP, R/L+S, the PLA2 activity, TXB2, MDA in plasma and lung homogenate increased significantly, while 6-k-PGF, SOD decreased significantly. Pretreatment with PD could relieve the changes mentioned above.CONCLUSION:PLA2 plays an important inducing role through its metabolic products and the interactional radicals in the formation of chronic hypoxic pulmonary hypertension.  相似文献   

12.
AIM: To investigated the changes of interleukin-6 (IL-6) in the pulmonary hypertension mice induced by chronic hypoxic hypercapnia. METHODS: Sixteen male C57BL/6 mice were randomly divided into 2 groups (8 mice in each group): normal control group and chronic hypoxic hypercapnia group. The mice in chronic hypoxic hypercapnia group were placed in a sealed chamber where O2 concentration was kept at 9%~11%, and the CO2 concentration at 5% ~6%, 8 h a day, 6 days a week for 4 weeks. The right ventricular (RV) weight, the weight of left ventricle plus ventricular septum (LV+S) were measured and right ventricular hypertrophy index was calculated. The structural changes of the pulmonary arteries were assessed by the method of histology with HE staining. The vessel wall diameter/total diameter (WT%) and the vessel wall area/total area (WA%) were analyzed by Image-Pro Plus 6.0 software. The protein expression of IL-6 in the lungs of the mice was determined by immunohistochemistry and ELISA, and the mRNA expression of IL-6 in the lungs was determined by RT-PCR. RESULTS: Compared with control group, RV/(LV+S), MT%, MA% and the expression of IL-6 at mRNA and protein levels were significantly increased in chronic hypoxic hypercapnia group. CONCLUSION: In the environment of chronic hypoxia and hypercapnia, the expression of interleukin-6 was elevated in mouse lungs, which may closely related to the development of pulmonary hypertension.  相似文献   

13.
AIM: To study the role of adrenomedullin(AM) in the pathogenesis of hypoxic pulmonary hypertension. METHODS: Rats were exposed to chronic hypoxia for 14 days. After the measurement of the right ventricular systolic pressure (RVSP), the rats were executed. The weight of the right ventricle (RV), the left ventricle(LV) and the ventricular septum(SP) were determined. The ration RV/(LV+SP) was used to express the thickness of RV. In situ hybridization was used for the detection of the expression of AM mRNA in the lung and RV. RESULTS: The RVSP in the hypoxic group was (63.63±3.42) mmHg,which was significantly higher than that in control group [(34.13±3.40) mmHg]. The RV/(LV+SP) in hypoxic group was 0.439±0.039,which was increased obviously when compared with that of control (0.230±0.025). The level of AM mRNA expressed in the RV in the hypoxia group was significantly higher than that in the control group. CONCLUSION: The expression of AM mRNA in RV increased in the hypoxic condition, which suggests that AM may attenuate the inappropriate increase in pulmonary artery pressure.  相似文献   

14.
AIM:To study the effects of airway and pulmonary inflammation on pulmonary arterial remodeling in rats with chronic bronchitis (CB) and emphysema.METHODS:Twenty-four male Wistar rats were divided into three groups (n=8): Group A: four-weeks CB and emphysema;Group B: six-weeks CB and emphysema group;Group C: normal control.The rat model of CB and emphysema was established by intratracheal instillation of lipopolysaccharide (LPS) and daily exposure to cigarette smog.The arterial blood gas analysis,pulmonary hemodynamics changes and cell counts in bronchoalveolar lavage fluid (BALF) were measured.The pathomorphological changes of airway inflammation,alveoli destruction and pulmonary arterial remodeling were observed by HE straining and triple straining.RESULTS:(1) The characteristic pathological changes of CB and emphysema were observed in group A and B.Neutrophils were the main cells infiltrated into the walls of airway in group A.Lymphocytes and macrophages were the main cells in group B.(2) Right ventricular systolic pressure (RVSP),mean pulmonary arterial pressure (mPAP),the ratio of the weight of right ventricle/left ventricle and septum (RV/LV+S) in group A and B were significantly higher than those in group C (P<0.05).The amount of muscular artery (MA) in group A and B were significantly higher than that in group C (P<0.05).(3) In group A and B,the levels of MA,RVSP,mPAP and RV/LV+S was correlated positively with the average alveolar area,the total cell counts and differential cell counts of neutrophils,lymphocytes and macrophages in BALF,and the level of infiltration into the walls of airway,respectively (P<0.05).The positive correlation was observed with the percentage of neutrophils,lymphocytes and macrophages between group A and B (P<0.05).The amounts of MA were also correlated positively with RVSP,mPAP and RV/LV+S (P<0.05).CONCLUSIONS:(1) The pulmonary artery hypertension,the right ventricular hypertrophy and the pulmonary arterial remodeling appeared before hypoxia.These may be related with the degree of the pulmonary inflammation.(2) The characteristic of pulmonary arterial remodeling was small artery organization,and correlated positively with the changes of hemodynamics.  相似文献   

15.
AIM: To study the effect of chronic hypoxia on L-Arginine/NO pathway in rat pulmonary artery. METHODS: Changes in pulmonary artery L-Arginine(L-Arg) transport, nitric oxide synthase (NOS) activity, plasma nitrite level and L-Arg level in HPH rats were investigated. RESULTS: (1) The mean pulmonary arterial pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) of HPH group were higher than those in control group (P<0.01). (2) Plasma L-Arg level in HPH group was not significantly changed. (3) At low (0.2 mmol/L)or high(5.0 mmol/L)concentration of L-Arg, the velocity of L-Arg transport in HPH group was lower than that in control group (P<0.05 or P<0.01). (4) The activity of pulmonary artery tNOS, iNOS and cNOS in HPH group were increased by 38.0%, 32.8% and 53.0%, respectively (P<0.01), compared with control group. (5) Plasma NO level of HPH group was decreased, which was negative correlation to mPAP and RV/LV+S (P<0.01). CONCLUSION: The decrease of nitric oxide generation might result from L-Arg transport injury, while pulmonary artery tNOS, iNOS and cNOS activity were enhanced during chronic hypoxia.  相似文献   

16.
AIM: To study the effect of chronic hypoxic hypercapnia on gene expression of thromboxane synthase and prostacyclin synthase in pulmonary arterioles. METHODS: Sprague-Dawley rats were randomly divided into two groups: control group and hypoxic hypercapnic group. TXS mRNA and PGI2-SmRNA were observed in pulmonary arterioles by in situ hybridization. RESULTS: mPAP, weight ratio of right ventricle (RV) to left ventricle plus septum(LV+S), contents of TXB2 and 6-keto-PGF1α in plasma and lung and TXS mRNAin pulmonary arterioles were much higher in rats of hypoxic hypercapnic group than those of control group. Differences of PGI2-SmRNA in pulmonary arterioles were not significant in two groups. Light microscopy showed hypertrophy of vessel smooth muscle cells and vessel cavity straitness were found in hypoxic hypercapnic group. CONCLUSION: Changes of gene expressions of thromboxane synthase and prostacyclin synthase and imbalance of TXA2/PGI2 may play an important role in hypoxic hypercapnic pulmonary hypertension.  相似文献   

17.
AIM: To investigate the roles of nitric oxide/L-arginine (NO/L-Arg) pathway and urotensin-Ⅱ (UⅡ) in the development of pulmonary hypertension induced by chronic hypoxia-hypercapnia in rats.METHODS: Forty male Sprague-Dawley rats were randomly divided into four groups (n=10): normal control group (A), hypoxia-hypercapnia+saline group (B), hypoxia-hypercapnia+L-Arg liposome group (C) and hypoxia-hypercapnia+N-nitro-L-arginine methyl ester (L-NAME) group (D).Contents of UⅡ, UⅡ mRNA and receptor of UⅡ (UT) mRNA in pulmonary arterioles were measured with immunohistochemistry analysis and in situ hybridization, respectively.Change of small pulmonary vascular microstructure was also investigated.RESULTS: (1) The mean pulmonary artery pressure (mPAP) and the weight ratio of right ventricle to left ventricle plus septum [RV/(LV+S)] in B and D groups were all higher than those in A group (respectively, P<0.05), with C group significantly lower than those in B group (respectively, P<0.01).(2) Light microscopy showed that the ratio of vessel wall area to total area (WA/TA) and the media thickness of pulmonary arterioles (PAMT) in B group were higher than those in A group (P<0.05), with C group significantly lower than those in B group.(3) The contents of UⅡ, UⅡ mRNA and UT mRNA in pulmonary arterioles in B and D groups were all higher than those in A group (respectively, P<0.01), while the expression of UⅡ and UⅡ mRNA in C group were lower than those in B group (P<0.01).CONCLUSION: The pathological process of pulmonary hypertension induced by chronic hypoxia-hypercapnia might be related to upregulation of UⅡ located in pulmonary arterioles, which might be partially inhibited by exogenous NO in rats.  相似文献   

18.
AIM: To elucidate whether the mechanism that L-arginine can relieve hypoxia pulmonary hypertension involves inhibition of the activity of protein kinase C(PKC).METHODS: Twenty-one male Wistar rats were randomly divided into NS control, hypoxia and L-arginine(500 mg·kg-1·d-1, ip) treatment groups. After two-weeks treatment, mean pulmonary artery pressure (mPAP), mean systematic artery pressure (mSAP) and the ratio of the weight of right ventricle to that of left ventricle plus septum were measured, then two pulmonary arterial rings were isolated to be exposed to PDBu(a specific activator of PKC ) and observed: (1) The maximal response (P1) to 500 nmol/L PDBu, the time required to achieve a half-maximal response to 500 nmol/L PDBu (t1/2), the time during which the maximal response to 500 nmol/L PDBu maintained (T) and the isometric responses at different times (2, 4, 8, 12, 20, 40, 60, 80 min). The isometric response was represented as the percentage of the maximal response (P0) of the same arterial ring to 5μmol/L phenylephrine hydrochloride (P0%). (2) Dose-response curve in response to PDBu (10-11 000 nmol/L) and the dose producing a half-maximal response in the curve (EC50). RESULTS: mPAP, RV/(LV+S), P1, T and the isometric responses at 2, 4, 8, 20 min of NS control and L-arginine treatment groups were lower than those of hypoxic group respectively (P<0.05), while t1/2 and EC50 were all greater than those of hypoxic group respectively (P<0.05).CONCLUSION: The activity of PKC was augmented when rats were exposed to two-weeks normobaric hypoxia, which resulted in the increased reactivity of the isolated pulmonary arterial rings. L-arginine can inhibit the activation of PKC, which is likely part of the mechanism by which L-arginine can reduce mPAP and relieve the hypertrophy of right ventricle.  相似文献   

19.
AIM:We used an animal model of chronic hypoxia to mimic right ventricular hypertrophy and try to study the potential mechanism of myocardium apoptosis of right heart in rat under chronic hypoxia. METHODS: Rat hypoxia models were established by exposing the rats to normobaric chronic hypoxia (oxygen levels were maintained at 9.5%-10.5%). Sixty rats were separated into two groups: one exposed to hypoxia and the other serving as control. Ten rats, randomly selected from each group were killed at 14, 21, 28 d after hypoxia. The apoptosis was determined. The changes of RV weight to left ventricle and interventricular septum weight ratio[RV/(LV+S)], the RV weight to body weight ratio (RV/BW) were also observed. The β-MHC, bcl-2 and bad mRNA levels in right ventricle were detected by semi-quantitative RT-PCR assays and expression of β-MHC, Bcl-2 and Bad protein levels were detected by Western blotting.RESULTS: The RV/(LV+S), RV/BW and apoptosis index in chronic hypoxia group were higher than those in normal control group (P<0.01). The results of RT-PCR and Western blotting showed that β-MHC mRNA levels and protein levels in chronic hypoxia group were higher than those in normal control group (P<0.01). The rate of apoptosis, the RV/(LV+S), RV/BW and the expression of β-MHC in hypoxia group all increased with time. The bcl-2 mRNA and Bcl-2 protein expressions in chronic hypoxia group were lower compared with control group at 14, 21 and 28 d (P<0.05). In contrast, no significant change of bad mRNA and Bad protein expressions in chronic hypoxia group were observed compared with control group (P>0.05). Finally, a decreased bcl-2/bad〖STBZ〗 ratio in chronic hypoxia group was found compared with control group (P<0.05). Both the expression of bcl-2 and the bcl-2/bad ratio decreased with time (P<0.05).CONCLUSION:These data demonstrate that chronic hypoxia may induce right ventricular hypertrophy, as well as cardiomyocytes apoptosis. Furthermore, apoptosis in hypertrophic cardiomyocytes induced by hypoxia is mainly due to the inhibition of bcl-2 expression and decrease of bcl-2/bad ratio.  相似文献   

20.
AIM: To investigate the role of nuclear factor kappa B (NF-κB) inhibitor in the responsiveness of isolated pulmonary artery rings to protein kinase C (PKC) in rats with hypoxia-induced pulmonary hypertension. METHODS: The pulmonary artery rings removed endothelium were prepared from model rats with hypoxia-induced pulmonary hypertension and control rats. The effects of PKC activator PMA (0.5 μmol/L) time-response cures and NF-κB inhibitor PDTC (0-1 000 μmol/L) concentration-response cures on pulmonary artery rings were observed. The responsiveness of each ring was tested by applying a maximally effective concentration of phenylephrine (10 μmol/L). Data were calculated as relative ratio by the maximally responseness ( P0 ) setting at 100%, and the relative responseness tensions to PMA and PDTC were derived by dividing by the counts in P0. t1/2 and T show the time achieving half-maximal response and lasting maxima response to 0.5 μmol/L PMA, respectively. RESULTS: mPAP and RV/(LV+S)in hypoxia group were greater than those in control group(P<0.05).For the responseness of the artery rings to PMA of 0.5 mol/L,the relat ive tensions of hypoxia group were significantly higher(P<0.05)as compared with respective controls;mean t1/2 in hypoxia group was shorter than that in control group(P<0.05).Mean T in hypoxia group was longer than that in control group(P<0.05).For the relative tensions of the artery rings to PDTC and PMA,hypoxia group were higher than those of controls in the range of PDTC 0-100 mol/L(P<0.05);the relative tensions of two group significantly decreased beyond PDTC of 500 mol/L(P<0.05). CONCLUSIONS: The responsiveness of pulmonary artery rings to PMA was increased during hypoxia and decreased to PDTC in concentration-dependent manner. These results further suggest that changes of PKC-NF-κB signaling pathway of pulmonary artery smooth muscle cells may be involved in vasoconstriction of hypoxia-induced pulmonary hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号