首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The chemistry of self-splicing RNA and RNA enzymes   总被引:59,自引:0,他引:59  
T R Cech 《Science (New York, N.Y.)》1987,236(4808):1532-1539
Proteins are not the only catalysts of cellular reactions; there is a growing list of RNA molecules that catalyze RNA cleavage and joining reactions. The chemical mechanisms of RNA-catalyzed reactions are discussed with emphasis on the self-splicing ribosomal RNA precursor of Tetrahymena and the enzymatic activities of its intervening sequence RNA. Wherever appropriate, catalysis by RNA is compared to catalysis by protein enzymes.  相似文献   

2.
For self-splicing of Tetrahymena ribosomal RNA precursor, guanosine binding is required for 5' splice-site cleavage and exon ligation. Whether these two reactions use the same or different guanosine-binding sites has been debated. A double mutation in a previously identified guanosine-binding site within the intron resulted in preference for adenosine (or adenosine triphosphate) as the substrate for cleavage at the 5' splice site. However, splicing was blocked in the exon ligation step. Blockage was reversed by a change from guanine to adenine at the 3' splice site. These results indicate that a single determinant specifies nucleoside binding for both steps of splicing. Furthermore, it suggests that RNA could form an active site specific for adenosine triphosphate.  相似文献   

3.
The excised intervening sequence of the Tetrahymena ribosomal RNA precursor mediates its own covalent cyclization in the absence of any protein. The circular molecule undergoes slow reopening at a single phosphodiester bond, the one that was formed during cyclization. The resulting linear molecule has 5'-phosphate and 3'-hydroxyl termini; these are unusual products for RNA hydrolysis but are typical of the other reactions mediated by this molecule. The reopened circle retains cleavage-ligation activity, as evidenced by its ability to undergo another round of cyclization and reopening. The finding that an RNA molecule can be folded so that a specific phosphate can be strained or activated helps to explain how the activation energy is lowered for RNA self-splicing. The proposed mechanisms may be relevant to several other RNA cleavage reactions that are RNA-mediated.  相似文献   

4.
Ribonuclease P catalysis differs from ribosomal RNA self-splicing   总被引:9,自引:0,他引:9  
Two RNA-catalyzed reactions have been described, the Tetrahymena self-splicing ribosomal RNA and ribonuclease P. The Tetrahymena self-splicing reaction proceeds through a transesterification cascade that is dependent upon nucleophilic attacks by ribose 3'-OH groups. Periodate oxidation of the catalytic (or substrate) RNA, which destroys the nucleophilicity of RNA 3' termini, did not inhibit ribonuclease P activity. Thus, catalysis by ribonuclease P differs from the self-splicing reaction.  相似文献   

5.
6.
Defining the inside and outside of a catalytic RNA molecule   总被引:42,自引:0,他引:42  
Ribozymes are RNA molecules that catalyze biochemical reactions. Fe(II)-EDTA, a solvent-based reagent which cleaves both double- and single-stranded RNA, was used to investigate the structure of the Tetrahymena ribozyme. Regions of cleavage alternate with regions of substantial protection along the entire RNA molecule. In particular, most of the catalytic core shows greatly reduced cleavage. These data constitute experimental evidence that an RNA enzyme, like a protein enzyme, has an interior and an exterior. Determination of positions where the phosphodiester backbone of the RNA is on the inside or on the outside of the molecule provides major constraints for modeling the three-dimensional structure of the Tetrahymena ribozyme. This approach should be generally informative for structured RNA molecules.  相似文献   

7.
A specific amino acid binding site composed of RNA   总被引:20,自引:0,他引:20  
M Yarus 《Science (New York, N.Y.)》1988,240(4860):1751-1758
A specific, reversible binding site for a free amino acid is detectable on the intron of the Tetrahymena self-splicing ribosomal precursor RNA. The site selects arginine among the natural amino acids, and prefers the L- to the D-amino acid. The dissociation constant is in the millimolar range, and amino acid binding is at or in the catalytic rG splicing substrate site. Occupation of the G site by L-arginine therefore inhibits splicing by inhibiting the binding of rG, without inhibition of later reactions in the splicing reaction sequence. Arginine binding specificity seems to be directed at the side chain and the guanidino radical, and the alpha-amino and carboxyl groups are dispensable for binding. The arginine site can be placed within the G site by structural homology, with consequent implications for RNA-amino acid interaction, for the origin of the genetic code, for control of RNA activities, and for further catalytic capabilities for RNA.  相似文献   

8.
针对罗汉果果实富含多糖和多酚类物质的特点,以广西罗汉果代表种质青皮果种的果实为材料,比较了改良Trizol法、改良异硫氰酸胍法、改良CTAB法和常规Trizol法4种不同的总RNA提取方法的提取效果。结果表明,改良Trizol法所提取的RNA呈现28S rRNA、18S rRNA和5S rRNA 3条清晰的谱带,且28S条带宽度接近18S的2倍,纯度高(D260/D280=201;D260/D230=202),完整性好(RIN=950),得率为(26000±1947) μg·g-1。RT\|PCR结果进一步表明,改良Trizol法提取的RNA完全能够用于后续的分子生物学研究。  相似文献   

9.
Specific interactions in RNA enzyme-substrate complexes   总被引:27,自引:0,他引:27  
Analysis of crosslinked complexes of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli, and transfer RNA precursor substrates has led to the identification of regions in the enzyme and in the substrate that are in close physical proximity to each other. The nucleotide in M1 RNA, residue C92, which participates in a crosslink with the substrate was deleted and the resulting mutant M1 RNA was shown to cleave substrates lacking the 3' terminal CCAUCA sequence at sites several nucleotides away from the normal site of cleavage. The presence or absence of the 3' terminal CCAUCA sequence in transfer RNA precursor substrates markedly affects the way in which these substrates interact with the catalytic RNA in the enzyme-substrate complex. The contacts between wild-type M1 RNA and its substrate are in a region that resembles part of the transfer RNA "E" (exit) site in 23S ribosomal RNA. These data demonstrate that in RNA's with very different cellular functions, there are domains with similar structural and functional properties and that there is a nucleotide in M1 RNA that affects the site of cleavage by the enzyme.  相似文献   

10.
A self-splicing group I intron has been found in the gene for a leucine transfer RNA in two species of Anabaena, a filamentous nitrogen-fixing cyanobacterium. The intron is similar to one that is found at the identical position in the same transfer RNA gene of chloroplasts of land plants. Because cyanobacteria were the progenitors of chloroplasts, it is likely that group I introns predated the endosymbiotic association of these eubacteria with eukaryotic cells.  相似文献   

11.
12.
Biochemical and crystallographic evidence suggests that 23S ribosomal RNA (rRNA) is the catalyst of peptide bond formation. To explore the mechanism of this reaction, we screened for nucleotides in Escherichia coli 23S rRNA that may have a perturbed pKa (where Ka is the acid constant) based on the pH dependence of dimethylsulfate modification. A single universally conserved A (number 2451) within the central loop of domain V has a near neutral pKa of 7.6 +/- 0.2, which is about the same as that reported for the peptidyl transferase reaction. In vivo mutational analysis of this nucleotide indicates that it has an essential role in ribosomal function. These results are consistent with a mechanism wherein the nucleotide base of A2451 serves as a general acid base during peptide bond formation.  相似文献   

13.
Visualizing the higher order folding of a catalytic RNA molecule   总被引:26,自引:0,他引:26  
The higher order folding process of the catalytic RNA derived from the self-splicing intron of Tetrahymena thermophila was monitored with the use of Fe(II)-EDTA-induced free radical chemistry. The overall tertiary structure of the RNA molecule forms cooperatively with the uptake of at least three magnesium ions. Local folding transitions display different metal ion dependencies, suggesting that the RNA tertiary structure assembles through a specific folding intermediate before the catalytic core is formed. Enzymatic activity, assayed with an RNA substrate that is complementary to the catalytic RNA active site, coincides with the cooperative structural transition. The higher order RNA foldings produced by Mg(II), Ca(II), and Sr(II) are similar; however, only the Mg(II)-stabilized RNA is catalytically active. Thus, these results directly demonstrate that divalent metal ions participate in general folding of the ribozyme tertiary structure, and further indicate a more specific involvement of Mg(II) in catalysis.  相似文献   

14.
Linear, potato spindle tuber viroid RNA has been used as a substrate for an RNA ligase purified from wheat germ. Linear viroid molecules are efficiently converted to circular molecules (circles) which are indistinguishable by electrophoretic mobility and two-dimensional oligonucleotide pattern from viroid circles extracted from infected plants. In light of recent evidence for multimeric viroid replication intermediates, cleavage followed by RNA ligation by a cellular enzyme may (i) be a normal step in the viroid life cycle and (ii) may also reflect cellular events.  相似文献   

15.
The bacteriophage T4 nrdB gene, encoding nucleoside diphosphate reductase subunit B, contains a self-splicing group I intervening sequence. The nrdB intron was shown to be absent from the genomes of the closely related T-even phages T2 and T6. Evidence for variable intron distribution was provided by autocatalytic 32P-guanosine 5'-triphosphate labeling of T-even RNAs, DNA and RNA hybridization analyses, and DNA sequencing studies. The results indicate the nonessential nature of the intron in nrdB expression and phage viability. Furthermore, they suggest that either precise intron loss from T2 and T6 or lateral intron acquisition by T4 occurred since the evolution of these phages from a common ancestor. Intron movement in the course of T-even phage divergence raises provocative questions about the origin of these self-splicing elements in prokaryotes.  相似文献   

16.
Splicing of the Tetrahymena ribosomal RNA precursor is mediated by the folded structure of the RNA molecule and therefore occurs in the absence of any protein in vitro. The Tetrahymena intervening sequence (IVS) has been inserted into the gene for the alpha-donor fragment of beta-galactosidase in a recombinant plasmid. Production of functional beta-galactosidase is dependent on RNA splicing in vivo in Escherichia coli. Thus RNA self-splicing can occur at a rate sufficient to support gene expression in a prokaryote, despite the likely presence of ribosomes on the nascent RNA. The beta-galactosidase messenger RNA splicing system provides a useful method for screening for splicing-defective mutations, several of which have been characterized.  相似文献   

17.
18.
Splicing of messenger RNA precursors   总被引:144,自引:0,他引:144  
A general mechanism for the splicing of nuclear messenger RNA precursors in eukaryotic cells has been widely accepted. This mechanism, which generates lariat RNAs possessing a branch site, seems related to the RNA-catalyzed reactions of self-splicing introns. The splicing of nuclear messenger RNA precursors involves the formation of a multicomponent complex, the spliceosome. This splicing body contains at least three different small nuclear ribonucleoprotein particles (snRNPs), U2, U5, and U4 + U6. A complex containing precursor RNA and the U2 snRNP particle is a likely intermediate in the formation of the spliceosome.  相似文献   

19.
Knight SW  Bass BL 《Science (New York, N.Y.)》2001,293(5538):2269-2271
An early event in RNA interference (RNAi) is the cleavage of the initiating double-stranded RNA (dsRNA) to short pieces, 21 to 23 nucleotides in length. Here we describe a null mutation in dicer-1 (dcr-1), a gene proposed to encode the enzyme that generates these short RNAs. We find that dcr-1(-/-) animals have defects in RNAi under some, but not all, conditions. Mutant animals have germ line defects that lead to sterility, suggesting that cleavage of dsRNA to short pieces is a requisite event in normal development.  相似文献   

20.
凝胶电泳技术通常被用于总RNA完整性检测,一般认为28S和18S rRNA条带亮度的比值大于等于2表示总RNA完整性良好,该比值越小表明总RNA降解越严重。为了检测这一标准在水产虾蟹类中是否继续适用,分别对凡纳滨对虾rRNA和mRNA的完整性进行了分析。用TRIzol分离纯化的凡纳滨对虾总RNA经凝胶电泳检测,发现其28S:18S rRNA的比值远小于2;但是以同样的总RNA为模板进行RT-PCR,能顺利扩增出长约1 100 bp的ACTeEF1A基因序列。进一步的3':5'分析显示这2个内参基因mRNA的3':5' ratio分别为2.79和1.53,直接表明被测mRNA完整性良好。因此,凝胶电泳低估了水产虾蟹类总RNA的完整性,建议采用3':5'分析技术对水产虾蟹类总RNA完整性进行检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号