首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This paper presents the results of a study on nutrient exchange at the sediment-water interface which is caused by early diagenesis and resuspension of bottom sediments. The research was carried out on anoxic silty-clay sediment cores collected south of the Po river delta (Northern Adriatic Sea, Italy) in late summer. The early diagenetic processes were investigated by means of the integrated study of pore-water chemistry and solid phase composition. Exchange at the sediment-water interface was studied by comparing the fluxes measured in incubated cores with the fluxes calculated by modelling pore-water profiles. Nutrient exchange during resuspension was analysed by simulating a storm event in the laboratory. The high production of nutrients near the sediment-water interface is mainly caused by the anoxic degradation of organic matter and the successive reductions of Mn and Fe-oxyhydroxides and, to a lesser extent, of sulphate. The oxic degradation of organic matter occurs only at the sediment-water interface. In the incubation experiment the increases of phosphate, ammonia, nitrate, silica, and Fe in bottom waters were measured. The comparison between calculated and measured fluxes showed that: a) the fluxes are mainly controlled by molecular diffusion; b) phosphate and Fe sink because of the Fe-oxyhydroxide precipitation and nitrification process influences the ammonia and nitrate fluxes. Resuspension caused the release of: a) phosphate through surficial desorption and authigenic apatite dissolution; b) ammonia by means of the oxic degradation of organic matter; and c) dissolved silica generated by biogenic silica dissolution. Resuspension also caused a weak removal of Fe. The more oxic conditions following resuspension favoured the formation of a Fe-oxyhydroxide film at the sediment-water interface which inhibited the phosphate fluxes from sediments to the water column.  相似文献   

2.
This study explores the extent and possible sources of heavy metal (Cd, Cr, Cu, Fe, Mn, Pb, Zn and Ni) contamination in the bed sediments of the Gomti River performing principal component analysis on the five years (Jan. 1994–Dec. 1998) data set obtained through continuous monitoring of the river water and bed sediments at eight selected sites and water/wastewater of its tributaries/drains. Influence of anthropogenic activities on metal contamination of the bed sediments was evaluated through computing the geoaccumulation index for various metals at studied sites. PCA performed on combined (river bed sediment, water, suspended solids, water/wastewater from tributaries/drains) data set extracted two significant factors explaining more than 58% of total variance. Factor loadings suggested the presence of both natural as well as anthropogenic sources for all these metals in the river bed sediments. Among all the sites, the sites 4 and 5 are more contaminated with Cd, Cu, Cr and Pb, which was supported by the geoaccumulation indices computed for metals. Factor scores revealed presence of seasonal (monsoon-related) differences in metals profiles for river water and suspended solids and absence of seasonal differences for bed sediment and wastewater. Further, the metal contamination of the bed sediment was also evaluated using biological thresholds. Results suggested that the river bed sediments are contaminated with heavy metals, which may contribute to sediment toxicity to the freshwater ecosystem of the Gomti River.  相似文献   

3.
Heavy metal inputs to Mississippi Delta sediments   总被引:1,自引:0,他引:1  
Heavy metal concentrations were determined in suspended particulates, filtered water and sediment collected in the Mississippi River and from its marine delta. More than 90% of the metal load of the river is associated with particulate matter, which is relatively constant in chemical composition with time and place. The Mississippi River suspended material is similar to average crystal rocks in Fe, Al, V, Cr, Cu, Co, Mn, and Ni concentration but is generally enriched in Zn, Cd and Pb. Sediment cores dated by the Pb 210 method show that the Cd and Pb enrichments are recent phenomenon and are most likely due to the activities of man. About 6000 tonne of Pb and 300 tonne of Cd are being added to the delta sediments by man each year, more than 30 times the amount added to the Southern California Bight. River particulate matter is essentially identical to deltaic sediments in Al, Fe, Cr, V, Cd and Pb concentration, but the sediments are depleted in Co, Cu, Mn, Ni and Zn by 20 to 40%. Chemical leaching of the solids show the metal losses to be primarily from the oxide phase, suggesting diagenetic reduction and mobilization as a mechanism. Trace metal concentrations in filtered Mississippi River water were below the limits for safe drinking water and were similar to world average river values. The abundant river suspended matter and high pH combine to keep dissolved trace metal concentrations low.  相似文献   

4.
Trace metals (Al, Pb, Zn, Cr, Cu, Ni, Fe, Mn) were studied in waters (dissolved and particulate phases) and sediments of the Louros Estuary in the Amvrakikos Gulf, one of the most important European wetlands located at the NW coast of Greece. The study system is small, with a relatively narrow mixing zone, typical for Mediterranean estuaries. Particular emphasis was given to understanding the conditions prevailing in summer. During this season saline water intrudes the estuary along the river bed, despite the existing shallow sill, and forms a thin salt-wedge water mass, which occupies the near bottom layer with its thin end pointed upstream. Particulate metal concentrations within this saline bottom layer are considerably higher than in the riverine and marine sections of the estuary. Since the metal content of particles collected upstream is higher than that of the marine ones, there is a clear evidence that the salt-wedge acts as a ‘sink’ for most metals during the summer. Coexistance in the same zone of high dissolved metal concentrations indicate that loosely associated metals are desorbed from riverine particles, whereas newly formed suspended matter is deposited together with particles, transported by the river. The accumulation of metals in the near bottom layer affects directly their distribution in the sediments. The maximum concentrations of the metal fraction which is loosely held in sediments, are found primarily at the same site. The distribution of the ‘non-labile’ metal fraction of the sediments (particularly for Cu and Pb) is broadly constant throughout the estuary, confirming the absence of any significant natural or industrial point sources, at the lower part of the river. However, the analysis of sediment cores reveals an enrichment of this metal fraction at the top, near surface sections of the mouth area, indicating relatively recent pollution.  相似文献   

5.
A liquid chromatographic method for determining glyphosate (GLYPH) and its major metabolite aminomethylphosphonic acid (AMPA) in various environmental substrates is described. Ion-exchange column chromatography is coupled with post-column ninhydrin derivatization and absorbance detection at 570 nm. Use of a valve-switching technique allowed quantitation of both analytes in a single chromatographic run and eliminated slow-eluting, coextracted interferences. The method was successfully used to quantitate GLYPH and AMPA in organic and mineral soils, stream sediments, and foliage of 2 hardwood brush species. Mean recovery efficiencies for GLYPH as determined from fortified blank field samples were as follows: bottom sediment 84%, suspended sediment 66%, organic soils 79%, mineral soils 73%, alder leaf litter 81%, salmonberry leaf litter 84%, and artificial deposit collectors 87%. Precision for GLYPH determination was good with less than 14% coefficient of variation on mean recovery for all substrates. Limits of detection were lowest for sediments (0.01 microgram/g dry mass) and highest for foliage substrates (0.10 microgram/g dry mass). Using this system, 6 samples/person/day were routinely analyzed.  相似文献   

6.
Due to seasonal variation in bottom-water temperature and degradation of organic matter, the depths of the redox boundaries fluctuate in sediments of the river Meuse. This is reflected by a non-steady state behaviour of heavy metals in the surface sediments. Levels of acid-volatile sulphides suggest that dissolved concentrations of heavy metals in the anoxic pore waters are determined by their respective sulphide phases. However, complexation with dissolved organic ligands may significantly increase dissolved concentrations of heavy metals. In most sediments studied, a distinct peak in dissolved concentrations of heavy metals is measured immediately below the sediment-water interface. This concentration peak may be attributed to degradation of organic matter and oxidation of sulphides. Dissolved concentration gradients indicate that upward diffusion of heavy metals from the sediment can contribute to concentrations in the surface water, although significant effects may be confined to specific locations. In addition, it is shown that release of heavy metals as dissolved species to the surface water is negligible compared to particulate-bound fluxes of heavy metals to the sediment.  相似文献   

7.

Purpose

Remobilization of polychlorobiphenyl (PCB)-contaminated sediments by anthropogenic activities (e.g. dredging) or natural flow conditions could lead to the release of PCBs into the water column and consequently increase the availability of PCBs to benthic organisms. The fate of the released PCBs following such events is not well understood and such knowledge is necessary for the management of contaminated sediments. The objective of this study was to understand the processes that control the fate of PCBs following remobilization of field-aged contaminated sediments.

Materials and methods

Sediments contaminated with PCBs collected from Lake Bourget (Savoie, France) were resuspended in a column experiment. The relationships between physical–chemical parameters—i.e. suspended particulate matter, pH, inorganic and organic carbon content, redox-sensitive species and the concentrations of dissolved PCBs both in the water column and in the interstitial water of the sediment—were investigated so as to determine the key processes controlling PCB fate.

Results and discussion

Following the simulated resuspension event (SRE), dissolved PCBs were found in much higher concentrations in the water column than under stationary conditions. Desorption of PCBs from the sediment depended on the degree of the hydrophobicity of the PCBs and the initial PCB content in the sediment. Principal component analysis showed that the variations in the concentrations of released PCBs over time and space closely followed those of suspended particulate matter (SPM) and not those of redox conditions. The partitioning behaviour of PCBs on SPM showed that equilibrium state was not attained within 40 days following the SRE. A particle size fractionation study, before and after remobilization of the sediment, showed the presence of PCBs in every fraction of the sediment, but with higher amounts in large particles with high organic matter content and in the finest fractions. Remobilization of contaminated sediment did not affect this distribution profoundly but a significant enrichment in PCBs of the clay-sized fraction was observed in the re-settled sediment.

Conclusions

Sediment resuspension induced non-equilibrium conditions in the water column for more than 5 weeks and led to the enrichment with PCBs of the newly formed surface bed sediment. This enrichment was due to the preferential re-sorption of PCBs on clay-sized particles during the SRE and to the physical segregation and accumulation of the less dense particles at the surface of the sediment column; such particles thought to be the principal carriers of contaminants. These changes concerned <0.05 % of the total PCB content.  相似文献   

8.
The space-time distribution of some pollutants (Cu, Ph, Zn, Cd, Fe, Mn, V, Ni, Cr) in the sludge of the canals of Venice was studied. The contamination levels were comparable to, or higher, than those measured in the most polluted sediments of the Lagoon of Venice Sediments were collected by two different sampling techniques I ) collection of sediment cores (upper 5 cm) by a syringe-type corer, 2) collection by traps, placed on the bottom of the canal Traps pennitted the sampling of sediments essentially resuspended by overlying water turbulence This sediment fraction is subjected to variations of its physicochemical parameters (principally change of redox conditions) and therefore to pollutant exchange at the water/sediment interface The metals principally exchanged during sediment resuspension were Cd, Pb, Zn and Cu These metals have principally an anthropogenic origin and are bound to the most labile geochemical phases of the sediment (such as sulphides), which can be oxidised during sediment resuspension, releasing metals into the water Fe, Cr and Ni were only partially exchanged, while Mn and V were generally not exchanged, a significant fraction of these metals is of natural origin and is bound to the most refractory phases of the sediment.  相似文献   

9.
Background, Aim and Scope.  The compositional study of suspended matter in water from rivers of different latitudes and climates has revealed that the fine fraction reflects both substrate lithology from source areas or topsoil composition along the course. Metal distribution patterns are also strongly related to the clay mineral fate in fluvial aquatic systems. For the particular case of the coastal area of the Río de la Plata estuary in South America, previous studies have, on the one hand, focused on the analysis of distribution patterns of heavy metals in bottom river sediments and, on the other hand, on the assessment of metal contents in topsoils. The present study was conducted to evaluate the Cu, Pb and Zn distribution in soils and sediments from four drainage basins crossing two differentiated geomorphologic units composed of unconsolidated materials and to understand the metal behaviour. Methods  Data used included the existent, self-produced soil and sediment data sets (grain size, organic matter and Cu, Pb and Zn contents from 124 samples). Analyses were performed by using standardised methods: grain size analysis by sieving and settling; organic matter content based on the reduction of dichromate ion followed by titration; metal content by atomic absorption spectrophotometry following acid digestion. Results and Discussion. The average (% w/w) clay and organic matter content were 45.9 ± 17.1 and 1.5 ± 1.7 for sediments and 32.0 ± 19.8, and 7.5 ± 7.6 for soils, respectively. The raw mean metal concentrations (mg-kg-1 dry weight) for sediments and soils were: Cu: 28.02 ± 27.28, 32.08 ± 21.64; Pb: 32.08 ± 46.94, 68.44 ± 69.25 and Zn: 83.09 ± 150.33, 118.22 ± 74.20, respectively. A good correlation for each clay-normalised metal concentration was found between soil and sediments using regression analysis considering average data for each basin sampling site (r > 0.89, p < 0.05). A comparison between metal concentration levels taking into account geomorphologic units by a t independent sample test showed significant differences for the normalised soil-sediment metal data (p < 0.001), responding to differences in grain size, clay mineralogy, organic matter and neoformed Fe-Mn oxide composition. Conclusion, Recommendation and Outlook  A clear parenthood between the topsoils and the bottom sediments in the study area was found. The Argiudolls from the inner zone are frequently affected by rainwater erosion, which washes the fine materials with sorbed metals and carries them to the streams. These watercourses reach the flat coastal plain, where soil flooding and bottom sediment depositional processes predominate. Here, both soils and bottom sediments are enriched in clay, organic matter and metals. The topography and lithology, under the environmental conditions of a temperate and humid climate control the fate of metals within these small basins. The influence of the physical media on the distribution and fate of pollutants should not be minimised in the understanding of the governing processes from natural systems.  相似文献   

10.
采用Tessier连续提取法分析了松花江表层沉积物中Cu、Pb、Zn、Mn4种重金属的赋存形态,并结合次生相富集系数法,探讨了沉积物中重金属的潜在生态风险及来源。结果表明,沉积物中Cu以残渣态为主(高于50%),其次为有机质结合态,从上游至下游,沉积物中Cu形态的稳定程度逐渐增加;沿程所有沉积物样品中可交换态Pb的含量均高于当地沉积物背景值,存在较高的可迁移性和二次释放风险;在二松大部分江段和松花江干流,Zn主要以比较稳定的残渣态存在,不存在二次释放污染水体的风险;Mn的有效态含量均在流域沉积物背景值范围之内。对重金属次生相富集系数的研究表明,沿程沉积物中Cu、Pb均有一定程度的富集,主要来源于人为输入;Zn在二松中下游的哈达湾至松原江段有一定的富集,其余江段人为输入的Zn较少;沉积物中的Mn主要为自然来源。  相似文献   

11.
To gather information on the interactions between the sediment and suspended organic matter pools in the Stagnone di Marsala, water and sediment samples were collected, on a monthly basis, at I I stations, Water temperature and salinity showed a clear seasonality whilst particulate and sediment organic matter (lid not show any clear seasonal pattern, Relative abundances of suspended and sediment organic matter, on the other hand. appeared to be site-dependent and controlled mainly by the dynamic balance between resuspension and sedimentation, High quantities of both suspended and sediment total organic matter were present. while very low algal biomasses (in terms of chlorophyll-a concentrations) were observed both in the suspended and sediment pools thus showing the oligotrophy of the site, The contribution of phytoplankton and microphytobenthos to the total organic content of suspended and sediment matter was negligible, The low food availability of organic matter in the Stagnone di Marsala Sound may explain the low abundance of Suspension-feeding molluscs. which are substituted by limnovore and dctritivore species.  相似文献   

12.
Desorption of Dieldrin from field aged sediments: Simulating flood events   总被引:4,自引:4,他引:0  

Background, Aim and Scope

With the predicted climate change, it is expected that the chances of flooding may increase. During flood events, sediments will resuspend and when the sediments are polluted, contaminants can be transferred to the surrounding water. Mass transfer of organic compounds like Persistent Organic Pollutants (POPs) from soils and sediments to the surrounding aqueous phase are essential regarding fate and transport of these chemicals in the aqueous environment. The distribution of POPs between sorbed and aqueous phases and the time needed to obtain equilibrium are required to calculate the exposure to potential receptors. A reactor was designed in which the water flow is controlled and low POP concentrations could be measured by tenax extraction outside the reactor vessel. This reactor design named SPEED (Solid Phase Extraction with External Desorption) was used to study desorption from aged contaminated sediment in relation to sediment particle size.

Materials and Methods

In the newly developed SPEED (Solid Phase Extraction with External Desorption) reactor, the water flow rate was set and controlled, and low aqueous POP concentrations were measured by sorption to Tenax® outside the reaction vessel. The effect of particle size on desorption rate was studied using a widely used Tenax® solid phase extraction method.

Results

The experiments, by specific measurement of the aqueous dieldrin concentration at different HRT, show that desorption of dieldrin in time is faster when short HRTs were applied. However, the mass of dieldrin desorbed per liter refreshed water is higher for longer HRTs. Therefore, the mass transfer of dieldrin within the sediment particles is the rate determining process in contaminant desorption. This observation was confirmed by Tenax® solid phase extractions which were applied for different particle size fractions. Desorption rates of POPs from the sediment fraction with small particles were faster than desorption rates from the sediment fraction with large particles. Organic matter was present as separate particles in the sediment sample. All experiments demonstrated biphasic desorption. The fluxes calculated for both phases are supportive of non-stationary diffusion as the main process of mass transfer.

Discussion

In the literature, the relation between particle size and desorption of organic contaminants from soils and sediments is contradictory. Most often this seems to be due to overlooking the spatial configuration of organic matter in the soils and sediments. In several papers the presence of organic matter as a thin coating around mineral particles has been overlooked. There-fore, milling had no effect on desorption behavior of contaminants, as the diffusion length will not be affected. In our opinion, both the particle size and spatial configuration of organic matter are rate determining parameters of the desorption process.

Conclusions

Flood events will result in an increase of desorption rate of POPs from sediments to the surrounding water. HRT and particle size determine the concentration gradient and, thereby, the desorption rate. Furthermore, the diffusion length will be smaller when sediment particles are suspended and more water is present to decrease the aqueous concentration. We conclude that non-stationary diffusion within organic matter is the main process of mass transfer. The combination of simulated in-situ measurements of desorption from sediments with generic measurable parameters like flow rate and particle size distribution results in a quantitative measurable flux of contaminants, which resembles the in-situ (bio)availability as the result of dynamic processes in the sediment/water system.

Recommendations and Perspectives

The results obtained provided a sound basis for mechanistic modeling of POP mass transfer from sediment to water. The modeling results will be presented in a separate paper. Besides the HRT, also mixing conditions can be changed to assess the desorption from sediment layers. The possibility to combine flow rate and mixing intensity enables the study of the effect of hydraulically different river systems on desorption of contaminants. In a long term perspective we foresee a link with hydrology and sediment transport with desorption in water bodies.  相似文献   

13.

Purpose

Almost 20 nuclear reactors are situated along the Rh?ne valley, representing Europe??s largest concentration of nuclear power plants. The fate of suspended sediments and natural and artificial particle-bound radionuclides in relation to extreme hydrological events was assessed at the lower course of the Rh?ne River, which provides the main source of water and sediment inputs to the northwestern Mediterranean Sea.

Materials and methods

We sampled water at a high frequency over the period 2001?C2008 and measured suspended particulate matter (SPM) loads and particle-bound natural and artificial radionuclide concentrations at the SORA observatory station in Arles, France. We monitored various hydrological events (either natural or anthropogenic origin) and characterize their influence on concentrations and fluxes.

Results and discussion

The relationship between SPM concentration and the very wide range of water discharges did not differ significantly from previous periods, indicating no significant shift in the average sediment delivery over the last 20?years. Unexpected hydrological events of anthropogenic origin, in particular those associated with flushing of reservoirs that are generally not captured by sampling strategies, were recorded and were shown to transfer significant additional sediment and associated contaminants towards the marine environment. Concentrations of anthropogenic radionuclides associated with sediment (i.e., 137Cs, 60Co, 54Mn, 110mAg, and Pu isotopes) varied over two to three orders of magnitude during periods of low and moderate flow due to variations in the liquid release from nuclear facilities. Except for Pu isotopes, the concentrations of the various particle-bound radionuclides generally showed a decreasing trend with increasing discharge, revealing the geochemical or anthropogenic background values, and providing a useful flood fingerprint for this large fluvial system before its entry into the marine environment.

Conclusions

Our approach produced key data on the level and fate of suspended solids and radionuclide concentrations during flood events occurring in a large river system that could be contaminated by chronic or accidental radioactive releases. These results are of fundamental importance for further interpretations of sediment dynamics at the river mouth.  相似文献   

14.
The aim of this investigation was to study the temporal variation in phosphorus release from the sediments and its influence on water quality of stratified lakes. The concentrations of soluble reactive phosphorus (SRP), calcium and sulfate in the interstitial water and the pH in the wet sediments of dimictic lakes were investigated during the spring circulation and at the end of summer stratification. Multiple regression analysis using the calculated diffusive fluxes of SRP out of the sediments and the morphometric characteristics of the lakes (reduced water depth), explained 73 % of the variance of the SRP-accumulation in the hypolimnia during summer stagnation. At the end of surnmer stratification diffusive fluxes of SRP out of the sediments increased and pH-values and sulfate-concentrations decreased at the sediment surface (0–2 em) and in the hypolimnia. The maximum diffusive flux of SRP was calculated to be 5.8 mg/m2/d at the end of summer stagnation. Prob able reasons for these higher diffusive fluxes of SRP at the end of summer stagnation are higher supply of labile organic matter and thereby higher mineralization rates. lower redox potential and thus higher dissolution of redox sensitive P-binding forms and/or dissolution of phosphorus being bound to Ca-phases at lower pH.  相似文献   

15.
Lake Courtille was a polymictic eutrophic lake prone to large pH variations and sediment resuspension. Short term P release (96 hr) under laboratory resuspension conditions for two sedimentsample types, surface sediments which represent sediment accumulated over several years and trap sediments which representcurrent year sediment, was studied. The experiments were carriedout in oxic conditions at different pH values. According to phosphorus fractionation, Fe-bound-P, Al-bound-P and Organic-bound-P comprised the largest phosphorus pool (80% of Total Phosphorus). Phosphorus release was from the Fe-P, Al-P and organic fractions. These represent 35% of the total phosphorus content at pH 10. At circumneutral pH, in oxic conditions, a lower quantity of P was released (roughly 4% of total P sediment content) than at pH 10. The organic matter mineralization occurring at the end of summer can also influenceP release as illustrated by the difference in total phosphoruscontent between sediment samples of 2000 and of the last five years. This type of P release was observed in Lake Courtille. High soluble reactive phosphorus content was measured in the water column at the end of summer. Aluminium treatment was thus not efficient in preventing P release. Moreover, a higher alum dose was needed to reduce P content in the water column in order to decrease primary productivity and subsequent organic matter sedimentation.  相似文献   

16.
Metallic contents (Fe, Mn, Pb, Cu, Cd, Zn, Cr) of sediments were measured in 14 sites in the River Seine (France) along 110 km; in three sites surrounding the sewage treatment plant at Achères, vertical profiles were established from cores and dialysis cells, and interface exchanges have been studied. Metal contamination increases downstream, except for Pb for which contamination is higher immediately downstream of stormdrains (up to 130 mg kg?1); that confirms its urban origin. Upstream of Achères, metallic contamination increases with depth while downstream, contribution to sediments of suspended matter from the treatment plant, loaded with organic matter, alters the behaviour of metals within the first ten centimeters. A strong link between particulate organic carbon (POC), polycyclic aromatic hydrocarbons (PAH), polychlorobiphenyls (PCB) and metal contents has been established. The organic matter brought down by the treatment plant effluents induces a specific diagenesis downstream leading to metal release in summer as attested by a 30% metal contents decrease in sediments. Calculation of molecular diffusion fluxes shows that in september, the release phenomenon is ending.  相似文献   

17.
珠江三角洲地区土壤与表层沉积物有机质的性质结构研究   总被引:11,自引:1,他引:11  
通过分析海洋、河流、池塘和稻田四种热带 /亚热带土壤与表层沉积物及用化学方法分离的有机质 ,证明了土壤与沉积物有机质是高度不均匀的 ,除了包括腐殖酸和演化程度较深的干酪根外 ,强调了演化程度更深的碳黑的存在 ,并对不同有机质的来源、性质和结构进行了表征。腐殖酸和干酪根来源于生物体的演化 ,在结构上后者比前者致密 ;碳黑来源于化石燃料和生物体的不完全燃烧 ,具有更致密的结构 ,对有机质的非均质性影响很大。因此可认为 ,系统地研究土壤与表层沉积物有机质的非均质性及组分特征对了解地球表层的生物地球化学过程和疏水性毒害有机污染物在环境中的迁移具有重要的意义。  相似文献   

18.
Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe–Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.  相似文献   

19.
Purpose

The purpose of the study was to determine the levels of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F), two types of persistent organic pollutant (POP), in an urban retention reservoir located in an industrial zone within a coal-mining region. It also assesses the potential ecological risk of the PCDDs/Fs present in bottom sediments and the relationship between their content and the fraction of organic matter.

Materials and methods

The sediment samples were collected from Rybnik Reservoir, located in the centre of the Rybnik Coal Region, Silesia, one of Poland’s major industrial centres. Seventeen PCDD/F congeners in the surface of the sediments were analysed using high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS).

Results and discussion

The toxic equivalency (TEQ) of the PCDDs/Fs in the sediments ranged from 1.65 to 32.68 pg TEQ g?1. PCDDs constituted 59–78% of the total PCDDs/Fs, while the PCDFs accounted for 22–41%. The pattern of PCDD/F congeners in the sediments was dominated by OCDD. However, the second-most prevalent constituents were OCDF and ∑HpCDFs in the low TOC sediment (< 10 g TOC kg?1), but HpCDD in the rich TOC samples (> 10 g TOC kg?1). PCDD/F concentrations in the sediment samples were 2- to 38-fold higher than the sediment quality guidelines limit, indicating high ecological risk potential. Although a considerable proportion of PCDDs/Fs in the bottom sediments from the Rybnik Reservoir were derived from combustion processes, they were also obtained via transport, wastewater discharge, high-temperature processes and thermal electricity generation. The PCDD/F concentrations were significantly correlated with all fractions of organic matter; however, the strongest correlation coefficients were found between PCDDs/Fs and humic substances. Besides organic matter, the proportions of silt/clay fractions within sediments played an important role in the transport of PCDDs/Fs in bottom sediments.

Conclusions

The silt/clay fraction of the bottom sediments plays a dominant role in the movement of PCDDs/Fs, while the organic matter fraction affects their sorption. The results indicate that the environmental behaviour of PCDDs/Fs is affected by the quantity and quality of organic matter and the texture of sediments.

  相似文献   

20.
Mercury (Hg) dynamics was evaluated in contaminated sediments and overlying waters from Tagus estuary, in two sites with different Hg anthropogenic sources: Cala Norte (CNOR) and Barreiro (BRR). Environmental factors affecting methylmercury (MMHg) production and Hg and MMHg fluxes across sediment/water interface were reported. [THg] and [MMHg] in solids (0.31–125 μg g?1 and 0.76–201 ng g?1, respectively) showed high variability with higher values in BRR. Porewater [MMHg] (0.1–63 ng L?1, 0.5–86% of THg) varied local and seasonally; higher contents were observed in the summer campaign, thus increasing sediment toxicity affecting the sediment/water Hg (and MMHg) fluxes. In CNOR and BRR sediments, Hg availability and organic carbon were the main factors controlling MMHg production. Noteworthy, an upward MMHg diffusive flux was observed in winter that was inverted in summer. Although MMHg production increases in warmer month, the MMHg concentrations in overlying water increase in a higher proportion compared to the levels in porewaters. This opposite trend could be explained by different extension of MMHg demethylation in the water column. The high concentrations of Hg and MMHg and their dynamics in sediments are of major concern since they can cause an exportation of Hg from the contaminated areas up to ca. 14,600 mg year?1 and an MMHg deposition of up to ca. 6000 mg year?1. The results suggest that sediments from contaminated areas of Tagus estuary should be considered as a primary source of Hg for the water column and a sink of MMHg to the sedimentary column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号