首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Camargo  Julio A. 《Landscape Ecology》2019,34(12):2735-2742
Context

Patch diversity, evenness and dominance are important metrics of landscape composition. They have been traditionally measured using indices based on Shannon’s information entropy (H) and Simpson’s concentration statistic (λ).

Objectives

The main objectives of this study are: (1) to show that the Lorenz curve is an appropriate framework to understand and measure patch dominance, evenness and diversity; (2) to show that Lorenz-compatible indices have better mathematical behavior than H-based and λ-based indices.

Methods

Thirteen different hypothetical landscapes were created to assess landscape composition with the Lorenz curve and to compare the mathematical behavior of Lorenz-compatible indices with that of H-based and λ-based indices.

Results

The Lorenz curve is a suitable framework to understand and measure patch dominance, evenness and diversity due to four relevant equivalences: (1) patch dominance?=?the separation of the Lorenz curve from the 45-degree line of perfect patch evenness; (2) patch evenness?=?1 ? patch dominance; (3) patch diversity (eliminated by patch dominance)?=?patch richness?×?patch dominance; (4) patch diversity (preserved by patch evenness)?=?patch richness?×?patch evenness. Accordingly, patch diversity/patch richness?=?1???patch dominance and land-cover concentration?=?1/patch diversity.

Conclusions

Lorenz-compatible indices have better mathematical behavior than H-based and λ-based indices, exhibiting greater coherence and objectivity when measuring patch dominance, evenness and diversity.

  相似文献   

2.
Context

Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups.

Objectives

We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity.

Methods

We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities.

Results

Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches.

Conclusions

Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.

  相似文献   

3.
Land-use/land-cover change is the most important factor in causing biodiversity loss. The Mediterranean region has been affected by antropic disturbance for thousands of years, and is, nowadays, one of the most significantly altered hotspots in the world. However, in the last years a significant increase in forest cover has been measured. These new patterns are independent from planned conservation strategies and appear to have a substantial impact on landscapes and biodiversity. We used three land-use/land-cover maps (from 1960 to 2000) covering the Italian peninsula to analyze the pattern of land-use/land-cover change. We measured an increase in forests, especially in mountains, an increase in artificial areas, especially in coastal zones, and a decrease in pastures. Intensively cultivated areas showed a limited decrease while extensively cultivated ones showed a marked decrease. In the same period mammal and bird species followed a similar pattern, with forest birds, ungulates and carnivores increasing, and typically Mediterranean species decreasing. We suggest that our results may provide important information, which could be useful for conservation planning in the entire Mediterranean hotspot. We suggest that an increasing conservation effort should be made to protect the Mediterranean-type forests and scrublands, as well as traditional agricultural practices. Moreover, future conservation efforts should consider the broad socio-political and ecological processes that are most likely to occur across the whole hotspot, especially along coastal areas, and the network of protected areas should be functionally integrated in a conservation strategy that includes the human-dominated landscape.  相似文献   

4.
Context

Worldwide, anthropogenic habitat loss and degradation have led to substantial biodiversity declines. Preserving biodiversity requires an understanding of how habitat loss and degradation interact to impact species populations, and how land-use decisions can limit these losses.

Objectives

We present a mathematical partitioning of changes in landscape-level population abundance in response to land-use change using a modified version of the Price equation from evolutionary biology.

Methods

The Price equation partitions changes in species abundance into multiple drivers related to habitat loss, habitat degradation, and their interaction. We describe its development and exemplify its applicability using simulated data.

Results

Applying the Price equation to simulated data reveals the roles of habitat loss, habitat degradation, and their interaction in driving population change in patchy landscapes undergoing complex land-use change processes.

Conclusions

The Price equation is a theoretical tool that may enhance our understanding of the effects of land-use change on populations by accounting for the specific processes by which land-use change operates across landscapes.

  相似文献   

5.
Burgess  Malcolm  Gregory  Richard  Wilson  Jeremy  Gillings  Simon  Evans  Andy  Chisholm  Kenna  Southern  Adrian  Eaton  Mark 《Landscape Ecology》2019,34(12):2765-2778
Context

Organisations acting to conserve and protect species across large spatial scales prioritise to optimise use of resources. Spatial conservation prioritization tools typically focus on identifying areas containing species groups of interest, with few tools used to identify the best areas for single-species conservation, in particular, to conserve currently widespread but declining species.

Objective

A single-species prioritization framework, based on temporal and spatial patterns of occupancy and abundance, was developed to spatially prioritize conservation action for widespread species by identifying smaller areas to work within to achieve predefined conservation objectives.

Methods

We demonstrate our approach for 29 widespread bird species in the UK, using breeding bird atlas data from two periods to define distribution, relative abundance and change in relative abundance. We selected occupied 10-km squares with abundance trends that matched species conservation objectives relating to maintaining or increasing population size or range, and then identified spatial clusters of squares for each objective using a Getis-Ord-Gi* or near neighbour analysis.

Results

For each species, the framework identified clusters of 20-km squares that enabled us to identify small areas in which species recovery action could be prioritized.

Conclusions

Our approach identified a proportion of species’ ranges to prioritize for species recovery. This approach is a relatively quick process that can be used to inform single-species conservation for any taxa if sufficiently fine-scale occupancy and abundance information is available for two or more time periods. This is a relatively simple first step for planning single-species focussed conservation to help optimise resource use.

  相似文献   

6.
7.
Context

Ecological communities in urban ecosystems are assembled through ecological processes, such as species interactions, dispersal, and environmental filtering, but also through human factors that create and modify the landscape. These complex interactions make it difficult to untangle the relationships between social–ecological dynamics and urban biodiversity.

Objectives

As a result, there has been a call for research to address how human activities influence the processes by which ecological communities are structured in urban ecosystems. We address this research challenge using core concepts from landscape ecology to develop a framework that links social-ecological dynamics to ecological communities using the metacommunity perspective.

Methods

The metacommunity perspective is a useful framework to explore the assembly of novel communities because it distinguishes between the effects of local environmental heterogeneity and regional spatial processes in structuring ecological communities. Both are shaped by social–ecological dynamics in urban ecosystems.

Results

In this paper, we define social, environmental, and spatial processes that structure metacommunities, and ultimately biodiversity, in cities. We then address how our framework could be applied in urban ecosystem research to understand multi-scalar biodiversity patterns.

Conclusions

Our framework provides a theoretical and empirical foundation for transdisciplinary research to examine how social-ecological dynamics mediate the assembly of novel communities in urban ecosystems.

  相似文献   

8.
Bosco  Laura  Wan  Ho Yi  Cushman  Samuel A.  Arlettaz  Raphaël  Jacot  Alain 《Landscape Ecology》2019,34(1):105-117
Context

Herbicide treatments in viticulture can generate highly contrasting mosaics of vegetated and bare vineyards, of which vegetated fields often provide better conditions for biodiversity. In southern Switzerland, where herbicides are applied at large scales, vegetated vineyards are limited in extent and isolated from one another, potentially limiting the distribution and dispersal ability of organisms.

Objectives

We tested the separate and interactive effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework, along with additional environmental factors. We identified which variables at which scales were most important in predicting patterns of invertebrate abundance.

Methods

We used a factorial design to sample across a gradient of habitat amount (area of vegetated vineyards, measured as percentage of landscape PLAND) and fragmentation (number of vegetated patches, measured as patch density PD). Using 10 different spatial scales, we identified the factors and scales that most strongly predicted invertebrate abundance and tested potential interactions between habitat amount and fragmentation.

Results

Habitat amount (PLAND index) was most important in predicting invertebrate numbers at a field scale (50 m radius). In contrast, we found a negative effect of fragmentation (PD) at a broad scale of 450 m radius, but no interactive effect between the two.

Conclusions

The spatial scales at which habitat amount and fragmentation affect invertebrates differ, underpinning the importance of spatially explicit study designs in disentangling the effects between habitat amount and configuration. We showed that the amount of vegetated vineyards has more influence on invertebrate abundance, but that fragmentation also contributed substantially. This suggests that efforts for augmenting the area of vegetated vineyards is more beneficial for invertebrate numbers than attempts to connect them.

  相似文献   

9.

Context

The cumulative impact of broad scale environmental change includes altered land-cover and fragmentation. Both altered land-cover and fragmentation have a negative effect on species diversity, but the scale they act on may differ because land-cover alters environmental characteristics, whereas fragmentation alters movement among sites.

Objectives

We evaluated the scale specific effects of land-cover, fragmentation, and habitat size on alpha and beta diversity (total, turnover, and nestedness).

Methods

Stream fish communities were sampled across five urbanizing watersheds. Generalized mixed linear models were used to test how diversity (alpha and beta) is affected by land-cover, connectivity, and habitat size. Indices of land-cover were calculated from correspondence analyses on land-cover data, fragmentation was estimated with the dendritic connectivity index, and habitat size was calculated as the length of the stream segment (alpha diversity) or the length of the stream network (beta diversity).

Results

Alpha diversity was most strongly related to land-cover variables associated with urban development and agriculture (negative relationship with urbanization). Whereas, beta diversity was most strongly influenced by habitat size (positive relationship) and fragmentation (positive relationship). Turnover was positively correlated with fragmentation and habitat size, whereas species loss was negatively correlated with habitat size.

Conclusions

Land-cover has a larger effect on alpha diversity because it alters the environmental conditions at a site, whereas fragmentation has a larger effect on beta diversity because it affects the movement of individuals among sites. Assessing the cumulative impact of environmental change requires a multiscale approach that simultaneously considers alpha and beta diversity.
  相似文献   

10.
Context

Forest management and disturbances cause habitat fragmentation for saproxylic species living on old-growth attributes. The degree of habitat spatiotemporal continuity required by these species is a key question for designing biodiversity-friendly forestry, and it strongly depends on species’ dispersal. The “stability–dispersal” model predicts that species using stable habitats should have lower dispersal abilities than species associated with ephemeral habitat and thus respond to habitat availability at smaller scales.

Objectives

We aimed at testing the stability–dispersal model by comparing the spatial scales at which saproxylic beetle guilds using substrates with contrasted stability (from stable to ephemeral: cavicolous, fungicolous, saproxylophagous and xylophagous guilds) are affected by landscape structure (i.e. habitat amount and aggregation).

Methods

We sampled saproxylic beetles using a spatially nested design (plots within landscape windows). We quantified habitat availability (tree cavities, polypores and deadwood) in 1-ha plots, 26-ha buffers around plots and 506-ha windows, and analyzed their effect on the abundance and diversity of associated guilds.

Results

The habitat amount within plots and buffers positively affected the abundance of the cavicolous and the fungicolous guilds whereas saproxylophagous and xylophagous did not respond at these scales. The habitat aggregation within windows only positively affected the saproxylophagous species richness within plots and also on the similarity in species composition among plots.

Conclusions

Beetle guilds specialized on more stable habitat were affected by landscape structure at smaller spatial scales, which corroborated the stability–dispersal model. In managed forests, the spatial grain of conservation efforts should therefore be adapted to the target habitat lifetime.

  相似文献   

11.
Landscape ecology studies have demonstrated that past modifications of the landscape frequently influence its structure, highlighting the utility of integrating historical perspectives from the fields of historical ecology and environmental history. Yet questions remain for historically-informed landscape ecology, especially the relative influence of social factors, compared to biophysical factors, on long-term land-cover change. Moreover, methods are needed to more effectively link history to ecology, specifically to illuminate the underlying political, economic, and cultural forces that influence heterogeneous human drivers of land-cover change. In northern Wisconsin, USA, we assess the magnitude of human historical forces, relative to biophysical factors, on land-cover change of a landscape dominated by eastern white pine (Pinus strobus L.) forest before Euro-American settlement. First, we characterize land-cover transitions of pine-dominant sites over three intervals (1860–1931; 1931–1951; 1951–1987). Transition analysis shows that white pine was replaced by secondary successional forest communities and agricultural land-covers. Second, we assess the relative influence of a socio-historical variable (“on-/off-Indian reservation”), soil texture (clay and sand), and elevation on land-cover transition. On the Lake Superior clay plain, models that combine socio-historical and biophysical variables best explain long-term land-cover change. The socio-historical variable dominates: the magnitude and rate of land-cover change differs among regions exposed to contrasting human histories. Third, we developed an integrative environmental history-landscape ecology approach, thereby facilitating linkage of observed land-cover transitions to broader political, economic, and cultural forces. These results are relevant to other landscape investigations that integrate history and ecology.  相似文献   

12.

Context

Human driven land-use and land-cover change (LULC) is considered to be among the greatest ecological pressures in mountain regions. Over the past century, across the European Alps, extensive LULC changes have been observed, affecting ecosystem goods and services (ESs).

Objectives

For eight case study sites across the Alpine arc we aimed to provide a spatiotemporal explicit assessment of the impacts of LULC dynamics on ES provision and interactions, including cultivated crops, plant material, climate regulation, soil erosion control and aesthetics.

Methods

We quantified ES provision in biophysical terms at four time periods (1850, 1955, 1985, 2005) using spatially explicit LULC based assessment models. ES interactions were identified by statistically analyzing the spatiotemporal pattern among ES capacities.

Results

Over the past century forested areas have increased mainly at the cost of grasslands, while on easily accessible sites and fertile valley floors agricultural intensification occurred. ES provision shifted between 1850 and 2005, from a predominance of production ESs in 1850 to a landscape characterized by regulating ESs in 2005. Spatiotemporal analyses of ES interactions revealed trade-offs between regulating and cultural ESs and within the provisioning ES bundle and allowed to derive three different ES trajectories: regions developing from single to multifunctional sites in terms of service provision, sites reducing their service capacities and sites with rather stationary patterns over broad time periods.

Conclusions

We demonstrated that ES capacities in complex agro-ecological mountain regions are highly sensitive to long-term landscape dynamics. We conclude that assessing ES capacities and interactions in an explicitly spatiotemporal manner can help to guide evidence-based environmental measures.
  相似文献   

13.
The question of what determines plant community composition is fundamental to the study of plant community ecology. We examined the relative roles of historical land use, landscape context, and the biophysical environment as determinants of plant community composition in regenerating citrus groves in north-central Florida. Results were interpreted in light of plant functional traits. Herbaceous and woody plants responded differently to broad-scale variables; herbs correlated most strongly with surrounding land cover at a scale of 8 km, while the only significant determinant of woody species distributions was local land use history. There were significant correlations between herbaceous species and spatial context, habitat isolation, environmental variables, and historical variables. Partial Mantel tests indicated that each variable provided a unique contribution in explaining some of the variation in the herbaceous dataset. The correlation between woody plants and local historical variables remained significant even with other effects corrected for. In the herbaceous community, species composition was linked to functional traits much as expected from classical theory. While spatial influences in our study system are important for both woody and herbaceous plants, the primary determinant of plant community composition in regenerating citrus groves is historical land use. Our results suggest that the fine-scale mechanisms of local competition, tolerance and facilitation invoked by many classical studies may ultimately be less important than land use history in understanding current plant community composition in regenerating agricultural areas.  相似文献   

14.
Context

Resource movements across ecosystem boundaries are important determinants of the diversity and abundance of organisms in the donor and recipient ecosystem. However the effects of cross-ecosystem movements of materials at broader spatial extents than a typical field study are not well understood.

Objectives

We tested the hypotheses that (1) variation in abundance of 57 forest songbird species within four foraging guilds is explained by modeled emergent aquatic insect biomass inputs from adjacent lakes and streams and (2) the degree of association varies across foraging guilds and species within guilds. We also sought to determine the importance of emergent aquatic insects while accounting for variation in local forest cover and edge.

Methods

We spatially modeled the degree to which distribution and abundance of songbirds in different foraging guilds was explained by modeled emergent aquatic insect biomass. We used multilevel models to simultaneously estimate the responses of species in four different insectivorous guilds. Bird abundance was summarized from point counts conducted over 24 years at 317 points.

Results

Aerial insectivores were more abundant in areas with high estimated emergent insect biomass inputs to land (regression coefficient 0.30, P?<?0.05) but the overall abundance of gleaners, bark-probers, and ground-foragers was not explained by estimated emergent insect abundance. The coursing aerial insectivores had the strongest association with emergent insects followed by willow flycatcher, olive-sided flycatcher, and alder flycatcher.

Conclusions

Modeling cross-ecosystem movements of materials at broad spatial extents can effectively characterize the importance of this ecological process for aerial insectivorous songbirds.

  相似文献   

15.
Urban parks comprise diverse microhabitats, such as vegetation units of lawn and arbour forests, with differing biodiversity potentials. However, the influences of microhabitats on butterfly diversity and the mechanisms involved remain unclear. This study used butterfly survey data from 112 plots in 27 urban parks in the central metropolitan area of Beijing, China, from June to September 2020. Based on the growth form of larval host plants, recorded butterfly species were classified into three functional groups: woody plant-feeding taxa (WF), herb-feeding taxa (HF), and feeding on multiple plant growth forms taxa (MF). We analysed the effects of 11 variables among three facets, namely, vegetation composition, vegetation structure, and human activity, on the butterfly diversity (species richness and abundance) of the whole community, three functional groups using generalised linear mixed models. Twenty-five butterfly species observed mainly feed on herbs rather than on woody plants. Our results demonstrated that vegetation community characteristics explain up to 24% and 43% variation in butterfly species richness and abundance, respectively. Of this, vegetation structure facets crucially affected butterfly species richness, and vegetation composition facets had the most significant influence on the abundance of the whole butterfly community. However, the impact of human activity factors was minimal. Light availability and herb height belonging to vegetation structure factors and nectar plant species richness and nectar abundance which belonged to vegetation composition factors showed the most important and positive effects on butterfly diversity. The positive impact of the above significant factors was found especially on herb-feeding butterfly diversity. In contrast, the diversity of butterflies feeding on woody plants was most positively influenced by herb height. We thus suggest that it is necessary to guarantee the presence of a well-developed herb layer, which provides abundant nectar sources and maintain specific open spaces to ensure light availability. In conclusion, our findings imply that the critical role of the spatial structure of vegetation community is conspicuous in the formation of suitable microhabitats for butterflies, and managers could combine vegetation management practices with the needs of specific functional groups.  相似文献   

16.

Context

Environmental processes and dispersal are primary determinants of metacommunity dynamics. The relative importance of these effects may vary between species of different abundance classes, given variation in life history traits. Under high disturbance conditions, rare species may be more easily eliminated from their optimal habitats and their distribution may therefore be more heavily dependent upon dispersal from nearby habitat patches than common species.

Objectives

We tested if metacommunity dynamics vary between abundance classes in a high disturbance environment.

Methods

Standardized butterfly sampling was conducted in the urban parks of Hong Kong. To estimate the strength of environmental processes, we measured an array of environmental variables for all sampled parks. Spatial predictors were generated to estimate the effect of dispersal.

Results

For shaping common species compositions, we found environmental processes (and specifically environmental variables including floral density and surrounding woody plant cover) slightly more important than spatial processes. For rare species, only spatial processes were significant while environmental processes were insignificant. Our result contrasts previous studies in natural metacommunities, which have shown that both common and rare species compositions are shaped by environmental processes and similar variables.

Conclusions

Our results demonstrate that high disturbance conditions may inhibit rare species establishment and persistence in urban landscapes. Local habitat management may not be sufficient in conserving rare species in urban environments—spatial context and configuration should be considered in planning for biodiversity. We also highlight the utility of community deconstruction analysis in providing insights into rare species metacommunity dynamics.
  相似文献   

17.
Context

Management actions and land-use change can disrupt interdependent population processes, re-define population networks, and change source-sink dynamics. Yet we know little about the types of changes that can de-stabilize source-sink dynamics and how such changes could affect management decisions.

Objectives

We examined the degree to which source-sink status and strength could change under a range of management actions and land-use change scenarios including different patterns and extents of habitat loss, restoration, demographic improvements from parasitism control, and increased frequencies inter-population movement.

Methods

We developed an empirically-rich, spatially explicit, individual-based model for the formerly endangered Black-capped vireo in Texas. We simulated the network-wide consequences of different kinds of changes and compared the resulting source-sink strength, status, and regional abundance across scenarios. We gauged source-sink stability by the degree to which system changes caused the reversal of source or sink status.

Results

The stability of source-sink characterizations differed with the type of change. Source-sink dynamics were less responsive to small changes to population structure and changes that minimally affected demographic conditions. Source-sink status was most responsive to changes that affected habitat patterns and quality.

Conclusions

Accurately classifying sources and sinks is challenging, particularly in variable and directionally changing systems. The stability of source-sink classifications depends on the type of management or land-use change. Management actions may need to weigh interventions that improve regional abundance against those that alter regional source-sink dynamics as abundance and source-sink states can be sensitive to different kinds of change.

  相似文献   

18.
The establishment of woody plants following agricultural abandonment in the Mediterranean region is a very widespread process which underlines the extent of the rural exodus. The installation windows in space and time were studied in the French Mediterranean region for two common woody plants, Buxus sempervirens and Fraxinus angustifolia and for a group of common woody fleshy-fruited species. These plants differ in their principal modes of dispersal which are respectively, barochory, anemochory and ornithochory. Their installation was analyzed in relation to the seed shadows, the spatial patterns and the age structures of the seedlings. The majority of the seeds were dispersed over short distances, although some animal vectors may promote a limited amount of long distance dispersal. Hence, whatever the mode of dispersal, a few seeds are often dispersed far from the maternal plant. The combination of several dispersal types in one plant species is a frequently observed feature, one being dominant at a small scale, and related to successional processes, the other being dominant at a larger scale and related to invasive processes. In the old fields the spatial pattern of seedlings closely follow the observed seed shadows. However, competition with the maternal plants may lead to, in some cases, a recruitment deficit close to the seed-bearers. Age structures show that woody plants often install very early after the abandonment of cultivation and that the installation window in time is shortened by the development of a dense herbaceous cover. It is concluded that the installation of woody plants in Mediterranean old fields cannot be reduced to a general rule. The rate and extent of installation depends mainly on the spatial distribution of the seed-bearers, therefore of the spatial patterns of the landscape.  相似文献   

19.
Few studies of land-use/land-cover change provide an integrated assessment of the driving forces and consequences of that change, particularly in Africa. Our objectives were to determine how driving forces at different scales change over time, how these forces affect the dynamics and patterns of land use/land cover, and how land-use/land-cover change affects ecological properties at the landscape scale. To accomplish these objectives, we first developed a way to identify the causes and consequences of change at a landscape scale by integrating tools from ecology and the social sciences and then applied these methods to a case study in Ghibe Valley, southwestern Ethiopia. Maps of land-use/land-cover change were created from aerial photography and Landsat TM imagery for the period, 1957–1993. A method called `ecological time lines' was developed to elicit landscape-scale explanations for changes from long-term residents. Cropland expanded at twice the speed recently (1987–1993) than two decades ago (1957–1973), but also contracted rapidly between 1973–1987. Rapid land-use/land cover change was caused by the combined effects of drought and migration, changes in settlement and land tenure policy, and changes in the severity of the livestock disease, trypanosomosis, which is transmitted by the tsetse fly. The scale of the causes and consequences of land-use/land-cover change varied from local to sub-national (regional) to international and the links between causes and consequences crossed scales. At the landscape scale, each cause affected the location and pattern of land use/land cover differently. The contraction of cropland increased grass biomass and cover, woody plant cover, the frequency and extent of savanna burning, and the abundance of wildlife. With recent control of the tsetse fly, these ecological changes are being reversed. These complex patterns are discussed in the context of scaling issues and current conceptual models of land-use/land-cover change.  相似文献   

20.

Context

We address the issue of adapting landscapes for improved insect biodiversity conservation in a changing climate by assessing the importance of additive (main) and synergistic (interaction) effects of land cover and land use with climate.

Objectives

We test the hypotheses that ant richness (species and genus), abundance and diversity would vary according to land cover and land use intensity but that these effects would vary according to climate.

Methods

We used a 1000 m elevation gradient in eastern Australia (as a proxy for a climate gradient) and sampled ant biodiversity along this gradient from sites with variable land cover and land use.

Results

Main effects revealed: higher ant richness (species and genus) and diversity with greater native woody plant canopy cover; and lower species richness with higher cultivation and grazing intensity, bare ground and exotic plant groundcover. Interaction effects revealed: both the positive effects of native plant canopy cover on ant species richness and abundance, and the negative effects of exotic plant groundcover on species richness were greatest at sites with warmer and drier climates.

Conclusions

Impacts of climate change on insect biodiversity may be mitigated to some degree through landscape adaptation by increasing woody native vegetation cover and by reducing land use intensity, the cover of exotic vegetation and of bare ground. Evidence of synergistic effects suggests that landscape adaptation may be most effective in areas which are currently warmer and drier, or are projected to become so as a result of climate change.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号