首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study aimed to compare concentrations of Zn, Cd, Pb and Cu in wood of Quercus robur and Q. petraea and in the soil on 21 plots in different parts of Polish lowlands. Concentrations of those metals in growth rings taken with an increment borer were measured in 20-year periods. The curves of radial distribution of heavy metals in growth rings are highly variable, but usually a greater variation was observed in sapwood than in heartwood. This attests to transport of metals in the younger, functional xylem, and confirms earlier observations. Quercus petraea accumulated significantly more Zn but less Cd than Q. robur, while concentrations of other metals were similar in both species. No significant correlations between levels of different metals in oak wood were detected, except a strong correlation between Pb and Cd. Concentrations of heavy metals in oak wood were generally not correlated with their concentrations in the soil. Most of the forest stands can be regarded as free from pollution with heavy metals.  相似文献   

2.
Pollution-induced changes in concentrations of elements in pine needles, branches, stem bark, and wood were investigated on 12 plots along the pollution gradient at distances of 5 to 77 km from the Pechenganikel copper-nickel smelter on the Kola Peninsula (northwestern Russia), the largest emitter of sulfur and heavy metals in northern Europe. Close to the pollution source, concentrations of S, Ni, Cu, Pb, and Cd in all the pine compartments were higher as compared to their background levels, while the Zn concentrations were lower. The concentrations of Ni and Cd—the main metals emitted—were the highest in all the pine compartments. Age-related variations in the needle composition were comparable to those at the background plots. Branches and, especially, stem bark, were richer in heavy metals than other tissues and, in addition to wood, contributed significantly to the accumulation of metals in the biomass of the polluted pine forests. Changes in the chemical composition of plant tissues could be explained by changes in element concentrations in the soils and by direct element uptake from the air, as well as by the antagonistic relationships between the elements.  相似文献   

3.
In a pot culture experiment two-year-old beech (Fagus sylvatica L.) were planted in soil amended with different concentrations of Cd and Zn or combinations of both. Concentrations ranged up to ca 180 μmol Cd and 7500μmol Zn kg?1 soil dry weight (1 M ammonium acetate extracts). After 2 seasons of growth plants were harvested. Annual xylem growth rings in stems were significantly smaller at 50 μmol Cd kg?1 and 1000 μmol Zn kg?1 as compared to controls. Elongation of apical shoots was significantly reduced at 180 μmol Cd kg?1 and 1000 μmol Zn kg?1. The lowest treatment of 50 μmol Zn kg?1 caused no significant growth depressions of stem diameter and shoot elongation. In the second year of treatment growth reductions were generally more pronounced than in the first season. Uptake and translocation of Cd and Zn into stem wood and leaves were marked and were correlated with substrate concentrations. The observed growth reductions are discussed with respect to possible adverse effects of trace elements on forest trees under field conditions.  相似文献   

4.
The potential of coniferous trees as biological indicators of heavy metal atmospheric pollution was investigated. In 31 municipalities of an industrialized region, samples of wood from the trunks of red spruce (Picea rubens) were taken to determine the spatial distribution of accumulated metals. Using the annual rings, these core samples were divided into 5-yr sections to determine temporal variations. The concentrations of Mg, Al, Ca, Mn, Fe, Cu, and Zn were measured by neutron activation analysis. All metals showed the highest concentrations in the most recent wood and the bark. For the wood older than 5 yr, Mn and Zn are stable with time, Mg and Ca decrease, while Al, Fe, and Cu appear to increase. A statistical analysis showed the municipalities with the highest variations in metal concentrations; it also revealed correlations in the fluctuations of several of the metals. As expected, trees in towns near metal refineries contain higher amounts of Mn, Fe, and Al. Large variations in metal concentrations, due to factors not totally understood, were observed. Thus, red spruce is not a sensitive bio-indicator of atmospheric metal pollution.  相似文献   

5.
The impact of simulated acid rain on soil leachate and xylem chemistry in a young Jack pine (Pinus banksiana Lamb.) stand in the boreal forest of northern Ontario was evaluated. Permanent plots (5 × 2 m) were established in 1981 which were sprayed twice monthly with simulated acid rain, adjusted to pH 5.6, 4.0, 3.5, 3.0 or 2.5 with a 2:1 molar ratio of sulphuric (H2SO4) to nitric acid (HNO3) in addition to ambient rainfall. Sprays were applied between June and September for 5 yr. Unsprayed plots were also monitored. The pH of soil leachate collected between 1981–1985 was reduced significantly by the acid sprays and concentrations of sulphate (SO42-), nitrate (NO3-), calcium (Ca), magnesium (Mg), aluminium (Al), manganese (Mn), and zinc (Zn) increased in the A, B and C horizons. The soil recovered rapidly from the spray treatments, although residual effects were found in soil leachate samples collected during 1986–1987, particularly in the C horizon. Trees receiving spray acidified to pH 2.5 had higher concentrations of Ca, Mn, Cd and Rb in tree-rings formed between 1981–1985 compared to trees receiving spray acidified to pH 4.0 or to trees receiving ambient rainfall alone. Some of the changes in soil chemistry resulting from the application of acidic sprays are reflected in the chemistry of Jack pine tree rings and these chemical signals in tree rings may be used as indicators of soil acidification.  相似文献   

6.
The energy crop Miscanthus presents high potentials for phytomanagement. Its shoot yield and nutrient accumulation has been extensively characterized in uncontaminated agricultural soils, while very little is known for metal‐contaminated conditions. This study aimed at assessing potential differences in dry matter and metal and nutrient accumulation of the standing aerial biomass in Miscanthus (M. × giganteus) growing in situ on agricultural plots presenting different soil Cd, Pb, and Zn concentrations. Plant samplings were conducted monthly along the growing period from May to December. Cadmium, Pb, Zn, and the concentrations of the nutrients N, P, K, Ca, Mg, and Na were determined in leaves and stems separately. During the growing phase, the maximum dry matter was reached in early in autumn. Whatever the organ, Cd and Zn concentrations were higher on contaminated than on uncontaminated plots. During summer and autumn, Zn and Pb concentrations were higher in leaves than in stems whereas Cd concentrations did not significantly differ between the organs. Concentrations of N, P, K, and Mg decreased across the study period whereas those of Ca and Na increased. Overall, metal and nutrient concentrations depended on plant organ and its development stage. The dry matter and nutrient accumulation patterns were not different between contaminated and uncontaminated plots. The significance of these findings is discussed in light of best phytomanagement practices and potential uses of Miscanthus biomass.  相似文献   

7.
Summary We tested the effects of two organic fertilizers (composts) and lime on the soil fauna of a spruce stand. One compost was obtained from chopped wood and the other from household garbage. At the time of distribution the pH of the control plots averaged 3.2, the garbage compost had a pH of 7.5, and the wood compost of 6.2. During the experimental period the pH of the compost layers decreased. The pH of the former litter layer beneath the composts showed a steep increase after 5 months, but beneath the treatment with wood compost this effect did no persist. Liming increased the pH only slightly in the litter layer. The two types of compost, the litter layer, and lumbricids (Lumbricus rubellus) were analyzed for concentrations of essential and potentially toxic elements. The element burden was highest in the garbage compost with 7- to 11-fold concentrations of Zn, Cd, Pb, Mg, and Cu compared to the needle litter. K, Ba, and Ca were 4 times more concentrated. L. rubellus showed an increased Cu concentration after extraction from the highly contaminated sites of garbage compost. Despite the differences in Pb contamination in the needle litter and in the two compost types, all investigated individuals of L. rubellus contained similar concentrations of Pb. In contrast to Pb, Cd accumulated in this lumbricid. Seasonal fluctuations of microarthropods, their total abundance, and differences in the colonization of the compost layers were observed. Collembola abundance was significantly increased in the garbage compost plots in July 91. There were generally more Prostigmata in the control and limed plots than in the compost plots. Oribatid numbers fell under all treatments compared to the controls. Mesostigmata were identified to species level and 33 species were found in the experimental areas. Certain species, such as Arctoseius cetratus and Uropoda minima, were only found in the treated sites.  相似文献   

8.
基于模糊集理论的土壤重金属污染空间预测   总被引:15,自引:0,他引:15       下载免费PDF全文
基于54个土壤表层样品重金属全量浓度实验室测定数据,应用模糊c-均值算法对南京城市边缘带化工园附近20km^2样区内土壤重金属浓度进行了连续分类,对样点土壤的隶属度进行空间普通克里格插值,实现样区土壤重金属浓度和污染状况的空间预测.结果表明,样区土壤中重金属Cu、Zn、Cr、As和Cd的浓度均低于国家土壤环境质量标准,未发生污染;受工业、交通排放的影响,样区左侧和南部Cu、Zn、Cr、As较高,个别区域有Zn、Cr富集现象.Hg为样区主要的土壤重金属污染元素,土壤Hg污染主要发生在蔬菜基地及滁河流经区,较为严重的Hg污染土壤集中分布在样区中部的蔬菜基地.与利用样点测定数据直接插值的空间预测方法相比,基于模糊集理论的土壤污染空间预测方法可获得较好的预测效果.  相似文献   

9.
This study focused on the potential of using soil enzyme activities and general microbiological rates (respiration, N-mineralisation, nitrification) to evaluate the quality of soils affected by a pyrite mud spill which contained high concentrations of heavy metals. The quality of soils after restoration was estimated by comparing enzyme activities and general microbiological rates in three different types of experimental field plots: (i) non-polluted, (ii) polluted but restored, and (iii) polluted but un-restored soils. Non-polluted soils showed the highest levels of enzyme activity. Significant differences were detected for acid phosphatase, β-glucosidase and urease activities between all types of plots. However, arylsulfatase and alkaline phosphatase activities showed no significant differences between the restored plots and polluted but un-restored plots. Geometric mean statistics were used as an index of soil quality in terms of overall: (i) bioavailable heavy metal concentrations, (ii) assayed enzyme activities, and (iii) general microbiological rates, in order to compare plots differing in the degree of pyritic mud pollution. The results indicate that it is important to consider these three criteria in to estimate the soil quality of heavy-metal contaminated soils. Typically, enzyme activities were negatively correlated with bioavailable Cd, Cu and Zn concentrations, but positively with soil pH values. In contrast, pH values were negatively correlated with bioavailable concentrations of Cd, Cu and Zn. It is unclear if the generalised lower enzyme activities found in restored soils, compared to non-polluted soils, is promoted by pH or bioavailable heavy metals concentrations, or a combination of both.  相似文献   

10.
Metal processing at a Cu-Cd refinery at Prescot in N.W. England has led to severe contamination of the surrounding soils and vegetation, although Cu and Cd in bulk deposition declined dramatically between 1975 and 1990. Despite high spatial and temporal variability in metal deposition, mean Cd concentrations in annual tree rings of sycamore (Acer pseudoplatanus L.), lime (Tilia europaea L.) and beech (Fagus sylvatica L.) at Prescot were correlated with annual bulk Cd deposition. In contrast, mean Cd concentrations in ash (Fraxinus excelsior L.) were unrelated to Cd deposition and there was no significant relationship between mean Cu concentrations in tree rings and Cu deposition in any species. Mean Pb concentrations in sycamore, lime and beech at Prescot and the reference site also decreased over time. At Prescot however, Cd concentrations in tree rings formed in the mid 1990s were up to 10-fold higher than the reference site despite Cd deposition values during this period that were typical of levels expected for urban areas in the UK. The high Cd concentrations in wood during this period indicate that the majority of Cd in tree rings at Prescot is derived from soil, limiting the usefulness of dendrochemistry for monitoring temporal changes in metal deposition. It appears that trees are not simply passive recorders of metal deposition and other possibilities, in addition to decreasing atmospheric deposition, may explain the patterns of Cd and Pb found in sycamore, lime and beech. More research on the physiology of metal cycling in trees is required before dendrochemical techniques can be applied with confidence in environmental monitoring programs.  相似文献   

11.
Elevated concentrations of potentially toxic trace elements in agricultural soils contribute to soil pollution affecting food quality and safety. We assessed pollution levels in agricultural systems, lowland rice (LL) and highland cash crops (HL), by comparing with non-agricultural soils (NA). Correlation analysis and principal component analysis (PCA) were performed, and geo-accumulation index (Igeo) and pollution loading index (PLI) were calculated. Zinc in LL, and Cd in LL and HL, were significantly higher than in NA. The Igeo values of cooper (Cu), lead (Pb), nickel (Ni), zinc (Zn), and cadmium (Cd) ranged from uncontaminated to moderately contaminated (Class 0 to 2) for LL, HL, and NA. Overall, trace element levels were categorized as unpolluted based on PLI. Soil properties significantly correlated with Cu, Pb, Ni, and Zn concentrations but not with Cd. Based on PCA, sources of origin for Cu, Pb, Ni, and Zn were lithogenic, while the sources for Cd was anthropogenic in the studied agricultural soils.  相似文献   

12.
以大冶典型铜矿区为中心,辐射周边农田,探索农田土壤重金属污染特征及重金属在油菜中的积累变化规律。结果表明,以湖北省土壤背景值进行评价,土壤受到重金属不同程度的污染,其中Cd严重超标,Cu次之;采用国家二级标准进行评价,Zn、Cr和Pb未对土壤造成污染。进行内梅罗综合污染指数法评价发现,以土壤背景值为评价标准,各采样点均达到重金属严重污染水平;以国家二级标准评价时,只有2号采样点土壤属于中度污染水平,其他样点土壤都受到了较为严重的重金属污染。矿区农田油菜各部位重金属含量变化幅度较大,包括Cu、Pb、Zn、Cd和Co在内的5种重金属含量分布规律都是茎叶〉籽粒≈根,Mn则是籽粒〉茎叶〉根。油菜地上部植株中Cu、Pb、Zn、Cd含量均超出食品卫生标准最高限值,且Cd、Pb超标倍数远大于Cu、Zn。富集系数变化规律为Mn〉Zn〉Cd〉Ni〉Cu〉Pb垌Co。  相似文献   

13.

Blechnum orientale L. is a traditional, medicinal fern found in China. To assess the characteristics of heavy metals and As accumulation, the fronds, roots, and the rooting soils of this fern were sampled from urban, suburban, and rural woodlands across Guangdong Province in southern China. The concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn in both the fern and its rooting soils were separately detected by ICP-MS. Contamination levels of woodland rooting soils were also assessed using both a single pollution index and the Nemerow pollution index. Both the metal concentrations and the pollution index showed that soils from urban, suburban, and even rural woodlands were adversely contaminated by As, Cd, Hg, and Pb. Based on transfer factor, B. orientale had good translocation of As, Hg, and Mn, but poor translocation of Cd, Cr, Ni, Cu, Ni, Pb, and Zn from the roots to the fronds. This result suggests that this fern could be an excluder to latter metals. Despite the significantly higher levels of metals in the roots as compared with the fronds, the low bioaccumulation factor suggests that this fern has a weak capacity for metal accumulation.

  相似文献   

14.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

15.
The concentrations of Pb, Zn, Cd, and fluoride were determined in liver, kidney and femur tissues 30 days after wood mice were provided with water containing soluble salts of these elements in their drinking water. There were eight treatment groups: Pb, Zn, Cd, and fluoride only; Zn and Cd (ZnCd); fluoride and Pb (FPb); fluoride, Pb, Zn, and Cd (FPbZnCd); and a control. Lead concentrations were highest in bone but were also significantly higher in the kidney but not liver when compared to the control. The highest kidney Pb levels were in the FPbZnCd treatment but they were not significantly higher than the Pb only group. Zinc concentrations were highest in kidney and not femur as is usually the case in field caught animals. Cadmium was also highest in the kidney in the high Cd treatments, however, the ZnCd treatment group had significantly lower kidney Cd levels than the Cd only group demonstrating the antagonistic effect of high Zn on Cd accumulation. This effect was reversed when high fluoride and Pb were also present (in the FPbZnCd group) and the kidney Cd reached its highest level. Fluoride showed the typically high levels in bone with only the combined treatment (FPbZnCd) showing a significant increase in kidney fluoride. These results are discussed in terms of the accumulation in wild small mammals caught in polluted sites particularly grasslands established on fluorspar wastes.  相似文献   

16.
中南某锑矿及其周边农田土壤与植物重金属污染研究   总被引:1,自引:0,他引:1  
袁程  张红振  池婷  於方  宋静  吴龙华 《土壤》2015,47(5):960-964
以南方某锑(Sb)矿区周边土壤与植物为研究对象,采集土壤与植物样品,测定其Sb、As、Cd、Zn、Pb浓度,研究土壤和植物中重金属的污染程度及富集特征。结果表明,矿区周边土壤受Sb污染严重,各采样点全量Sb为3.08~219 mg/kg,平均54.0 mg/kg,同时伴有As、Cd、Zn和Pb污染,其中Cd污染相对严重;但土壤中Sb与土壤As、Cd、Zn和Pb没有相关性,土壤As、Cd、Zn和Pb之间呈极显著的线性相关。矿区周边植物同样受到严重的Sb、As、Cd和Pb的污染,蔬菜可食部分Sb最高达2.05 mg/kg,存在较高的人体摄入风险,且蔬菜中As和Pb超标严重。所采集植物中水麻对Sb有较强的积累和转移能力,是修复Sb污染土壤的潜在植物资源。  相似文献   

17.
Spreading of wood ashes from the pulp and paper industry will change the content and proportions of calcium (Ca), copper (Cu), cadmium (Cd), and zinc (Zn) in forest soils and thus also in the forest trees. The accumulation and distributions of, and interaction between, Ca and heavy metals in wood and bark of two‐year‐old Norway spruce (Picea abies [L.] Karst.) were investigated in this study. The treatment was carried out for 3 months in nutrient solutions, and there was a low or a high addition of Ca, Cd, Cu or Zn. The metal accumulation in, and distribution between, the bark, the wood formed during the treatment period (new wood), and the wood formed before the treatment period (old wood) was analyzed with AAS. The contents of the metals in the stems (i.e., bark, new wood, old wood) increased with elevated addition of the metal in question, also at the low addition of Ca, Cu, and Zn. Interactions between Ca and the heavy metals were found. Elevated Ca additions decreased the Cd content of the bark and the Zn content of the old wood, and tended to decrease the Cu content of the bark and the Cd content of the old wood. The Ca content decreased in both, wood and bark after Cu addition and the high Cd addition. Thus, even small changes in metal availability and proportions in forest soil, such as after spreading of wood ashes in the forest, will be reflected in the content of the metals in the wood and bark of forest trees.  相似文献   

18.
The Northwestern Iberian Peninsula is a mid-latitude oceanic region with areas where different types of bogs are frequent or abundant. The ombrotrophic nature of some bogs make them suitable for the study of accumulation patterns of heavy metals. One of these bogs, Penido Vello, was sampled to a depth of 2.5 m and analyzed in detail for its physico-chemical properties and Pb, Zn and Cd concentrations. Ash and organic carbon content, Ca/Mg molar ratios and a number of other characteristics support an ombrotrophic interpretation of the core. Concentrations of Pb, Zn and Cd were measured, showing important variations in the core. While Zn and Cd are concentrated mainly in the upper sections of the core with minor changes with depth, the Pb profile shows significant peaks in the deeper layers suggesting pre-industrial atmospheric pollution. Enrichment factors (EFs) calculated by normalising to Al correlate well with those calculated by normalising to Ti. Maximum EFs are 33, 56 and 52 for Pb, Zn and Cd respectively. While for Pb these values are comparable to those obtained by other authors, maximum Zn EFs are greater than those mentioned in the literature and may be attributed to the emissions of a nearby coal-burning power plant. At least for Pb the accumulation pattern suggests that atmospheric pollution can be dated back some 2800 years, and that pollution increased steadily since the Iron Age to reach considerably elevated levels, up to 5 times the ‘background’, during the Roman Empire. Changes in Pb emissions through time are in good accord with the prehistorical and historical record of the Iberian Peninsula.  相似文献   

19.
Environmental pollution due to uncontrolled e-waste recycling activities has been reported in a number of locations in China. In this study, heavy metal pollution from primitive e-waste processing facilities was investigated. The pollution is due to high concentrations of metals present in the surrounding soils and vegetables. The highest enrichment factor values due to e-waste wastewater and waste discharges were found at Anqiaotou Village and Beian Village. Vegetables from the vicinity of the e-waste processing sites were found to have higher heavy metal pollution index values in comparison with those from the background site. The bioaccessibilities of heavy metals were decreased in the order of Cd?>?Pb?>?Sn?>?Zn?>?Ni?>?Cr. The e-waste processing site was badly polluted by Cd, Pb, Zn, Ni and Cr, with its pollution level decreased in the following order: Cd?>?Pb?>?Cr?>?Ni?>?Zn?>?Sn. Additionally, the greatest risk among six metals in the e-waste processing areas is caused by Cd and Pb. The risks associated with the consumption of contaminated vegetables grown in e-waste processing regions may be a potential health concern.  相似文献   

20.
A shortage of land in some urban areas has resulted in the use of hydro corridors for garden plots. Corrosion of the galvanized steel towers (hydro towers) which support electrical transmission lines causes Zn contamination of soils and may result in uptake and concentration of the metal by plants. Furthermore, the Zn used in hot dip galvanizing may be contaminated with Cd. To determine if vegetables accumulate and are affected by Zn and Cd corroded from hydro towers, soil was collected from near hydro towers, to grow lettuce and radish in a glasshouse pot experiment. Plants grown in soil collected 1 m from a tower had concentrations of Zn 5 to 10 times higher than in plants grown in garden soil collected 10 and 90 m from a tower but concentrations were not high enough to have apparent toxic effects on growth. Concentrations of Cd in the soils, lettuce and radish plants indicated that the particular towers were not a source of Cd contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号