首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Hydrangea macrophylla cv. Leuchfeuer is grown in the greenhouse under two different conditions of relative humidity (vapour pressure deficits (vpd) of 1.6 and 0.6 kPa). The relative humidity does not affect the initiation or the release of new pairs of leaves. However, it modifies the size of the plant and the total leaf area. After 79 days of growth, a decrease in the relative humidity from 80% to 50% leads to a 38% decrease in height growth and a 30% decrease in leaf growth. The effect of relative humidity on the growth of H. macrophylla influences the management of the size of the plant and, therefore, the quality of the product marketed. It is likely that it will have an effect on floral development as well.  相似文献   

2.
Bougainvillea spectabilis Willd. is of prime importance for horticulture, as well as potentially for pharmaceutical industries, agriculture and environmental industries. However, its floral development is not yet well understood. A detailed study on floral structure and floral organography in the species was first completed using microscopy of paraffin microtome sections of buds. The results were indicated as follows: first, the three trumped flowers in the cymose inflorescence develop asynchronously. Secondly, Varieties with multi-whorl bracts do not develop any sexual organs, i.e., perianth, pistil and stamens. Thirdly, the wall of the two-loculus anther consists of two kinds of cells: the inner wall, consisting of thick-cytoplasmed cells and the outer wall, consisting of fibrous cells. Fourthly, the pollen grains, with three germination colpi, vary substantially in the form and size in summer under the highest day temperature of 40 °C. Fifthly, the pistil is characterized with betalain-acumulating stylar brush. Followed the developmental course, only one basal ovule is developed in the superior ovary. Finally, organs of one flower develop consecutively from the outer to the inner, i.e., from bracts, to calyx, stamen, and carpel while the three flowers bloomed one by one in one cymose inflorescence. It almost takes 1 week from first bud to the third flower blooming. Our research showed a series of special characteristics of reproduction organography of B. spectabilis which can be useful for understanding its reproduction biology and its sterility.  相似文献   

3.
Vegetatively propagated plants of Pelargonium × hortorum ‘Radio’ were grown at 8 combinations of irradiance and temperature levels; 4 or 22 W m?2 combined with 12, 15, 18 or 21°C. Increase in leaf number, leaf area, shoot and number of inflorescences per plant were all greater at 22 W m?2 than at 4 W m?2. At 22 W m?2, increase in temperature affected leaf number, leaf area and shoot number, but not inflorescence number. However, at 4 W m?2, number of inflorescences — but not leaf or shoot number — was affected by temperature. When effects of temperature differences were observed, the highest temperature resulted in the greatest number of leaves and shoots and the largest leaf area, but the lowest number of inflorescences per plant. The results indicate that photosynthesis or energy metabolism is of importance to floral initiation in Pelargonium × hortorum.  相似文献   

4.
5.
Flower differentiation in Gladiolus × grandiflorus takes place immediately after initation of all the leaves. The prefloral stage was observed in shoots 3–4 mm long and the shoot apex was floral when the first foliage leaf was half extended.Initiation of individual florets continued up to the 7-leaf stage. Flower development is acropetal and continued up to anthesis of each individual floret.Flower blasting generally starts at the tip of the inflorescence and advances towards the base of the flower stalk. Blasting starts as a stoppage in the growth of the inflorescence, the flower stalk and the leaves on the stalk. Later these organs shrivel. Daughter corms fill early as a consequence of blasting.  相似文献   

6.
Catharanthus roseus is a seasonal to perennial garden plant and the exclusive source of the anticancer drugs vincristine and vinblastine. Its horticultural importance is due to the compound racemose inflorescence architecture of branches in which pairs of prominent flowers are subtended by one of the two leaves per node. Here is reported the construction of a molecular framework genetic linkage map and mapping on it of the LEAF-LESS INFLORESCENCE (LLI) locus. It is quantitatively shown that the adult lli mutant plants produce altered inflorescence of improved horticultural value, wherein axes are excessively branched, two flowers are formed per node that are bare of subtending leaves, and several times more open flowers are displayed each day, as compared to LLI plants.  相似文献   

7.
Floral initiation of a wild strawberry strain, Fragaria chiloensis CHI-24-1, is strongly induced by a 24 h day-length (DL) treatment for 40 days consisting of natural daylight and continuous lighting at night by an incandescent lamp. To use the characteristics of floral initiation in CHI-24-1 as a genetic resource for breeding of cultivated strawberries, the photoperiodic reactions of sexual and asexual reproductive growth under various temperature conditions should be clarified. For that purpose, we examined: (1) floral initiation, inflorescence emergence and runner production seasons of CHI-24-1 plants grown under natural climatic conditions in an open field at the Faculty of Agriculture, Kagawa University and (2) the effects of various DLs and temperatures on floral initiation and runner production of CHI-24-1 plants. When the CHI-24-1 plants were grown under natural conditions, the floral initiation, inflorescence emergence and runner production were observed, respectively, in late autumn, spring, and from spring to autumn. Floral initiation of CHI-24-1 plants was induced strongly by 24 h DL at mean temperatures greater than 20 °C. The maximum floral initiation rates were 90% in the parent plant and 94% in the daughter plants, which were linked by runners to the parent plant. The floral initiation of the daughter plants occurred under 20, 22, and 23 h DL at mean temperatures greater than 20 °C, but not for the parent plants. Floral initiation was induced in 100% of the parent plants by the 8 h DL and the lowest mean-temperature conditions. Results of those experiments indicated that CHI-24-1 was an absolute long day plant having critical DL of about 20 h at mean temperatures greater than 20 °C, even though it was a June-bearing strawberry plant. In addition, CHI-24-1 was a facultative short-day plant at mean temperatures of less than 15 °C.  相似文献   

8.
In this study we implemented a potted water supply experiment for 100 days by a completely random sole-factored design with five treatments: 100% (W100), 80% (W80), 60% (W60), 40% (W40) and 20% (W20) of water holding capacity (WHC), corresponding to the soil volumetric water content (SVWC) maintained at 38.8 ± 0.3%, 31.6 ± 1.7%, 25.6 ± 1.3%, 16.5 ± 0.7%, and 8.1 ± 1.1%, respectively. The objective was to evaluate the ability of the 2-month-old Campylotropis polyantha (Franch.) Schindl. seedlings to tolerate drought and to explore the mechanism resisting drought. We monitored the growth process of seedling height and leaf number monthly and further investigated those changes in plant growth, dry mass accumulation and allocation, water-use efficiency (WUE), leaf functional traits, chlorophyll a fluorescence and pigment contents across the water deficit gradient. We found that the seedlings presented optimal growth, dry mass production, and physiological activity only at the W100 and W80 treatments and afterwards significantly decreased with progressive water deficit; the WUE was improved under moderate water stress (W60 and W40) but reduced under severe stress (W20). The serious leaf shedding, growth stopping and seedling death under the W20 condition revealed that the current-year shrub seedlings could not withstand severe drought. Water stress-induced decrease in total plant leaf area due to a combination of limited expansion of younger leaves and shedding of old leaves caused the leaf area ratio reduction under drought. The reduced mesophyll cell was a major anatomical response of leaves along the water stress gradient. The progressive water stress significantly damaged light harvesting complex and reduced photochemical processes and PSII activity. Our results clearly showed that the current-year shrub seedlings took the avoidance and tolerance mechanisms to withstand progressive drought stress and around 25.6% SVWC and around 12.3% SVWC separately are thresholds to limit the optimal growth and dry mass production and to last growing and surviving for the current-year shrub seedlings.  相似文献   

9.
The effects of plant density on broccoli (Brassica oleracea L. var. italica Plenck) commercial characteristics are well determined. However, it is not completely clear how the broccoli plant respond to changes in plant shading as a result of different plant densities. The objective of this experiment was to determine the effect of plant density on intercepted photosynthetically active radiation (PAR), plant architecture, and plant growth and production. “Legacy” broccoli plants were grown in pots in a greenhouse in the seasons of 2002 and 2003 at 2, 4, 6 or 8 plants m−2 (temperatures: between 10.0 and 16.1 °C, average incident PAR: 12 mol m−2 day−1). Plant density affected the intercepted and accumulated PAR. There were not effects on the length of the vegetative and reproductive periods, the total and final number of leaves, and the spear diameter and fresh weight. The magnitude and evolution of leaf area (LA) was independent of plant density up to 70 days after transplant (dat). Since then on, LA increased linearly with plant density. The highest intercepted PAR was 70–72% with 6–8 plants m−2. With the increase in plant density: the erectness of the upper leaves and stem length increased, the extinction coefficient decreased and commercial spear (inflorescence plus a portion of stem 10 cm long) weight decreased (but it was due to the stem portion of the spear and not to the edible portion). On an area basis, the decrease in commercial spear weight with plant density was more than compensated by the higher number of plants. The radiation use efficiency (RUE) increased proportionally with the leaf area index (LAI) up to a LAI of about 3, and then stabilized. The only effect of plant density on dry weight partitioning was to decrease the dry weight allocated to the stem portion of the spear. As plant density increased, and consequently the degree of shading increased, the net assimilation rate (NAR) decreased and the leaf area ratio (LAR) increased. This compensatory change between NAR and LAR, kept the relative growth rate (RGR) for individual plants almost constant.  相似文献   

10.
Callistemon is an Australian species used as ornamental plant in Mediterranean regions. The objective of this research was to analyse the ability of Callistemon to overcome water deficit in terms of adjusting its physiology and morphology. Potted Callistemon laevis Anon plants were grown in controlled environment and subjected to drought stress by reducing irrigation water by 40% compared to the control (irrigated to container capacity). The drought stress produced the smallest plants throughout the experiment. After three months of drought, the leaf area, number of leaves and root volume decreased, while root/shoot ratio and root density increased. The higher root hydraulic resistance in stressed plants caused decreases in leaf and stem water potentials resulting in lower stomatal conductance and indicating that water flow through the roots is a factor that strongly influences shoot water relations. The water stress affected transpiration (63% reduction compared with the control). The consistent decrease in gs suggested an adaptative efficient stomatal control of transpiration by this species, resulting in a higher intrinsic water use efficiency (Pn/gs) in drought conditions, increasing as the experimental time progressed. This was accompanied by an improvement in water use efficiency of production to maintain the leaf water status. In addition, water stress induced an active osmotic adjustment and led to decreases in leaf tissue elasticity in order to maintain turgor. Therefore, the water deficit produced changes in plant water relations, gas exchange and growth in an adaptation process which could promote the faster establishment of this species in gardens or landscaping projects in Mediterranean conditions.  相似文献   

11.
Movement of a putative florigenic promoter from leaves to buds was investigated in two cultivars of mango (Mangifera indica L.) over two flowering seasons through examination of the minimum number of leaves on each stem necessary for floral induction and movement of this component over various distances from stem to stem in isolated branches. The minimum number of leaves on individual stems necessary to induce flowering was less than 1/4 of a cross-cut leaf per stem. The putative florigenic promoter moved from donor stems bearing as few as one leaf to induce flowering in five receiver stems located as far down branches as 100 cm from the donor stem. Evidence suggests that movement of the putative florigenic promoter occurs in phloem and that far more of this component is available in trees than is necessary for floral induction of initiating shoots during cool, floral-inductive conditions of the subtropics.  相似文献   

12.
Leaf area measurements are required in several agronomical and physiological studies. Usually, there is an interest for measurement methods that are simple, quick and that will not destroy the leaf. The objectives of this study were to establish equations to estimate leaf area (LA) by using length (L), width (W) and dry weight (DW) of saffron leaves. Leaves of different sizes were collected from the experimental area at different time intervals. Leaf area was measured with an automatic measuring device and leaf dimensions were determined with a ruler. An equation for estimating the leaf area from L and W was developed and validated with the area of leaves collected during different periods. Regression analyses of LA versus L, W, LW and DW led several models that could be used for estimating the area of individual saffron leaves. A exponential model having L as the independent variables [LA = 191.33e(L)0.0037] provided the most accurate estimate (R2 = 0.9373, RMSE = 27.68) of saffron leaf area. Validation of the regression model showed that the correlation between measured and simulated values by the use of this equation was very high.  相似文献   

13.
To study the morphological diversity of the popular ornamental crop Calibrachoa, traded since the 1990s, floral and vegetative characters of 91 commercial cultivars were compared to those of natural species. Floral colours were classified according to the ISCC-NBS system and the CIE LAB system. The numerical data obtained by measuring 19 floral and vegetative characters was tested with principal component (PC) analysis. Floral colour classes of commercial cultivars were divided into 37 groups according the ISCC-NBS system, whereas those of natural species were divided into 9 groups. These tendencies were readily observable in the scatter diagrams of the a* vs. b* values and the C* vs. L* values. As the result of PC analysis, six PCs were obtained. For PC4, which negatively correlated with the degree of nocturnal corolla limb closure, the majority of natural species showed negative scores whereas the majority of cultivars had positive PC4 scores. In terms of PC2 (flower size), PC3 (growth form), PC5 (floral shape) and PC6 (leaf shape), natural species were dispersed in a range wider than the cultivars. These results suggest that Calibrachoa cultivars possess more highly variable floral colour than natural species, and breeding programmes to diversify the floral colour seem to have progressed rapidly. The tendency of natural species to close the corolla limb toward evening has been removed almost completely from the cultivars. The floral size, growth form, floral shape and leaf shape of the cultivars were rather uniform compared to those of natural species.  相似文献   

14.
In order to screen almond genotypes for drought tolerance, three different irrigation levels including moderate and severe stress (Ψs = −1.2 and −1.8 MPa respectively) and a control treatment (Ψs = −0.33 MPa) were applied for five weeks to six different cultivated almond seedlings. A factorial experiment was conducted with a RCBD which included 3 irrigations factors, 6 genotype factors and 3 replications. Seeds were prepared from controlled pollination of the bagged trees (after emasculation and flower isolation using isolator packets in the previous year). Genotypes included: homozygote sweet (Butte), heterozygote sweet (SH12, SH18, SH21 and White) and homozygote Bitter (Bitter Genotype). Leaf and root morphological and physiological traits including; midday relative water content, midday leaf (xylem) water potential, shoot dry weight and growth, total leaf area, leaf size, total leaf dry weight, specific leaf area, leaf greenness (SPAD), stomatal size and density, root and leaf nitrogen content and chlorophyll fluorescence were measured throughout the study. Results showed the six genotypes had different reactions to water stress but all genotypes showed an ability to tolerate the moderate and severe stresses and they showed different degrees of response time to drought stress. Almond seedling leaves could tolerate Ψw between −3 and −4 MPa in short periods. Water availability did not significantly affect stomatal density and size of young almond plants. The analysis of leaf anatomical traits and water relations showed the different strategies for almond genotypes under water stress conditions. Although almond seedlings even in severe stress kept their leaves, they showed a reduction in size to compensate for the stress effects. All genotypes managed to recover from moderate stress so Ψw = −1.2 could be tolerated well by almond seedlings but Ψw = −1.8 limited young plant growth. Leaf greenness, leaf size, shoot growth, shoot DW, TLDW and stomatal density were not good markers for drought resistance in almond seedlings. Root DW/LA, lower stomatal size and lower SLA might be related to drought resistance in cultivated almonds. Butte had the least resistance and White showed better performance during water stress while other genotypes were intermediate. Bitter seedlings showed no superiority in comparison with other genotypes under water stress conditions except for better germination and greater root DW which might make them suitable as rootstocks under irrigation conditions.  相似文献   

15.
Simple, accurate and non-destructive models determining leaf area of plants are important for many experimental comparisons. Determining the individual leaf area (LA) of hazelnut (Corylus avellana L.) involves measurements of leaf parameters, such as length (L) and width (W), or some combinations of these parameters. Two-year investigation was carried out during 2005 (on 20 genotypes) and 2006 (on one cultivar) under open field conditions, respectively, to test whether a model could be developed to estimate leaf area across genotypes and environments. Regression analyses of LA versus L and W revealed several models that could be used for estimating the area of individual hazelnut leaves. A linear model having LW as the independent variable (LA = 2.59 + 0.74LW) provided the most accurate estimate (R2 = 0.982, MSE = 29) of hazelnut LA. Validation of the model having LW of leaves measured in the 2006 experiment coming from other genotype grown under different environmental conditions showed that the correlation between calculated and measured areas was very high.  相似文献   

16.
In vegetatively propagated Pelargonium × hortorum plants, formation of axillary shoots and initiation of inflorescences and leaves were promoted by an increase in quantum flux density, whereas application of GA3 had a negative effect. Application of CCC caused an increase in number of axillary shoots and consequently an increase in number of inflorescences and leaves per plant.Dry weight increase was promoted by an increase in quantum flux density, unaffected by GA3 treatment, but inhibited by CCC treatment. Moreover, continuous removal of the oldest leaves reduced the number of inflorescences, leaves, axillary shoots and dry weight. The changes in inflorescence and leaf initiation could not be definitely correlated to the changes in dry weight increase.  相似文献   

17.
The prevailing environmental conditions, temperature in particular, drive seasonal changes both in leaf development and stomatal characteristics. In order to ascertain the effect of increases in climatic water deficit on some leaf and stomatal parameters under field conditions, a study was carried out on two sets of leaves (spring and summer) on a large sample of Amygdalus communis L. cultivars in comparison with several Amygdalus webbii Spach seedlings, a species more adapted to arid environments and probable ancestor of cultivated almonds. Observations were performed between spring and summer of a particularly hot season. The results showed a significant and general reduction of both leaf area and stomatal frequency and an increase in stomatal size. Nevertheless, there were evident differences between cultivated and wild almonds. A stronger reduction of leaf area was observed in A. webbii (−31%) with respect to A. communis (−14%); on the contrary, the latter reduced stomatal frequency more than the former (−25% and −19%, respectively). The examined cultivated almonds, in response to the increase in climatic water deficit, tended to arrange their stomatal structures like those of wild almonds. Finally, increasing the climatic water deficit, the slope of the linear regressions between stomatal frequency and size did not change in either species, leading to a better understanding of the mechanisms of almond acclimation to environmental stresses.  相似文献   

18.
Summary

Grevillea cv. ‘Crimson Yul-lo’ has large bright red terminal inflorescences on leafy stems and has recognised commercial potential as a cut flower crop. A major limitation is its relatively short vase-life, often terminated by early wilting of the inflorescence despite apparently turgid leaves. An investigation of the water relations of cut Grevillea ‘Crimson Yul-lo’ stems revealed that the water potential of inflorescences on intact stems in vases was significantly higher (i.e., less negative) than that of leaves from day-0 to day-3 of vase-life. Thereafter, the water potential of inflorescences declined more rapidly than that of leaves, accompanied by visible wilting of the tepals and styles of individual florets. Removal of leaves from the stems reduced both water uptake and water loss, and delayed the onset of a negative water balance in the inflorescence. Bagging of entire stems, leaves only, or inflorescences only, with micro-perforated plastic film to reduce transpiration, reducing leaf number to reduce leaf area, or supplying abscisic acid to reduce leaf stomatal aperture, all aided relative fresh weight retention by stems and extended vase-life. Four or six leaves on a stem caused greater loss in inflorescence water content than zero or two leaves. Considered collectively, these findings show that competition for water between the inflorescence and the leaves in cut Grevillea ‘Crimson Yul-lo’ stems contributes to the onset of inflorescence wilting and their short vase-life.  相似文献   

19.
We assessed the effect of soil-applied derivatives of melia (Melia azedarach L.) and neem (Azadirachta indica A. Juss) on nitrogen (N) soil availability, root uptake and peach (Prunus persica L.) growth. First we evaluated the effectiveness of experimentally prepared amendments made with fresh ground melia leaves or commercial neem cake incorporated into the soil as nitrification inhibitors, then we evaluated the effect of fresh ground melia fruits and neem cake on growth and N root uptake of potted peach trees, and on soil microbial respiration. Soil-applied fresh ground melia leaves at 10 and 20 g kg−1 of soil as well as commercial neem cake (10 g kg−1) were ineffective in decreasing the level of mineral N after soil application of urea-N as a source of mineral N, rather they increased soil concentration of nitric N and ammonium N. The incorporation into the soil of fresh ground melia fruits (at 20 and 40 g kg−1) and neem cake (at 10 and 20 g kg−1) increased N concentration in leaves of GF677 peach × almond (Prunus amygdalus) hybrid rootstock alone or grafted with one-year-old variety Rome Star peach trees. An increase in microbial respiration, leaf green color and plant biomass compared to the control trees were also observed. The Meliaceae derivatives did not affect, in the short term (7 days), N root uptake efficiency, as demonstrated by the use of stable isotope 15N, rather they promoted in the long term an increase of soil N availability, N leaf concentration and plant growth.  相似文献   

20.
A field experiment was conducted in Southern Italy to investigate the effect of different nitrogen (N) rates (0, 100 or 300 kg ha−1) on the number of branchings and leaves per plant, plant height, yield of above-ground fresh biomass, total leaf area, dry weight, leaf-to-stem ratio, leaf essential oil content and the essential oil quality at commercial harvest (full bloom) of the three cultivars of basil (Ocimum basilicum L.): (i) “Mostruoso mammouth” (MM); (ii) “Genovese profumatissimo” (GP); (iii) “Napoletano a foglia di lattuga” (NFL). Nitrogen fertilization up to 300 kg ha−1 increased yield of above-ground and leaf fresh biomass, leaf essential oil yield, but it did not affect leaf-to-stem ratio, plant height and the number of branchings per plant. The increase in essential oil yield induced by N fertilization depended on an increase in both leaf essential oil concentration and leaf biomass. The increase in LAI with increasing N fertilization was due to an increase in leaf number per plant rather than in individual leaf expansion. The cultivar GP was different in morphology from MM and NFL, since it had greater leaf number and plant height, but lower leaf-to-stem ratio and LAI. The physiological efficiency of N use (PE) in producing above-ground biomass was not related to N application whereas PE in producing essential oil (PE-oil) tended to increase with increasing levels of N applied. With regard to the effect of the cultivar, GP was less efficient in N use for oil production than MM and NFL since PE-oil of GP was lower while leaf N and PE-biomass were higher than the other cultivars. NFL was the richest in methyl chavicol but the lowest in linalool, whereas MM and GP contained linalool and eugenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号