首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   

2.
滩涂盐土农业利用的主要障碍是盐分含量过高和缺乏有机质。施用生活污泥可快速提高滩涂土壤有机质含量,加快土壤熟化,但由于担心污泥含有一定量的重金属,其施用受到一定的限制。采用盆栽苏丹草的试验方法,研究滩涂盐土施用不同量的生活污泥后对土壤性质、植物生长和对重金属累积的影响。结果表明,生活污泥施用于滩涂盐土后降低了土壤pH值,提高了EC值和总盐含量;苏丹草的出苗率、株高和鲜重增加;施用污泥提高了苏丹草植株中全氮、全磷及叶绿素的含量,且随施用量的增加而增大,但对植株中全钾的含量无显著影响;苏丹草中Zn、Cd含量随着污泥施用量增加呈增长的趋势,但Pb、Ni、Cu含量变化不大。在试验条件下,所施用污泥中重金属向苏丹草体内转移的比例介于0.13%-13.44%之间。就该种土壤而言,要更为注意含Pb量较高的污泥施用,而Cu则是最为安全的。总体考虑,一次性施用干污泥应控制在8t·667m^-2以下。  相似文献   

3.
Summary A greenhouse study was conducted to examine the residual effects of sewage sludge on soybean Glycine max (L.) Merr., nodulation, and N fixation. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage in soils (Typic Paleudults) obtained from plots where heat-treated sludge had been applied in 1976 at rates equal to 0, 56,112, and 224 Mg ha–1 high (7.0) and low (6.2) soil pH regimes were established by CaCO3 additions. Sludge and soil pH treatments resulted in clearly defined differences in metal uptake by soybean shoots. Plant Zn, Cd, and Ni concentrations were greater on pH 6.2, sludge-amended soil than on the pH 7.0, amended soil. At low soil pH, soybean Zn and Cd concentrations, respectively, increased from 41 and 0.19 mg kg–1 (control) to 120 and 0.58 mg kg–1 at the 224 Mg hat sludge rate. At the high soil pH and 224 hg hat sludge rate, Zn and Cd concentrations were 45 and 0.15 mg kg–1, respectively.Symbiotic N fixation provided 90% of the total N accumulation. Total N accumulation, shoot N concentration, dry matter, and N fixation by nodulating soybeans exhibited a significant linear increase with sludge rate. Total N accumulation, dry matter, and N fixation were significantly greater at high soil pH. For high and low soil pH, respectively, N fixation increased from 422 and 382 mg N per plant (control) to 614 and 518 mg N per plant at the 224 Mg ha–1 sludge rate. While soybean nodulation also increased linearly on sludge-amended soil, a significant rate times pH interaction for nodule number indicated that nodulation was less strongly enhanced by sludge at low soil pH.  相似文献   

4.
Summary The legume Medicago sativa (+Rhizobium melilott) was grown under controlled conditions to study the interactions between soluble P in soil (four levels), or a mycorrhizal inoculum, and the degree of water potential (four levels) in relation to plant development and N2 fixation. 15N-labelled ammonium sulphate was added to each pot for a qualitative estimate of N2 fixation, in order to rank the effects of the different treatments.Dry-matter yield, nutrient content and nodulation increased with the amount of plant-available P in the soil, and decreased as the water stress increased, for each P-level. The mycorrhizal effect on dry matter, N yield, and on nodulation was little affected by the water potential. Since P uptake was affected by the water content in mycorrhizal plants, additional mechanisms, other than those mediated by P, must be involved in the mycorrhizal activity.There was a positive correlation between N yield and nodulation for the different P levels and the mycorrhizal treatment at all water levels. A high correlation between plant unlabelled N content and atom% 15N excess was also found for all levels of P. In mycorrhizal plants, however, the correlation between unlabelled N yield and 15N was lower. This suggests that mycorrhiza supply plants with other N sources in addition to those derived from the improvement on N2 fixation.  相似文献   

5.
Abstract

City sewage sludge was applied to the surface layer (0–10 cm) of two sandy soils, slightly calcareous with 8.9% CaCO3 and moderately calcareous with 26.7% CaCO3, at the rates of 0, 25, 50, 75, and 100 Mg ha‐1. The effects of sewage sludge and its rates on total soluble salts, pH of soils and concentration and movement of some heavy metals within soils were investigated. Soil samples were packed at bulk density of 1.5 g cm‐3 in PVC columns and incubated for 19 weeks. The results indicated that total soluble salts (EC) of the treated layer increased with increasing sewage sludge rates. Soluble salts also increased with an increase in soil depth for both soils. The pH values of treated layers in two soils decreased with increasing sewage sludge rates. With increasing sewage sludge rates, concentrations of heavy metals [cobalt (Co), nickel (Ni), cadmium (Cd), and leaf (Pb)] increased in the treated layers compared to the untreated layers and their mobility was restricted mostly to the upper 30‐cm depth. Movement of Co and Pb in both the soils was predominately limited up to a depth of 40 cm for Co and 5 cm for Pb below the treated soil layer. Nickel and Cd movement was mostly limited to a depth of 10 cm in slightly calcareous soil and 5 cm in moderately calcareous soil. Metal movement in the respective soils is ranked as Co>Ni=Cd>Pb and Co>Ni=Cd>Pb. The low concentrations of heavy metals and the restricted mobility with soil depth, suggest that this material may be used for agricultural crop production without any toxic effect on plants.  相似文献   

6.
Leguminous plants grown in sewage sludge–amended soils can acquire nitrogen by assimilation of nitrate and ammonium from the soil solution or from atmospheric‐dinitrogen (N2) fixation through association with N2‐fixing bacteria. We proposed that operation of both metabolic processes could contribute to alleviate the impact of drought in sludge‐treated plants. A greenhouse experiment was conducted to evaluate the involvement of nodule metabolism in the use efficiency of water and N in sludge‐treated plants. Treatments comprised (1) plants inoculated with rhizobia and amended with sewage sludge; (2) plants inoculated with rhizobia without any amendment; and (3) noninoculated plants supplied with ammonium nitrate, each under well‐watered and drought conditions. Under drought, sludge‐treated plants had increased plant growth and higher photosynthetic and water‐use efficiencies than untreated plants. Drought stimulated nitrate reductase and GS/GOGAT activities but did not affect the activities of phosphoenolpyruvate carboxylase and malate dehydrogenase or the leghemoglobin concentration. The results suggest that under drought conditions, both N2 fixation and nitrate assimilation in nodules of sludge‐treated plants contributed to improve plant N supply and to increase the drought tolerance of alfalfa.  相似文献   

7.
Abstract

The development of a method using a chelating resin to assess heavy metal mobility in soil and the first results obtained from a pot experiment with sewage sludge additions were studied. The resin was Chelex 100 with the calcium (Ca)‐form of the resin proving to be best suited for the extraction. The efficiency of recovery of the heavy metals from an aqueous solution ranged from 81.2% for cadmium (Cd) to 102% for copper (Cu) within 24 hours. For heavy metal extractions from a soil sample, a 96 hour extraction period was found to be optimum. The extracted heavy metal portion was comparable with the results obtained with an ammonium acetate (NH4AOc) extraction. Total heavy metal contents in the substrate of the pot experiment did not show a significant influence due to the sewage sludge treatments, although considerable amounts of heavy metals were added by the sewage sludge. This effect can be both due to the incomplete recovery of heavy metals by an aqua regia extraction and leaching losses of these elements from the pots. Rape (Raphanus sativus L.) plants did not have any heavy metal contents which might indicate a high availability in soil, with the Cd and Cr contents in the rape biomass being partly lower in the sewage sludge‐treated pots than in the control plants; however, zinc (Zn) uptake slightly increased with increasing sewage sludge treatments. The Chelex 100 extraction procedure was correlated with Cd plant uptake, while the NH4AOc extraction procedure was better related to the Zn uptake by rape plants.  相似文献   

8.
The objective of this research was to study the effect of water deficit on soil heavy metal availability and metal uptake by ryegrass (Lolium multiflorum Lam.) plants grown in a soil amended with a high dose of rural sewage sludge. Three fertility treatments were applied: sewage sludge (SS), mineral fertilizer (M), and control (C); unamended). The levels of irrigation were: well-watered (W) and water deficit (D). Microbial respiration decreased the total organic C (TOC) in sludge-treated soils, but this did not enhance soil DTPA-extractable heavy metal concentrations. Indeed, Zn, Cu, Mn and Ni availability decreased during the experiment. C- and M-treated soils showed either no changes or increases of some trace element concentrations during the incubation. In the plant experiment, ryegrass dry matter (DM) yield, relative water content (RWC) and leaf water potential (w) decreased in drought conditions. Sludge addition increased metal concentrations in plants. However, in some instances, SS-treated plants showed either similar or lower transfer coefficient (Tc) values than did plants in the C and M treatments. Water deficit decreased the concentration and the Tc of some metals in roots of M and SS plants. Results indicate that sludge-borne heavy metals were maintained in chemical forms of low availability. The lower metal uptake by SS and M plants under dry conditions cannot be attributed to a lower availability of these elements in soil.  相似文献   

9.
We studied the effect of the soil physical properties on soybean nodulation and N2 fixation in the heavy soil of an upland field (UF) and an upland field converted from a paddy field (UCPF) in the Hachirougata polder, Japan. Seeds of the soybean cultivar Ryuho were sown in each field with or without inoculation of Bradyrhizobium japonicum A1017. The soybean plants were sampled at 35 (V3) and 65 (Rl) d after sowing (DAS), and then nodulation and the percentage of N derived from N2 fixation in the xylem sap were determined. The soil physical properties were different between UF and UCPF, especially the air permeability and soil water regime. Nodule growth was restricted in UCPF irrespective of rhizobial inoculation, though rhizobial infection was not inhibited by the unfavorable soil physical conditions. Soybean plant growth was closely related to the nodule mass and N2 fixation activity, and the inoculation of a superior rhizobium strain was effective only at 35 DAS. These results indicate that soybean nodulation and N2 fixation was considerably affected by the physical properties of heavy soil, and that it is important to maintain the N2 fixation activity and inoculate the soybean plants with a superior rhizobium strain at a later growth stage in order to increase soybean production in heavy soil fields.  相似文献   

10.
The present study was conducted to assess the suitability of sewage sludge amendment in soil for Beta vulgaris var. saccharifera (sugar beet) and Triticum aestivum (wheat) by evaluating the arsenic and selenium accumulation and physiological responses of plants grown at 10%, 25%, and 50% sewage sludge amendment rate. Sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently with higher accumulation in plant parts. The chlorophyll contents increased after the sewage sludge treatments except for 50%. The sewage sludge amendment led to a significant increase in arsenic and selenium concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency. The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake in the leaves and root concentrations of arsenic and selenium in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots and leaves for most of the heavy metals. Concentrations of arsenic and selenium were more than the permissible limits of national standards in the edible portion of sugar beet and wheat grown on different sewage sludge amendments ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet and wheat may not be a good option due to risk of contamination of arsenic and selenium.  相似文献   

11.
A field experiment with cotton was conducted on a well drained,calcareous,clay loamy Typic Xerochreph to investigate the utility of sewage sludge as a partial substitute for fertilizers and the influence of tis application on the basic soil properties and heavy metal concentrations.The experimental design was completely randomized blocks with five treatments replicated four times each.Sewage sludge came from the treatment plant of the municipality of Volos,Central Greece,with the following characteristics:organic matter content 36.6%,pH(H2O1:5)6.89,CaCO3 53.4g kg^-1,total N 265.g kg^-1,ttal P33.5g kg^-1,and total K 968mg kg^-1 soil.Heavy metal concentrations were Cd 5.24,Pb 442,Ni38,Cu 224,Zn1812,and Mn 260mgkg^-1 dry weight,respectively.The soil was high in potassium(K)and poor in available phosphorus(P).The results showed that sewage sludge application increased cotton yield and K and P concentrations in cotton leaves,Soil pH was reduced in the case of higher sewage sludge rate.Electrical conductivity,organic matter content,totalN,and avaiable P were significantly increased.Total concentrations of Zn,Pb,and Cu were slightly increased.DTPA-extractable Zn,Cu,and Mn were also significantly increased.Available forms of all heavy metals,except Cd,were significantly correlated with organic matter content in a positive way and negatively with soil pH.  相似文献   

12.
兰州市城市污泥施用对小麦生长和重金属富集的影响   总被引:4,自引:0,他引:4  
戴亮  任珺  陶玲  未碧贵 《土壤通报》2012,(5):1257-1263
以兰州市安宁区污水处理厂污泥为研究对象,采用盆栽的方法研究污泥土地利用后对土壤中重金属含量以及对3种小麦生长和重金属富集的影响。结果表明,污泥施用后使污泥混合土壤中重金属Pb、Cu、Zn含量显著增加,但3种重金属含量均未超过我国土壤环境质量二级标准(GB15618-1995)中的限制性标准值。污泥土地施用后,小麦获得了良好的生长响应。污泥低施入量(污泥在混配土壤中的干重比为5%、10%、15%)时不同程度的促进了小麦的生长发育,使3种小麦出苗率提高,植株更高,生物量增加。污泥高施入量(污泥在混配土壤中的干重比为25%、35%)时,小麦的出苗率和根长受抑制明显。污泥的施用使小麦籽实中的Pb、Cu、Zn的含量显著升高,呈现递增趋势,污泥在混配土壤中的干重比超过25%时,籽实中Cu和Pb含量相对国家无公害食品标准有超标现象。综合考虑污泥对小麦生长和重金属富集的影响及土壤中重金属含量的变化,对小麦的耕种土壤中一次性施用污泥时,污泥在混配土壤中的干重比应限量在25%以下。  相似文献   

13.
The present study was conducted to assess the suitability of sewage-sludge amendment in soil for Triticum aestivum (wheat) by evaluating the heavy-metal accumulation and physiological responses of plants grown at 10, 25, and 50% sewage sludge amendment rate. Sewage sludge amendment modified the physicochemical properties of soil, thus increasing the availability of heavy metals in soil and consequently greater accumulation in plant parts. The chlorophyll contents generally increased after the sewage sludge treatments. Heavy-metal accumulation in the soil after the treatments did not exceed the limits for land application of sewage sludge recommended by the U.S. Environmental Protection Agency. Recycling sewage sludge as fertilizer will generate economical profits. However, the use of sewage sludge amendment in the soil for growing wheat may not be a good option due to risk of contamination of some heavy metals.  相似文献   

14.
To elucidate the mechanism of transfer of heavy metals into the food chain, an experiment was carried out with a calcareous soil, to which two different doses of a sewage sludge compost contaminated with either Cd or Zn, Cd, Cu, and Ni were applied. A crop of lettuce was then grown in the amended soils. The application of sewage sludge composts to a calcareous soil lowered the soil's pH, although the value was always around 8 at the end of the experiment. Electric conductivity rose with organic amendment. As anticipated, such an amendment improved the nutritional level of the soils, particularly Nand P, both total and available. Plant yields were negatively affected by organic amendments contaminated with heavy metals, the most dangerous in our experiment being Cd and Zn since this metals easily taken up by plants. As Ni and Cu form insoluble complexes with the organic matter of the sewage sludge composts they are not readily absorbed. Of the metals studied, Cd and Zn showed the highest bioavailability index.  相似文献   

15.
Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil In pot experiments with a sewage sludge treated soil, the influence of two arbuscular mycorrhizal fungi (AMF) isolates of Glomus sp. (T6 and D13) on plant growth and on the uptake of heavy metals by alfalfa (Medicago sativa L.) and oat (Avena sativa L.) was investigated. Alfalfa showed an increase of biomass with mycorrhizal infection only to a small extent. In oat AMF inoculation increased the growth of both root and shoot by up to 70% and 55% respectively. Mycorrhization raised the P-content and -uptake in alfalfa, but not in oat, in both roots and shoots. Mycorrhizal alfalfa showed lower Zn-, Cd- and Ni-contents and uptake in roots and shoots. The root length was significantly decreased in mycorrhizal alfalfa plants (up to 38%). The translocation of heavy metals into the shoot of mycorrhizal alfalfa was slightly increased. Mycorrhizal infection of oat led to higher concentrations of Zn, Cd and Ni in the root but to less Zn in the shoot. The translocation of heavy metals to the oat shoot was clearely decreased by mycorrhizal colonisation. This may be based on the ability of fungal tissues to complex heavy metals at the cell walls, thus excluding metals from the shoot. This conclusion is supported by the enhanced root length (up to 78%) of mycorrhizal oat plants in this experiment. The mycorrhizal infection seemed to protect plants against heavy metal pollution in soils. It was obvious that different host plants reacted in different ways.  相似文献   

16.
用固定剂减少污泥中重金属污染土壤的研究   总被引:6,自引:0,他引:6  
该研究将加有重金属固定剂的污泥装入废弃塑料容器制成施肥器,利用人工淋水或自然降水,使污泥中的养分从施肥器中流入土壤,而重金属被固定在污泥中,减少重金属土壤污染,再收集处理残渣,防止二次污染。通过淋滤试验和种植油麦菜、蕹菜的盆栽试验得出以下结论:硫酸钾作为固定剂和污泥混合,不仅肥效好,作物产量高,而且污泥重金属被水淋出量少,植物体内重金属的含量低。该文为污泥合理农用提供了新方法,同时充分利用了废弃塑料容器等废弃物,成本低而收效显著。  相似文献   

17.
We investigated the effects of applying hairy vetch foliage on nodulation and atmospheric nitrogen (N2) fixation in soybean cultivated in three soil types in pot experiments. Soybean plants were grown in Gley Lowland soil (GLS), Non-allophanic Andosol (NAS), and Sand-dune Regosol (SDR) with hairy vetch foliage application in a greenhouse for 45 days. In GLS, the nodule number was not influenced by the application, however, nodule dry weight and N2 fixation activity tended to increase. In NAS and SDR, nodule formation was depressed by foliage application. Soybean plant growth was promoted in GLS and SDR but not in NAS. These promotive effects of hairy vetch foliage application on soybean plant growth in GLS were considered to be mainly caused by the increase in N2 fixation activity of the nodules, whereas it was considered to be mainly caused by the increase in nitrogen uptake activity of the roots in SDR. The varying effects of hairy vetch foliage application on soybean nodulation may be due to soil chemical properties such as pH and cation exchange capacity, which are related to soil texture. Therefore, we conclude that it is important to use hairy vetch for soybean cultivation based on the different effects of hairy vetch on soybean plant growth in different soil types.  相似文献   

18.
Abstract

Two greenhouse studies were conducted to evaluate the effect of B, Mn and Zn on nodulation and N2‐fixation of southernpea (Vigna unguiculata (L.) Halp.) cultivars ‘Freezegreen’, ‘Mississippi Silver’ and ‘Pinkeye Purple Hull’. The cultivars were grown in plastic pots with a Norfolk sandy loam (fine, loamy siliceous thermic, Typic Paleudult) soil treated with B, Mn and Zn at rates of 0, 5, 10 and 20 kg/ha each at pH levels 5.5, 6.0 and 6.5. At pH 6.5 all micronutrient treatments significantly increased nodulation and N2‐fixation over the control (no micronutrient applied). The effects of B, Mn and Zn on nodulation and N2‐fixation depended on the cultivar and soil pH. For plants given the 5 kg/ha B and Mn treatments, ‘Mississippi Silver’ produced the highest number of nodules and ‘Pinkeye Purple Hull’ the least. At 20 kg/ha Zn, nodulation of ‘Freezegreen’ was highest and ‘Pinkeye Purple Hull’ the lowest. As a whole, maximum nodulation was at 5 kg/ha B and Mn and 20 kg/ha for Zn. Nitrogen fixation rates responded similarly except that the optimum rate for Zn was 10 kg/ha. Seed yield of plants peaked at 5 kg/ha for B and 10 kg/ha for Zn, indicating a possible relation of N2‐fixation to seed yield.  相似文献   

19.
The legume Medicago littoralis cv. Harbinger, was grown either alone (1–4 plants per pot) or with Lolium multiflorum (ryegrass) at a total of 4 plants per pot, using two soils of contrasting N status. An 15N dilution technique was used to distinguish the amounts of plant N due to N2 fixation and to N uptake from soil. Medic outyielded (dry weight and total plant N) ryegrass in a soil which released low amounts of inorganic N (Roseworthy) but ryegrass outyielded medic in a soil of higher N availability (Avon).For both soils, all combinations of medic and ryegrass plants utilized 70–73% of the inorganic N released on incubation. Competition from ryegrass invariably reduced yields of dry matter, total N, and fixed N of the medic plants, especially in the Avon soil. For both soils, the percentage reduction in the amounts of fixed N resulting from competition from ryegrass was directly proportional to the percentage increase of plant dry matter due to ryegrass. Medic plants grown in Roseworthy soil contained much higher proportions of N due to N2-fixation than did medic plants grown in Avon soil. The amounts of plant N, fixed N and plant dry weight increased with increasing numbers of medic plants, when grown alone in Roseworthy soil, but not in the Avon soil containing more than two plants per pot. Nevertheless, irrespective of the soil used, medic numbers per pot, or competition from ryegrass, the amounts of fixed N correlated well with total N and with dry matter yields of medic plants. The proportions of fixed N to total N varied consistently in each of the medic plant parts (roots < = leaves < stems < pods).  相似文献   

20.
再论土壤条件与桤木结瘤固氮的关系   总被引:1,自引:0,他引:1  
桤木结瘤固氮与土壤理化因素的关系,可用多元二次回归方程表达.最佳数学模式表明:影响固氮量的主要因素是酸度,其次是有效磷与有效钾、CO2与有机质、CO2与有效钼的联合效应.有效磷的不足是固氮的限制因素.共生体的固氮能力在潮土和黄壤(灰岩母质除外)上最强,沙溪庙母质的各种紫色土较高,强钙质土和酸性土则低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号