首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Differences in sensitivity to soil conditions across tree species and developmental stage are important to predicting forest response to environmental change. This study was conducted to compare elemental concentrations in leaves, stems, and roots of (1) sugar maple (Acer saccharum Marsh.) seedlings vs. mature trees and (2) mature sugar maple vs. mature American beech (Fagus grandifolia Ehrh.) in two sites that differ in soil base saturation and pH. Both sites are located in Huntington Forest, NY, USA; one site (hereafter ‘H’) has higher soil pH and Ca, Mg, and Mn concentrations than the other site (hereafter ‘L’). Sugar maple growth at H (14.8 cm2 year−1 per tree) was much greater than at L (8.6 cm2 year−1 per tree), but the growth of beech was not different between the two sites. Leaves, roots, and stem wood of mature beech trees and sugar maple seedlings and mature trees were sampled for nutrient analysis. Foliar Ca, K, and Al concentrations were positively correlated with soil elements, but Mn concentrations were negatively correlated. Sugar maple differed more than beech between sites in foliar K and Mn concentrations. Root Mg and P concentrations reflected soil chemistry differences, in contrast to foliar concentrations of Mg and P, which were indistinguishable between the sites. In sugar maple, seedlings differed more than in mature trees in nutrient concentrations in roots, especially for Mg and Mn. Although beech was not as responsive to nutrient availability as sugar maple in foliar and root nutrient concentrations, Ca and Mg concentrations in beech wood were higher in H (52% higher for Ca and 68% higher for Mg), while sugar maple did not differ between sites. Sugar maple regeneration failure on acidic soils in the same region is consistent with our finding that sugar maple seedlings were very sensitive to nutrient availability. This sensitivity could ultimately contribute to the replacement of sugar maple by American beech in regions of low pH and base cations if base cation leaching by anthropogenic deposition and tree harvesting continues.  相似文献   

2.
At the Bear Brook Watershed in Maine (BBWM), we examined the effects of long-term experimentally elevated N and S deposition on foliar chemistry, growth, and photosynthetic capacity of sugar maple (Acer saccharum) saplings. The BBWM is a paired watershed system; one watershed has been acidified bimonthly with granular ammonium sulfate ((NH4)2SO4) since 1989. The adjacent watershed is used as a reference. We observed a 56% increase in foliar Al and a 25% reduction in foliar Ca for sugar maple saplings on the treated watershed compared to reference. Foliar N (+15%), P (+10%), and K (+15%) were significantly elevated in treated saplings. Along with changes in foliar nutrients, there were significant differences in photosynthetic capacity.  相似文献   

3.
Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions, chlorophyll, polyamines, and amino acids were studied in three hardwood species, namely sugar maple, yellow birch, and American beech. We further analyzed these effects in relation to elevation at Ca-supplemented WS1 and reference WS3 watersheds. Foliar soluble Ca increased significantly in all species at mid and high elevations at Ca-supplemented WS1. This was accompanied by increases in soluble P, chlorophyll, and two amino acids, glutamate and glycine. A decrease in known metabolic indicators of physiological stress (i.e., the amino acids, arginine and γ-aminobutyric acid (GABA), and the diamine, putrescine) was also observed. In general, these changes were species-specific and occurred in an elevation dependent manner. Despite an observed increase in Ca at high elevation for all three species, only sugar maple exhibited a decrease in foliar putrescine at this elevation indicating possible remediation from Ca deficiency. At higher elevations of the reference WS3 site, foliar concentrations of Ca and Mg, as well as Ca:Mn ratios were lower, whereas Al, putrescine, spermidine, and GABA were generally higher. Comparison of metabolic data from these three species reinforces the earlier findings that sugar maple is the most sensitive and American beech the least sensitive species to soil Ca limitation. Furthermore, there was an increase in sensitivity with an increase in elevation.  相似文献   

4.
The effect of municipal solid waste (MSW) leachate spray irrigationon a mature northern hardwood forest was investigated. Canopyfoliar samples and stem increment cores were collected fromtwo indicative species, sugar maple (Acer saccharum Marsh.)and American beech (Fagus grandifolia Ehrh.), within each ofa heavily sprayed, lightly sprayed and control area. Foliarconcentrations of N and P were significantly higher in bothmaple and beech foliage within the sprayed areas when comparedto an unsprayed area (control). Levels of Mg and K were markedlyhigher in maple but not beech foliar samples within the heavilysprayed areas when compared to foliage sampled within the unsprayedcontrol. While no significant trends were observed within themaple foliage, both Fe and B levels increased significantlyin beech foliar samples obtained from within the heavily sprayedarea in comparison to foliage samples from the control. Directporometric measurements of the transpiration rate and diffusive(stomatal) resistance of canopy and understory plant leavesrevealed a significant increase in diffusive resistance anda decline in transpiration rate with leachate spraying. Afterfour years of spraying a significant effect of leachate applicationon radial stem growth of both maple and beech trees has notbeen observed.  相似文献   

5.
Aboveground biomass and nutrients and soil chemical characteristics were examined in young plantations of four indigenous tree species: Hieronyma alchorneoides, Vochysia ferruginea, Pithecellobium elegans, and Genipa americana, growing in mixed and pure stands at La Selva Biological Station, Costa Rica. Total tree biomass production rates ranged from about 5.2 Mg ha−1 year−1 for G. americana to 10.3 Mg ha−1 year−1 for H. alchorneoides pure stands, and for the species mixture it was about 8.9 Mg ha−1 year−1. Branches and foliage formed 25–35% of total tree biomass but they represented about 50% of total tree nutrients. H. alchorneoides, the four species mixture, and P. elegans had the greatest accumulations of total aboveground nutrients per hectare. The importance of the plantation floor as a nutrient compartment varied temporally. When forest floor litter biomass was at its peak, plantation floor litter N, Ca, and Mg were roughly equal to, or greater than stem nutrients for all species except for P. elegans. For P. elegans, the plantation floor consistently represented a very low proportion of total aboveground nutrients. G. americana and V. ferruginea trees showed 55–60% less biomass accumulation in mixed than in pure stands while H. alchorneoides and P. elegans trees grew 40–50% more rapidly in mixture. P. elegans foliage had 60% lower Ca but higher P concentrations in mixed than in pure stands, and G. americana had higher foliar Mg in mixed than in pure stands. V. ferruginea stands had the highest concentrations of soil Ca, Mg, and organic matter, particularly in the top layers. Relative to pure plantations, soil nutrient concentrations in mixed plantations were intermediate for N, P, and K, but lower for Ca and Mg. The results of this study can be used in the selection of tree species and harvest designs to favor productivity and nutrient conservation.  相似文献   

6.
The impact of winter harvesting on regeneration 50 years after an experimental diameter-limit cutting was examined in mixed deciduous–coniferous ecosystems of southern Quebec, Canada. The study was conducted in La Mauricie National Park, Quebec, Canada. Regeneration data in two balsam fir (Abies balsamea (L.) Mill.), red spruce (Picea rubens Sarg.), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britt.) ecosystem types were analyzed. Comparisons between uncut and cut stands were obtained from a total of 63 sample plots. For both ecosystems, there were no significant differences between uncut and cut plots for regeneration density and stocking. The most abundant regeneration species were balsam fir, red spruce, sugar maple, red maple (Acer rubrum L.), yellow birch and American beech (Fagus grandifolia Ehrh.). The type of diameter-limit cutting described in the study did not affect regeneration density and stocking but its impact on productivity, timber quality and genetics is still unknown.  相似文献   

7.
In 1984, a liming experiment with a surface application of 4 t ha−1 of dolomitic limestone was started at the acidic N-saturated Norway spruce forest “Höglwald” in southern Germany and monitored until 2004. The decay of surface humus due to the accelerated mineralisation accounted for 18.5 ± 2.7 t ha−1 C or 50% of the initial pool and 721.6 ± 115.0 kg ha−1 N or 46% for N. Due to some translocation of organic material to the mineral soil the values to 40 cm depth are slightly lower (13.5 ± 4.4 t ha−1 C or 15% of the initial pool and 631.6 ± 192.8 kg ha−1 N or 13% for N). In the control plot NO3 concentrations at 40 cm depth were above the European level of drinking water (0.8 mmolc l−1 or 50 mg NO3 l−1) for nearly the whole investigation period. Liming increased NO3 concentrations in seepage water for approximately 15 years, and accelerated leaching losses by 396.2 NO3–N kg ha−1 from 1984 to 2003. The increase in pH of the soil matrix was more or less restricted to the humus layer and the upper 5 cm of the mineral soil during the whole time span, while the base cations Ca and Mg reached deeper horizons with seepage water. From 1984 to 2003, an amount that nearly equalled the applied Mg, was leached out of the main rooting zone, while most of the applied Ca was retained. The time series of the elemental concentrations in needles showed minor changes. Ca concentrations in needles increased with liming, while Mg remained nearly unchanged, and P decreased in older needles.  相似文献   

8.
Influences on mineral topsoils of common European tree species (oak-Quercus robur L., lime-Tilia cordata Mill., ash-Fraxinus excelsior L., birch-Betula pendula Roth., beech-Fagus sylvatica L. and spruce-Picea abies (L.) Karst.) were studied in 30 to 40-year-old stands planted in adjacent plots on former arable land. Mineral soil samples from two depth layers (0–10 and 20–30 cm) under the different species were compared in terms of pH, base saturation, pools and concentrations of exchangeable macro- and micronutrients, total nitrogen and carbon. With the exception of pH (H2O) and extractable Al and Fe, no significant differences between species were detected in the lower layer. The upper (0–10 cm) layer was, however, affected differently depending on tree species: significant differences in pH, base saturation, exchangeable base cations and other nutrients were observed. The most prominent differences were between lime and spruce. Lime had considerably higher pH, base saturation, base cation and boron pools compared to spruce, which had the most acidifying effect on the mineral topsoils. Among the deciduous species, beech had the most similar effect to spruce on the upper layer of mineral topsoils. Soil C, N and C/N ratios did not differ significantly among species.  相似文献   

9.
Ammonium nitrate (NH4NO3) was applied monthly (from June to October) for 3 years in a balsam fir (Abies balsamea (Linné) Miller) and a black spruce (Picea mariana (Mill.) BSP) boreal forest in Québec (Canada). The design was composed of nine experimental units of 10 m × 10 m for each site. Application rates were 3 and 10 times the atmospheric N deposition measured at each site which was 6 and 3 kg ha−1 year−1 for the fir and the spruce sites, respectively. Soil solution composition (30 and 60 cm), tree growth, and foliar concentrations were analysed. The inorganic N in the soil solution of the control plots of both sites was low, particularly at the spruce site indicating that these forests are actively accumulating the atmospheric deposited N. Nitrogen additions regularly caused sudden and large inorganic N increases in the soil solution at both sites, both treatments and both sampling depths. However, these increases were transitory in nature and no persistent changes in inorganic N were observed. It was estimated that more than 95% of the added N was retained above the rooting zone at both sites. Nitrogen addition increased N, Ca, Mg and Mn foliar concentrations at the black spruce site but had no effects at the balsam fir site. After 3 years of N application, tree growth was similar in the control and the treated plots at both sites. Our results show that slow growing black spruce boreal forests with low ambient N deposition are responsive (in term of foliar N, Ca, Mg and Mn concentrations) to even small increases in N inputs, compared to higher growth balsam fir boreal forests with higher N deposition.  相似文献   

10.
We examined the effects and potential interactions of acid mist and soil solution Ca and Al treatments on foliar cation concentrations, membrane-associated Ca (mCa), ion leaching, growth, carbon exchange, and cold tolerance of red spruce (Picea rubens Sarg.) saplings. Soil solution Ca additions increased foliar Ca and Zn concentrations, and increased rates of respiration early in the growing season (July). Soil Al treatment had a broad impact, reducing foliar concentrations of Ca, Mg, Mn, P and Zn, and resulting in smaller stem diameters, sapling heights and shoot lengths compared with soil treatments with no added Al. Aluminum treatment also reduced respiration when shoots were elongating in July and decreased net photosynthesis at the end of the growing season (September). Three lines of evidence suggest that Al-induced alterations in growth and physiology were independent of foliar Ca status: (1) Ca concentrations in foliage of Al-treated saplings were within the range of sufficiency established for red spruce; (2) mCa concentrations were unaffected by Al treatment; and (3) no Al x Ca interactions were detected. Acid mist treatment increased foliar Fe and K concentrations and increased leaching of Ca, Mg, Mn, Zn, Fe, and Al from foliage. Leaching losses of Ca were more than twice those of the element with the next highest amount of leaching (Zn), and probably led to the reductions in mCa concentration and membrane stability of acid-treated saplings. Acidic mist resulted in enhanced shoot growth, and consistent reductions in foliar cold tolerance in the fall and winter. Of the few significant interactions among treatments, most involved the influence of mist pH and Al treatment on foliar nutrition. In general, reductions in cation concentration associated with Al addition were greater for pH 5.0-treated saplings than for pH 3.0-treated saplings. We propose that H(+)-induced leaching of mCa from mesophyll cells is the mechanism underlying acid-induced reductions in foliar cold tolerance of red spruce.  相似文献   

11.
Factors influencing red expression in autumn foliage of sugar maple trees   总被引:1,自引:0,他引:1  
We evaluated factors influencing the development of autumn red coloration in leaves of sugar maple (Acer saccharum Marsh.) by measuring mineral nutrient and carbohydrate concentrations, water content, and phenology of color development of leaves from 16 mature open-grown trees on 12 dates from June through October 1999. Mean foliar nutrient and carbohydrate concentrations and water content were generally within the range published for healthy sugar maple trees. However, foliar nitrogen (N) concentrations were near deficiency values for some trees. The timing and extent of red leaf coloration was consistently correlated with both foliar N concentrations and starch or sugar concentrations, which also varied with N status. Leaves of trees with low foliar N concentrations turned red earlier and more completely than those of trees with high foliar N concentrations. Low-N trees also had higher foliar starch concentrations than high-N trees. During the autumn development of red leaf coloration, foliar starch, glucose and fructose concentrations were positively correlated with red leaf color expression. At peak red expression, the concentrations of glucose, fructose, sucrose and stachyose were all positively correlated with red color expressed as a percent of total leaf area.  相似文献   

12.
Litterfall was investigated in three even-aged Norway spruce (Picea abies), sitka spruce (Picea sitchensis) and beech (Fagus sylvatica) stands on a nutrient poor-soil in Southern Denmark. Dry weights and N, P, K, S, Mg, Ca, Na, Al, and Fe concentrations and fluxes were examined in litterfall fractions. Foliage litter amounted to 90% of total litterfall. The tree stands showed a similar mean annual litterfall. In the spruce stands, annual litterfall was correlated negatively with the current year increment and positively with the previous year increment. Annual litterfall in beech was constant during the 6 study years whereas Norway spruce and sitka spruce showed large fluctuations between years caused by drought, spruce aphid infestations and probably sea salt stress. Norway spruce responded with a long lasting elevated needle loss. Sitka spruce responded to infestations with premature needle loss during short periods. The presence of a large syrphid (Coccinellidae) population was important in regulating aphid (Elatobium abietinum) population density. The between-year variation in element concentrations of litterfall was small whereas variations during the year were large. Interspecific levels were recognized: Norway spruce>beech>sitka spruce. High concentrations in Norway spruce were ascribed to a combination of drought, sea salt stress and elevated transpiration. In sitka spruce, aphid infestations reduced the litterfall N content. Sitka spruce showed the smallest amount of base cation fluxes with litterfall. In contrast, spruce and beech exhibited even litterfall element fluxes. Litterfall studies revealed reduced vitality in the non-native spruce stands and underlined the perception of a healthy stand of native beech.  相似文献   

13.
Tree growth, biomass productivity, litterfall mass and nutrient content, changes in soil chemical properties and understory forest succession were evaluated over a 8.5-year period in single- and mixed-species (50 : 50) plantations of two N2-fixing species, Casuarina equisetifolia and Leucaena leucocephala, and a non-fixing species, Eucalyptus robusta. At the optimal harvest age for maximum biomass production (4 years), total aboveground biomass ranged from 63 Mg ha−1 in the Eucalyptus monoculture to 124 Mg ha−1 in the Casuarina/Leucaena mixture, and was generally greater in the mixed-species than in single-species treatments due to increased productivity of the N-fixing species in the mixed stands. Total litterfall varied from 5.3 to 10.0 Mg ha−1 year−1 among treatments, or between 5.9% and 13.2% of net primary production. Litterfall production and rates of nutrient return for N, P, K, Ca and Mg were generally highest for Leucaena, intermediate for Casuarina and lowest for Eucalyptus. These rates were usually higher in the mixed-species than in monospecific stands due to differences in biomass productivity, but varied considerably depending on their species composition. Total system carbon and nutrient pools (in biomass plus soils to 40-cm depth) for N, P, K, Ca, Mg, Mn at four years were consistently greater in the plantation treatments than in the unplanted control plots. Relative to the single-species plantations, these system pools were generally larger in the mixed-species plantations for C (−10% to +10%), N (+17% to +50%), P (−1% to +63%), K (−19% to +46%), Ca (−10% to +48%), Mg (+5% to +57%) and Mn (+19% to +86%). Whole-tree harvests at four years would result in substantial system carbon and nutrient losses, although these estimated losses would not exceed the estimated gains realized during the four-year period of tree growth at this site. At 7.5 years, soil organic matter and effective cation exchange capacity were reduced in all plantation treatments relative to the control. Changes in soil nutrient content from 0 to 7.5 years were highly variable and not significantly different among treatments, although stands containing Leucaena generally showed higher rates of nitrogen and phosphorus accretion in soils than those with Eucalyptus and/or Casuarina. Natural regeneration of secondary forest tree and shrub species increased over time in all plantation treatments. A total of 24 native or naturalized forest species were recorded in the plantations at 8.5 years. Woody species abundance at this age was significantly greater beneath Casuarina than either Eucalyptus or the Eucalyptus/Leucaena mixed stands. Species richness and diversity, however, were greatest beneath stands containing Eucalyptus and/or Leucaena than in stands with Casuarina.  相似文献   

14.
The aim of the presented research project is to fit a site index model capable for predicting changes in site-productivity in a changing climate. A generalized additive model is used to predict site index as a function of soil and climate variables. The climate parameter values are estimated using the regional climate model WETTREG, based on global climate simulations with the global circulation model ECHAM5/MPI-OM for the reference period from 1961 to 1990. The climate values are further regionalized on a 200 m × 200 m grid. The generalized additive model quantifies the partial linear and non-linear effects of the predictor variables on site index. The model is parameterized for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.) in Lower Saxony, Germany. Two case studies investigate the model's ability to generate information in order to support forest management planning decisions under a changing climate. One example analyzes the possible shift in site index of spruce along a precipitation gradient under the International Panel on Climate Change (IPCC) emission scenario A1B in the period from 2041 to 2050. The other case study shows possible future changes in site index of beech along a temperature gradient.  相似文献   

15.
The regeneration of mature Norway spruce with European beech using the shelterwood silvicultural system is a good example of continuous cover forestry. In contrast, the regeneration may also start with clear-cut plots, which often occur after calamities like wind-throw or bark beetle attack. During regeneration the forest ecosystem becomes a highly dynamic system. Nutrient losses from the soil may occur as the element turnover is affected by the reduced nutrient uptake of forest trees as well as the enhanced mineralisation and nitrification due to higher soil temperature and soil moisture. Continuous cover forestry may help to reduce these nutrient losses. In order to test this, we investigated water and element fluxes of two chronosequences. The first investigated regeneration in the shelterwood system, while the second concerned itself with regeneration on clear-cut plots. In a shelterwood-cut about 30% of the mature spruce trees are removed and young beech trees are planted. Some 10 years later a secondary felling is carried out and at age 20 of the beech regeneration the final harvest of the mature trees occurs. Thus, the studied time steps were (a) the first 5 years after the initial cut and planting, (b) 10-year-old beech regeneration after the second shelterwood cut and (c) 20-year-old beech regeneration after the final harvest.Our results indicate that nutrient losses with seepage water – especially nitrogen, calcium and magnesium – occur during the first years after the clear cut and, to a lesser extent, after secondary felling on the selective-cut plot. This may temporarily affect seepage water quality due to elevated nitrate concentrations, which reached values of more than 100 mg l−1. In the time span between planting and an age 20 of the beech regeneration, total losses of nitrogen from the main rooting zone reach 230 kg ha−1 after clear cut. Preliminary estimates of the total nitrogen loss in the shelterwood system range between 150 and 230 kg ha−1 indicating either significantly lower or equal losses of nutrients. In the second case, however, element output is distributed more equally over the 20-year-period than after clear felling where 85% of the nitrate leaching occurs during the first 3 years.  相似文献   

16.
The magnitude of nitrogen storage and its temporal change in forest ecosystems are important when analysing global change. For example, the accelerated growth of European forests has been linked to increased nitrogen deposition, but the changes in the N inputs that cause long-term changes in ecosystems have not yet been identified. We used two Swedish forest optimum nutrition experiments with Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) to study the long-term fate of N applied to these forest ecosystems. In the pine experiment, in addition to fertiliser (NPK) application, soil acidity was manipulated by application of lime and dilute sulphuric acid. From the spruce experiment, we selected treatments with similar fertiliser doses as in the pine experiment and with and without lime addition.We quantified various terms in the N budget 12 years (pine) and 7 years (spruce) after the last N addition. In the pine stand the NPK-treatment was the only treatment to produce a significant increase in N in the tree biomass (97% above control), whereas in the spruce stand the N additions increased tree N in all treatment combinations (207% above control). In the pine stand the relative distribution of nitrogen between trees and soil did not vary across treatments, with trees containing around 12% of ecosystem N and humus containing around 44% of soil N. The increases in N stocks in the pine stands were mainly in the soil. In contrast, in the spruce ecosystem trees accumulated most of the added N and the increase in the soil was restricted to the humus layer.In the pine ecosystem, large losses of added N (between 254 and 738 kg ha−1 out of 1040 kg ha−1 added as fertiliser) occurred, whereas in the spruce ecosystem we recovered more N than could be accounted for by inputs (between 250 and 591 kg ha−1). There was no clear pattern in the interaction between acidification/liming and N additions.  相似文献   

17.
Northern hardwood stands, notably those with American beech (Fagus grandifolia Ehrh), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britton), are abundant across the forested landscapes of northeastern USA and southeastern Canada. Recent studies have reported an increasing dominance of American beech in the understory and midstory of these forests. Beech is a commercially less desirable tree species due to its association with beech-bark disease, and because it commonly interferes with the regeneration of other more desirable tree species. We examined hardwood regeneration characteristics nine years after application of a 3 × 4 factorial combination of glyphosate herbicide (0.56, 1.12, and 1.68 kg ha?1) and surfactant concentrations (0.0, 0.25, 0.5, and 1.0% v v?1) to release sugar maple regeneration from beech-dominated understories using three stands that received shelterwood seed cutting in central Maine. Measurements nine years after treatment showed that glyphosate rate increased both absolute (AD) and relative density (RD) of sugar maple regeneration, but not its height (HT). In contrast, beech AD, RD, and HT were all significantly reduced with increasing glyphosate rate. Post-release browsing by ungulates and a high residual overstory basal area resulted in reduced sugar maple HT. Our results indicated that glyphosate herbicide applied in stands that have been recently shelterwood seed cut can significantly increase the abundance of sugar maple regeneration. However, subsequent browsing damage combined with the negative influence of the residual overstory cover can limit the longer-term benefit of understory herbicide treatments. Subsequent removal of the overstory and browsing-control measures may be needed to promote sugar maple regeneration over beech in similar northern hardwood stands.  相似文献   

18.

Context

Fine scale regeneration patterns of coexistent species are influenced by regeneration mechanisms and microsite requirements. Spatial patterns may be either disjunct or overlapping, which will determine competitive effects and microsite dominance, and future forest composition.

Aims

Using American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marshall) as an example, three hypotheses were tested: (1) random beech spatial patterns, (2) clumped spatial patterns of small sugar maple seedlings, and (3) disjunct beech and sugar maple patterns.

Methods

Individual stems were sampled in a contiguous grid of 1-m2 quadrats across a 576-m2 area at three sites. Densities were separated into three height classes (≤30 cm, 30–90 cm, and?>?90 cm, ≤4 cm diameter at breast height). Spatial statistics and regression were used to analyze spatial patterns and correlations.

Results

Beech and seedling sugar maple patterns were patchy, rejecting the first and not rejecting the second hypotheses. Hypothesis three was rejected because patches of the two species overlapped with advance regeneration beech overtopping sugar maple.

Conclusion

Patchy patterns of advance regeneration beech and post-harvest sugar maple establishment suggest spatiotemporal niche partitioning. Beech had a competitive height advantage following harvest, but sugar maple still occurred in beech-free patches and beneath overtopping beech at a fine scale. Self-replacing beech patterns will ensure the species will continue dominance unless a selective chemical or manual treatment is applied that removes beech and releases sugar maple.  相似文献   

19.
This paper examines carbon (C) pools, fluxes, and net ecosystem balance for a high-elevation red spruce–Fraser fir forest [Picea rubens Sarg./Abies fraseri (Pursh.) Poir.] in the Great Smoky Mountains National Park (GSMNP), based on measurements in fifty-four 20 m × 20 m permanent plots located between 1525 and 1970 m elevation. Forest floor and mineral soil C was determined from destructive sampling of the O horizon and incremental soil cores (to a depth of 50 cm) in each plot. Overstory C pools and net C sequestration in live trees was estimated from periodic inventories between 1993 and 2003. The CO2 release from standing and downed wood was based on biomass and C concentration estimates and published decomposition constants by decay class and species. Soil respiration was measured in situ between 2002 and 2004 in a subset of eight plots along an elevation gradient. Litterfall was collected from a total of 16 plots over a 2–5-year period.The forest contained on average 403 Mg C ha−1, almost half of which stored belowground. Live trees, predominantly spruce, represented a large but highly variable C pool (mean: 126 Mg C ha−1, CV = 39%); while dead wood (61 Mg C ha−1), mostly fir, accounted for as much as 15% of total ecosystem C. The 10-year mean C sequestration in living trees was 2700 kg C ha−1 year−1, but increased from 2180 kg C ha−1 year−1 in 1993–1998 to 3110 kg C ha−1 year−1 in 1998–2003, especially at higher elevations. Dead wood also increased during that period, releasing on average 1600 kg C ha−1 year−1. Estimated net soil C efflux ranged between 1000 and 1450 kg C ha−1 year−1, depending on the calculation of total belowground C allocation. Based on current flux estimates, this old-growth system was close to C neutral.  相似文献   

20.
This analysis employs a spruce budworm (Choristoneura fumiferana Clem.) decision support system to examine costs and benefits of sequestering (protecting) carbon in forests through pest management. We analyzed 24 alternative spruce budworm protection scenarios for outbreaks on Prince Albert Forest Management Area (PAFMA) in Saskatchewan and Crown License 1 in New Brunswick. Scenarios included two outbreak severities (moderate and severe), three protection frequencies (very aggressive—protecting every year of the outbreak; aggressive—protecting the peak 3 years of outbreak; and semi-aggressive—protecting every second year of outbreak), and four protection program sizes (10,000 ha, 25,000 ha, 100,000 ha, or 150,000 ha). Under a severe outbreak, the largest (150,000 ha), very aggressive protection scenario provided the highest net CO2 protected at 24.95 million metric tons (Mt) in PAFMA and 29.19 Mt in License 1. This protection scenario also provided the highest net present value at $64.23 M and $91.36 M in PAFMA and License 1, respectively. On the other hand, benefit/cost ratios were maximized under the smallest (10,000 ha) protection size at 11.90 and 15.37 using the aggressive and semi-aggressive protection frequencies in PAFMA and License 1, respectively. Finally, the discounted cost per ton of CO2 protected was minimized at $0.48 and $0.37 using the smallest aggressive and semi-aggressive protection frequencies in PAFMA and License 1, respectively. The comparable costs and benefits from the moderate outbreak scenarios were similar, but generally less than, the severe outbreak scenarios. These results provide forest managers with important information needed to justify such carbon sequestration programs on economic grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号