首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
L. Westphal  G. Wricke 《Euphytica》1991,56(3):259-267
Summary Electrophoretic polymorphisms of eight enzyme systems were studied in leaves of Daucus carota ssp. sativus in order to identify additional isozyme loci and generate first linkage groups of genetic markers. The genetic analysis of aconitase (ACO), leucin aminopeptidase (LAP), menadione reductase (MDR), phosphoglucomutase (PGM), 6-phosphogluconic dehydrogenase (6-PGD), shikimate dehydrogenase (SKD), and triose phosphate isomerase (TPI) zymograms resulted in the identification of 8 isozyme marker loci, designated as Aco-1, Lap-1, Pgm-1, Pgm-3, 6-Pgd-2, Skd-1, Tpi-1, and Tpi-2. All loci segregated with codominant alleles and encoded for monomers (ACO, LAP, PGM, SKD), and dimers (6-PGD, TPI), respectively. MDR enzymes of the variable region MDR-2 appeared to be identical with Dia-2 isozymes. Tests of joint segregation for pairwise comparisons of all 14 isozyme marker loci now available in carrots indicate that 12 loci are linked in 4 linkage groups (marked K1 to K4) in the following order: Aco-1, Pgi-1, and Dia-3 (K1), Tpi-2, Got-2, and Lap-1 (K2), Got-3 and Tpi-1 (K3) and Pgm-1, Pgm-3, 6-Pgd-2 and Skd-1 (K4). Dia-2 and Got-1 remained unlinked. The possible duplication of a PGM locus and a 6-PGD locus is discussed.  相似文献   

2.
B. Kjær  J. Jensen 《Euphytica》1996,90(1):39-48
Summary The positions of quantitative trait loci (QTL) for yield and yield components were estimated using a 85-point linkage map and phenotype data from a F1-derived doubled haploid (DH) population of barley. Yield and its components were recorded in two growing seasons. Highly significant QTL effects were found for all traits at several sites in the genome. A major portion of the QTL was found on chromosome 2. The effect of the alleles in locus v on thousand grain weight and kernels per ear explained 70–80% of the genetic variation in the traits. QTL × year interaction was found for grain yield. Several different QTL were found within the two-rowed DH lines compared to those found in the six-rowed DH lines. Epistasis between locus v and several loci for yield and yield components indicates that genes are expressed differently in the two ear types. This may explain the difficulties of selecting high yielding lines from crosses between two-rowed and six-rowed barley.Abbreviations DH doubled haploid - QTL quantitative trait locus/loci - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - T. Prentice Tystofte Prentice - V. Gold Vogelsanger Gold  相似文献   

3.
N. M. Hall    H. Griffiths    J. A. Corlett    H. G. Jones    J. Lynn    G. J. King 《Plant Breeding》2005,124(6):557-564
The genetic control of water‐use and photosynthetic traits in Brassica oleracea is resolved by genetic analysis of quantitative trait loci (QTL). Variations in leaf conductance, photosynthetic assimilation rate, leaf thickness and leaf nitrogen content were assessed in a segregating population of F1‐derived doubled haploid (DH) B. oleracea lines. In addition, stable carbon isotope ratios in leaf organic material were used as a surrogate measure of plant water‐use efficiency. Analysis of an existing linkage map for the population revealed significant QTL on seven linkage groups. Single significant QTL explained between 3.4% and 36.6% of the phenotypic variance in each of the traits measured. The locations of QTL for several traits were found to coincide in a physiologically meaningful way; stable carbon isotope discrimination had QTL co‐locating with leaf level water‐use efficiency, photosynthetic capacity with leaf thickness and nitrogen content and stomatal density with leaf thickness. Taken together, these results suggest that single genes or clusters of genes at these loci may have an influence on the expression of physiologically related traits controlling water‐use and photosynthesis.  相似文献   

4.
D. Zamir  M. Tal 《Euphytica》1987,36(1):187-191
Summary Plants of the salt-sensitiveL. esculentum, the halophytic wild speciesL. pennellii, their F1 hybrids and the interspecific F2 generation were grown in Hoagland's liquid culture containing 100 mM NaCl and 6 mM K+. Analysis of the Na+, Cl- and K+ ions contents of the leaves showed, as observed also in previous studies, that the cultivated parent accumlated more K+ and less Na+ than the wild parent. A total of 117 F2 plants were assayed for 15 electrophoretically detectable isozyme markers which map to nine of the twelve tomato chromosomes. Four loci, all with a similar quantitative effect on Na+ and Cl- uptake, were identified by virtue of their linkage to isozyme markers. Two other loci were found to affect K+ uptake. This study demonstrates the potential value of using genetic markers in order to gain a better understanding of the genetic basis of quantitative traits associated with the response of plants to salinity stress.  相似文献   

5.
Increasing seed oil content is an important breeding goal for Brassica napus L. (B. napus). The identification of quantitative trait loci (QTL) for seed oil content and related traits is important for efficient selection of B. napus cultivars with high seed oil content. To get better knowledge on these traits, a molecular marker linkage map for B. napus was constructed with a recombinant inbred lines (RIL) population. The length of the map was 1,589 cM with 451 markers distributed over 25 linkage groups. QTL for seed oil content, seed hull content and seed coat color in three environments were detected by composite interval mapping (CIM) tests. Eleven QTL accounted for 5.19–13.57% of the variation for seed oil content. Twelve QTL associated with seed hull content were identified with contribution ranging from 5.80 to 22.71% and four QTL for seed coat color accounted for 5.23–15.99% of the variation. It is very interesting to found that co-localization between QTL for the three traits were found on N8. These results indicated the possibility to combine favorable alleles at different QTL to increase seed oil content, as well as to combine information about the relationship between seed oil content and other traits.  相似文献   

6.
A population of 112 F1-derived doubled haploid lines was produced from a reciprocal cross of Brassica juncea. The parents differed for seed quality, seed color and many agronomic traits. A detailed RFLP linkage map of this population, comprising 316 loci, had been constructed, and was used to map quantitative trait loci (QTL) for seed yield and yield components, viz. siliqua length, number of seeds per siliqua, number of siliques per main raceme and 1000-seed weight. Stable and significant QTLs were identified for all these yield components except seed yield. For yield components, a selection index based on combined phenotypic and molecular data (QTL effects) could double up the efficiency of selection compared to the expected genetic advance by phenotypic selection. Selection indices for high seed yield, based on the phenotypic data of yield and yield components, could only improve the efficiency of selection by 4% of the genetic advance that can be expected from direct phenotypic selection for yield alone. Inclusion of molecular data together with the phenotypic data of yield components in the selection indices did not improve the efficiency of selection for higher seed yield. This is probably due to often negative relationships among the yield components. Most of the QTLs for yield components were compensating each other, probably due to linkage, pleiotropy or developmentally induced relationships among them. The breeding strategy for B. juncea and challenges to marker assisted selection are discussed.  相似文献   

7.
Flowering time is a trait which has a major influence on the quality of forage. In addition, flowering and subsequent seed yields are important traits for seed production by grass breeders. In this study, we have identified quantitative trait loci (QTL) for flowering time and morphological traits of the flowering head in an F1 mapping population in Lolium perenne L (perennial ryegrass), a number of which have not previously been identified in L. perenne mapping studies. QTL for days to heading (DTH) were mapped in both outdoor and glasshouse experiments, revealing three and five QTL for DTH which explained 53% and 42% of the total phenotypic variation observed, respectively. Two QTL for DTH were detected in both environments, although they had contrasting relative magnitudes in each environment. One QTL for spike length and three QTL for spikelets per spike were also identified explaining, a total of 32 and 33% of the phenotypic variance, respectively. Furthermore, the QTL for spike length and spikelets per spike generally coincided with QTL for days to heading, implying co-ordinate regulation by underlying genes. Of particular interest was a region harbouring overlapping QTL for days to heading, spike length and spikelets per spike on the top of linkage group 4, containing the major QTL for spike length identified in this population.  相似文献   

8.
A doubled haploid population of Brassica juncea, developed from a cross between two parental lines differing for days to maturity, was used to study the efficiency of indirect selection for a primary trait through selection of secondary trait(s) over direct selection for the primary trait when quantitative trait loci information is available for both primary and secondary traits, and applied. Days to maturity was considered as primary trait, while days to first flowering, days to end of flowering, flowering period and plant height were considered as secondary traits. An RFLP linkage map was employed for QTL analysis of maturity and maturity-determinant traits, and a stable QTL B6 simultaneously affecting these two types of traits was identified. This linked QTL explained 11.7% phenotypic variation for days to maturity, 20.7% variation for days to first flowering, 24.3% variation for days to end of flowering and 14.4% variation for plant height. Phenotypic evaluation of maturity and/or maturity-determinant traits, viz. days to first flowering, days to end of flowering and plant height revealed that limited genetic advance for early maturity can be achieved through phenotypic selection of the primary and/or the secondary trait(s). However, the estimates of genetic advance for early maturity based on combined phenotypic evaluation and linked QTL data was found to be, at least, three times higher compared to genetic advance based on phenotypic evaluation only, demonstrating the potential of marker-assisted selection in breeding for early maturity in B. juncea.  相似文献   

9.
Summary We report on the inheritance of 11 morphological markers and 17 isozymes in lentil (Lens culinaris). The monogenic inheritance of 11 morphological markers and 11 isozymes is confirmed. The inheritance of six isozymes (Aco-2, Enp, Est-3, Est-4, Lap-3, and Mdh-m) is reported for the first time in lentil. This brings the total number of described genes in lentil to 78. Cases of disturbed segregation were more frequent than expected by chance. It is suggested that disturbed segregation was in most cases caused by linkage with a piece of chromosome that showed preferential elimination in crosses between Lens culinaris ssp. odemensis and other subspecies. The prevalence of disturbed segregation in crosses with Lens culinaris ssp. odemensis could limit the usefulness of this subspecies in genetic and linkage studies.  相似文献   

10.
Summary Two crosses between Glycine max (L.) Merr. and G. soja Sieb. & Zucc. parents were used to study the association between isozyme marker loci and agronomic and seed composition traits in soybean. The parents possessed different alleles at six isozyme loci for Cross 1 (A80-244036 × PI 326581) and at eight isozyme loci for Cross 2 (A81-157007 × PI 342618A). A total of 480 BC2F4:6 lines from the two crosses was evaluated for 13 traits in two environments. Lines were grouped in locus classes from 0 to 5 according to the number of loci homozygous for the G. soja alleles that they possessed. Within each locus class, each isozyme genotype was represented by five random lines.Selection for G. max alleles at the isozyme loci was not effective in recovering the recurrent parent phenotype in either cross. In cross 1, however, BC2F4-derived lines in the 0- or 1- locus class more closely resembled the G. max parent than lines in the 4- or 5- locus classes for most of the agronomic and seed composition traits evaluated. Significant associations were found between particular isozyme genotypes and every trait analyzed. The estimated effect of genes linked to the Pgm1 locus was a delay in maturity of 6.0±3.4 days. In cross 1, the Idh2 locus was associated with a significant effect on linolenic acid content. The percentage of variation accounted for by the models of estimation varied according to the heritability of the trait. The R2 was high (up to 78%) for maturity, lodging, and vining, and low (up to 21%) for seed yield. Most of the variation was associated with the BC2F1 family from which the lines were derived. There was little evidence that digenic epistasis was an important source of variation.Journal Paper No. J-13505 of the Iowa Agric. Home Econ. Exp. Stn., Ames, IA, Project 2475.  相似文献   

11.
Breeding efforts to improve grain yield, seed protein concentration and early maturity in pea (Pisum sativum L.) have proven to be difficult. The use of molecular markers will improve our understanding of the genetic factors conditioning these traits and is expected to assist in selection of superior genotypes. This study was conducted to identify genetic loci associated with grain yield, seed protein concentration and early maturity in pea. A population of 88 recombinant inbred lines (RILs) that was developed from a cross between 'Carneval' and 'MP1401' was evaluated at 13 environments across the provinces of Alberta, Manitoba and Saskatchewan, Canada in 1998, 1999 and 2000. A linkage map consisting of 193 AFLPs (amplified fragment length polymorphism), 13 RAPDs (random amplified polymorphic DNA) and one STS (sequence tagged site) marker was used to identify putative quantitative trait loci (QTL) for grain yield, seed protein concentration and early maturity. Four QTL were identified each for grain yield and days to maturity, and three QTL were identified for seed protein concentration. A multiple QTL model for each trait showed that these genomic regions accounted for 39%, 45% and 35% of the total phenotypic variation for grain yield, seed protein concentration and days to maturity, respectively. The consistency of these QTL across environments and their potential for marker-assisted selection are discussed in this report.  相似文献   

12.
Fiber yield and yield components – including lint index (LI), seed index (SI), lint yield (LY), seed cotton yield (SCY) and number of seeds per boll (NSPB) – were investigated on the farm of Huazhong Agricultural University in a population of 69 F2 individuals and corresponding F2:3 families derived from a cross between high-fiber-yield Gossypium hirsutum CV Handan 208 and a low-fiber-yield Gossypium barbadense CV Pima 90. On the basis of the genetic map constructed previously from the same population by Lin et al. (Plant Breed., 2005), quantitative trait locus (QTL) analysis was performed with the software QTL Cartographer V2.0 using composite interval mapping method (LOD ≥ 3.0). A total of 21 QTLs were identified, which were located in 15 linkage groups. The number of QTLs per trait ranged from one to seven. Of these QTLs detected, one affecting LI explained 24.3% of phenotypic variation (PV), five influencing SI explained 16.15–39.21% of PV, seven controlling LY explained 13.01–28.35% of PV, and two controlling SCY explained 22.76 and 39.97% of PV, respectively. Simultaneously, the detected six QTLs for NSPB were located on five linkage groups, which individually explained 28.01–38.32% of the total phenotypic variation. The results would give breeders further insight into the genetic basis of fiber yield.  相似文献   

13.
The objective of this study was to determine quantitative trait loci (QTL) underlying ten floral and related traits in Aquilegia. The traits assessed were calyx diameter, corolla diameter, petal length, petal blade length, sepal length, sepal width, spur length, spur width, plant height and flower number. These are important traits for ornamental value and reproductive isolation of Aquilegia. QTL analysis of these traits was conducted using single‐marker analysis and composite interval mapping (CIM). We used an F2 population consisting of 148 individuals derived from a cross between the Chinese wild species Aquilegia oxysepala and the cultivar Aquilegia flabellata ‘pumila’. Resulting CIM analysis identified 39 QTLs associated with these traits, which were mapped on seven linkage groups. These QTLs could explain 1.22–53.28% of the phenotypic variance. Thirty‐one QTLs, which explained more than 10% of the phenotypic variation, were classified as major QTLs. Graphical representations of the QTLs on seven linkage groups were made. Our research provides the potential for future molecular assisted selection breeding programmes and the cloning of target genes through fine mapping.  相似文献   

14.
Z. Lin    D. He    X. Zhang    Y. Nie    X. Guo    C. Feng  J. McD. STEWART 《Plant Breeding》2005,124(2):180-187
Tetraploid cotton is one of the most extensively cultivated species. Two tetraploid species, Gossypium hirsutum L. and G. barbadense L., dominate the world's cotton production. To better understand the genetic basis of cotton fibre traits for the improvement of fibre quality, a genetic linkage map of tetraploid cotton was constructed using sequence‐related amplified polymorphisms (SRAPs), simple sequence repeats (SSRs) and random amplified polymorphic DNAs (RAPDs). A total of 238 SRAP primer combinations, 368 SSR primer pairs and 600 RAPD primers were used to screen polymorphisms between G. hirsutum cv. Handan208 and G. barbadense cv. Pima90 which revealed 749 polymorphic loci in total (205 SSRs, 107 RAPDs and 437 SRAPs). Sixty‐nine F2 progeny from the interspecific cross of ‘Handan208’בPima90’ were genotyped with the 749 polymorphic markers. A total of 566 loci were assembled into 41 linkage groups with at least three loci in each group. Twenty‐eight linkage groups were assigned to corresponding chromosomes by SSR markers with known chromosome locations. The map covered 5141.8 cM with a mean interlocus space of 9.08 cM. A × test for significance of deviations from the expected ratio (1: 2: 1 or 3: 1) identified 135 loci (18.0%) with skewed segregation, most of which had an excess of maternal parental alleles. In total, 13 QTL associated with fibre traits were detected, among which two QTL were for fibre strength, four for fibre length and seven for micronaire value. These QTL were on nine linkage groups explaining 16.18‐28.92% of the trait variation. Six QTL were located in the A subgenome, six QTL in the D subgenome and one QTL in an unassigned linkage group. There were three QTL for micronaire value clustered on LG1, which would be very useful for improving this trait by molecular marker‐assisted selection.  相似文献   

15.
A genetic map was constructed with 353 sequence-related amplified polymorphism and 34 simple sequence repeat markers in oilseed rape (Brassica napus L.). The map consists of 19 linkage groups and covers 1,868 cM of the rapeseed genome. A recombinant doubled haploid (DH) population consisting of 150 lines segregating for oil content and other agronomic traits was produced using standard microspore culture techniques. The DH lines were phenotyped for days to flowering, oil content in the seed, and seed yield at three locations for 3 years, generating nine environments. Data from each of the environments were analyzed separately to detect quantitative trait loci (QTL) for these three phenotypic traits. For oil content, 27 QTL were identified on 14 linkage groups; individual QTL for oil content explained 4.20–30.20% of the total phenotypic variance. For seed yield, 18 QTL on 11 linkage groups were identified, and the phenotypic variance for seed yield, as explained by a single locus, ranged from 4.61 to 24.44%. Twenty-two QTL were also detected for days to flowering, and individual loci explained 4.41–48.28% of the total phenotypic variance.  相似文献   

16.
Summary The aim of this investigation was to map quantitative trait loci (QTL) associated with grain yield and yield components in maize and to analyze the role of epistasis in controlling these traits. An F2:3 population from an elite hybrid (Zong3 × 87-1) was used to evaluate grain yield and yield components in two locations (Wuhan and Xiangfan, China) using a randomized complete-block design. The mapping population included 266 F2:3 family lines. A genetic linkage map containing 150 simple sequence repeats and 24 restriction fragment length polymorphism markers was constructed, spanning a total of 2531.6 cM with an average interval of 14.5 cM. A logarithm-of-odds threshold of 2.8 was used as the criterion to confirm the presence of one QTL after 1000 permutations. Twenty-nine QTL were detected for four yield traits, with 11 of them detected simultaneously in both locations. Single QTL contribution to phenotypic variations ranged from 3.7% to 16.8%. Additive, partial dominance, dominance, and overdominance effects were all identified for investigated traits. A greater proportion of overdominance effects was always observed for traits that exhibited higher levels of heterosis. At the P ≤ 0.005 level with 1000 random permutations, 175 and 315 significant digenic interactions were detected in two locations for four yield traits using all possible locus pairs of molecular markers. Twenty-four significant digenic interactions were simultaneously detected for four yield traits at both locations. All three possible digenic interaction types were observed for investigated traits. Each of the interactions accounted for only a small proportion of the phenotypic variation, with an average of 4.0% for single interaction. Most interactions (74.9%) occurred among marker loci, in which significant effects were not detected by single-locus analysis. Some QTL (52.2%) detected by single-locus analysis were involved in epistatic interactions. These results demonstrate that digenic interactions at the two-locus level might play an important role in the genetic basis of maize heterosis.  相似文献   

17.
Soybean is one of the most important crops worldwide for its protein and oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense single nucleotide polymorphism (SNP)‐based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line population and quantitative trait loci (QTL) for seed isoflavone contents. The genetic map is composed of 1502 SNP markers and covers about 1423.72 cM of the soybean genome. Two QTL for seed isoflavone contents have been identified in this population. One major QTL that controlled both daidzein (qDZ1) and total isoflavone contents (qTI1) was found on LG C2 (Chr 6). And a second QTL for glycitein content (qGT1) was identified on the LG G (Chr 18). These two QTL in addition to others identified in soybean could be used in soybean breeding to optimize isoflavone content. This newly assembled soybean linkage map is a useful tool to identify and map QTL for important agronomic traits and enhance the identification of the genes involved in these traits.  相似文献   

18.
A genetic linkage map with 70 loci (55 SSR, 12 AFLP and 3 morphological loci) was constructed using 117 F2 plants obtained from a cross between two upland cotton cultivars Yumian 1 and T586, which have relatively high levels of DNA marker polymorphism and differ remarkably in fiber-related traits. The linkage map comprised of 20 linkage groups, covering 525 cM with an average distance of 7.5 cM between two markers, or approximately 11.8% of the recombination length of the cotton genome. The present genetic linkage map was used to identify and map the quantitative trait loci (QTLs) affecting lint percentage and fiber quality traits in 117 F2:3 family lines. Sixteen QTLs for lint percentage and fiber quality traits were identified in six linkage groups by multiple interval mapping: four QTLs for lint percentage, two QTLs for fiber 2.5% span length, three QTLs for fiber length uniformity, three QTLs for fiber strength, two QTLs for fiber elongation and two QTLs for micronaire reading. The QTL controlling fiber-related traits were mainly additive, and meanwhile including dominant and overdominant. Several QTLs affecting different fiber-related traits were detected within the same chromosome region, suggesting that genes controlling fiber traits may be linked or the result of pleiotropy.  相似文献   

19.
Z. H. Liu    H. L. Xie    G. W. Tian    S. J. Chen    C. L. Wang    Y. M. Hu    J. H. Tang 《Plant Breeding》2008,127(3):279-285
A set of 213 F2:3 families were used to investigate the effects of nitrogen (N) on grain yield and the concentrations of three nutrient components in maize (Zea mays L.) kernels. A genetic linkage map was constructed using 189 SSR (simple sequence repeat) markers, spanning a total of 2003 cM, including 11 linkages, and the families were evaluated under high N and low N conditions at two farm locations. The results indicate that low N conditions may induce an increase in starch concentration, but a decrease in protein levels. Twenty‐six quantitative trait loci (QTL) were detected for four measured traits in the two N treatments at both locations, including eight QTL for grain yield, seven QTL for oil content, six QTL for protein content and five QTL for starch content. The total number of QTL detected for the four measured traits under high N levels was greater than the QTL detected under low N conditions, and several QTL were identified that specifically expressed under different N conditions. These particular QTL could help provide greater understanding of the genetic basis of N‐usage efficiency.  相似文献   

20.
Genetic analysis and linkage study of seed weight in lentil   总被引:1,自引:0,他引:1  
Summary The genetics of seed weight was studied in crosses between the cultivated lentil L. culinaris and the wild species L. orientalis and L. ervoides. Seed weight was found to be under polygenic control with additive and dominant gene action and with partial dominance of low seed weight alleles. High heretability estimates were obtained in the analysed crosses. Nuclear-cytoplasmic interaction was found to affect seed weight in crosses involving accession No.138 of L. orientalis. Factors affecting seed weight were linked to morphological and DNA markers distributed over several linkage groups. High seed weight in segregating generations were usually associated with alleles of marker loci originated from the cultivated parent. Factors enhancing seed weight were detected in accession No.138 of L. orientalis, indicating the potential of wild genetic resources for seed weight improvement in lentil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号