首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了筛选耐盐小麦新种质,以耐盐小麦品种青麦6号为对照,分别在小麦苗期以相对盐害指数、芽期以根系盐害易感指数和相对苗长为鉴定和评价指标,对选自国际玉米小麦改良中心(CIMMYT)的417份小麦材料进行耐盐性筛选与鉴定。结果显示,有39份小麦种质的耐盐性优于对照,经相关分析和主成分分析发现,总根长SSI值可作为根系耐盐指标用于耐盐性综合评价;结合总根长SSI值、盐害指数和相对苗长的隶属函数综合值进行聚类分析发现,cm58、cm163、cm439和cm440 四份小麦种质的耐盐性优于对照青麦6号,是研究小麦耐盐性和培育耐盐小麦新品种的优异材料。  相似文献   

2.
3.
竹节草种质资源耐盐性初步评价   总被引:1,自引:0,他引:1  
以相对地上干重、相对地下干重、叶片枯黄率、叶片颜色、坪用质量为评价指标,在245 mmol/L Na Cl胁迫下,利用水培法对64份竹节草(Chrysopogon aciculatus)种质资源进行耐盐性初步评价。结果表明,各品系之间存在显著(p0.05)或极显著差异(p0.01),各指标的变异系数范围为20.64%(相对地上部干重)~43.40%(相对坪用质量)。相关性分析结果表明,参数指标间存在显著相关性(p0.05)或极显著相关性(p0.01),相关系数最高达到0.912。利用5个指标对64份品系进行聚类分析,在欧式距离18.0处,分为敏盐型、中间型、耐盐型三大类。  相似文献   

4.
本研究旨在筛选耐盐种质,为培育适宜中国盐碱土种植的结缕草新品种提供优良亲本。采用土培法对来自华东地区的41份结缕草属(Zoysia)种质的耐盐性差异进行评价。处理60 d后发现20 g/L的NaCl胁迫下结缕草种源间的生长存在显著差异,其中相对根系干重、相对地上部干重、相对全株干重的变异系数分别为44.86%、31.09%和31.51%。采用隶属函数值的综合评价方法对供试材料的耐盐性划分为5个等级,处于1~3级的(耐盐型)共14个;处于第4级的(中间型)共13个;处于第5级的(敏盐型)共14个。其中,沟叶结缕草最耐盐,中华结缕草处于中间型。筛选出最耐盐的5份种质是依次是Z36、Z35、Z09、Z22和Z05,最敏盐的5份种质依次是Z03、Z31、Z13、Z29和Z43。  相似文献   

5.
Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes   总被引:2,自引:0,他引:2  
In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage(35 d after transplanting), plants were exposed to different salinity levels(0, 20, 40 and 60 mmol/L NaCl). Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K~+/Na~+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.  相似文献   

6.
Salt stress is a major problem in most of the rice growing areas in the world. A major QTL Saltol associated with salt tolerance at the seedling stage has been mapped on chromosome 1 in rice. This study aimed to characterize the haplotype diversity at Saltol and additional QTLs associated with salt tolerance. Salt tolerance at the seedling stage was assessed in 54 rice genotypes in the scale of 1 to 9 score at EC = 10 d Sm-1 under controlled environmental conditions. Seven new breeding lines including three KMR3/O. rufipogon introgression lines showed similar salt tolerant ability as FL478 and can be good sources of new genes/alleles for salt tolerance. Simple sequence repeat(SSR) marker RM289 showed only two alleles and RM8094 showed seven alleles. Polymorphic information content value varied from 0.55 for RM289 to 0.99 for RM8094 and RM493. Based on 14 SSR markers, the 54 lines were clearly separated into two major clusters. Fourteen haplotypes were identified based on Saltol linked markers with FL478 as the reference. Alleles of RM8094 and RM3412 can discriminate between the salt tolerant and susceptible genotypes clearly and hence can be useful in marker-assisted selection at the seedling stage. Other markers RM10720 on chromosome 1 and RM149 and RM264 on chromosome 8 can also distinguish tolerant and susceptible lines but with lesser stringency.  相似文献   

7.
Breeding for salinity tolerance using Bangladeshi rice landraces and understand genetic diversity has been limited by the complex and polygenic nature of salt tolerance in rice genotypes. A genetic diversity and association mapping analysis was conducted using 96 germplasm accessions with variable response to salt stress at the seedling stage. These included86 landraces and 10 indica varieties and lines including Nona Bokra, from southern Bangladesh. A total of 220 alleles were detected at 58 Simple Sequence Repeat(SSR) marker loci randomly distributed on all 12 rice chromosomes and 8 Sequence Tagged Site(STS) markers developed for genes SKC1, DST, and SalT. The average gene diversity was 0.5075 and polymorphism information content value was 0.4426, respectively. Cluster analysis revealed that 68 and 21 accessions were clustered into 2 distinct groups, possibly corresponding to indica and japonica groups, respectively and the remaining 7 landraces were classified as an admixed group. In addition to Wn11463, the STS marker for SKC1, RM22418 on Chr. 8 was significantly associated with salinity tolerance, at the location of a QTL detected in previous studies. Our findings of favorable alleles associated with salinity tolerance in Bangladeshi rice landraces, as well as the development of STS markers for salt tolerance genes, will be helpful in future efforts to breed salinity tolerance in rice.  相似文献   

8.
江淮地区是我国大豆重要产区,季节性干旱时有发生,发掘适合本地区种植的耐旱新材料十分必要。选用210份江淮大豆育成新品种(系)及其部分亲本为材料,于2015和2016两年进行旱棚盆栽试验,以地上部干重、株高、主根长和根干重4个性状的耐旱系数为指标,通过主成分分析、隶属函数值法和聚类分析对其苗期耐旱性进行综合评价。结果表明:与正常供水相比,干旱胁迫下4个性状均显著降低,其中地上部干重、根干重、株高和主根长平均分别减小54%、42%、39%和15%;方差分析显示各性状在水分处理间和材料间均存在极显著差异,而株高和根干重性状上基因型、水分处理和年份三因子间一级互作和二级互作效应均为极显著。地上部干重与株高、根干重间以及主根长与根干重间的耐旱系数存在显著正相关,反映指标间有内在联系;主成分分析提取的前3个相互独立的主成分的累积贡献率达83.61%,能较好地替代原有4个信息部分重叠的性状;进一步获得耐旱性综合评价D值,结合聚类分析将所有材料分为强耐旱、耐旱、中度耐旱、干旱敏感、干旱强敏感5类。共鉴定出强耐旱材料5份(包括IA2077、YC4H/NN88-31//NN73-935、蒙8108、NN88-48/NN86-4和NN88-48/D76-1609)、耐旱材料57份。来自淮南和淮北地区的强耐旱或耐旱材料分别为27份(占该地区83份材料的32.53%)和19份(占该地区76份材料的25.00%)。所得结果可为大豆耐旱遗传育种提供材料。  相似文献   

9.
以具有粗厚山羊草(Aegilops crassa 6x)细胞质的异源细胞质小麦为材料,采用加盐培养基进行幼穗愈伤组织诱导(生长)、盐溶液种子发芽、盐溶液幼苗培养和戍株模拟盐池生长等方法研究了粗厚山羊草细胞质对小麦耐盐性的遗传效应,旨在为小麦耐盐育种提供理论依据和种质资源材料。结果表明:粗厚山羊草细胞质对小麦的耐盐性具有明显的遗传效应,其效应值的性质、大小与核亲本品种的基因型有关,在特定的核质组合中粗厚山羊草细胞质可明显提高小麦的耐盐性。异质系Ae.crassa 6x-鉴26和Ae.crassa 6x-SMH1694在幼穗愈伤组织诱导、种子发芽阶段和三叶期的耐盐性比相应核亲本明显增强。返青期和成熟期的鉴定结果表明,一些经核基因型改良的粗厚山羊草细胞质小麦的耐盐性超过或接近抗盐对照品种科遗26。进一步研究粗厚山羊草细胞质提高小麦耐盐性的遗传机制,必将拓宽小麦耐盐育种途径。  相似文献   

10.
粳稻种质资源芽期耐盐性综合评价与筛选   总被引:5,自引:0,他引:5  
【目的】土壤盐渍化是危害水稻生产的重要非生物胁迫之一。鉴定水稻种质资源发芽期耐盐性,筛选耐盐指标,培育耐盐品种,对水稻生产的发展具有重要意义。【方法】利用125 mmol/L Na Cl溶液对64份粳稻种质资源进行盐胁迫,于胁迫后3 d测定发芽数;胁迫5 d、10 d后,测定发芽数、芽长和根长,并计算相对芽长、根长、发芽势、发芽率、盐害率,发芽指数和活力指数。运用多种统计学方法对各种质资源的芽期耐盐性进行综合评价,分析典型耐盐和盐敏感种质盐胁迫条件下的发芽特征。【结果】相对盐害率与相对根长、相对发芽势、相对发芽率、发芽指数和活力指数均极显著负相关;除相对芽长外各指标间的相关性均达到极显著水平。通过聚类分析将64份粳稻种质资源划分成4个类群。第Ⅰ、Ⅰ类群分别为典型的盐敏感和耐盐类群,第Ⅱ类群为弱耐盐种质为主的混合类群,第Ⅲ类群主要由耐盐种质组成。通过主成分分析将7个评价指标转换为3个主成分,应用隶属函数和权重,获得了客观评价粳稻种质资源耐盐性的综合评价值D。分别选取D值最高和最低的5份种质资源进行芽期耐盐指标的差异显著性分析,结果表明,两组种质资源盐胁迫5 d的各评价指标差异均达到极显著水平,10 d的评价指标除相对芽长外,均达到了显著差异水平。【结论】水稻芽期对盐胁迫较为敏感,且耐盐性不同的种质间差异显著。利用逐步回归和主成分分析获得发芽指数、相对根长和相对盐害率3个指标,可作为快速鉴定粳稻种质资源芽期耐盐性的重要指标,若采用多元统计方法评价可靠性更高。  相似文献   

11.
The key for rice plant survival under Na Cl salt stress is maintaining a high K~+/Na~+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K~+/Na~+ ratios. Seventeen SSR markers reported to be associated with K~+/Na~+ ratio were used to screen the accessions. Five SSR markers(RM8053, RM345, RM318, RM253 and RM7075) could differentiate accessions classified based on their K~+/Na~+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K~+/Na~+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.  相似文献   

12.
Variation in nitrogen (N) acquisition ability is known to exist among maize genotypes. Field experiments were conducted and the N-efficient maize inbred line 478 and the N-inefficient line Wu312 were employed to illustrate whether the amount of N taken up in maize plants with different N acquisition ability was determined by the shoot growth potential or by the root size. To meet the accelerated growth of the shoot from the jointing stage to the grain-filling stage, the net N gain in whole plants of both genotypes increased dramatically and accounted for 77% and 74% of the total N increment in 478 and Wu312, respectively. Similarly, the 4th to 8th nodal root whorls were initiated predominantly between 35 and 76 d after sowing, which accounted for about 90% of the total root length on 93 d after sowing. The whole plant N content of the N-efficient 478 was significantly higher than that of the N-inefficient Wu312. 478 had also longer root length, including axial and lateral roots, of the embryonic roots and each whorl of shoot-borne roots, and greater root length density (RLD) than Wu312. In spite of the smaller root size, Wu312 had higher shoot N concentration than 478 during the whole growth period, implying that N was not limited for shoot growth in Wu312. It was concluded that maize root growth, especially initiation and development of the shoot-borne roots, as well as the amount of N taken up were coordinated with shoot growth and demand for nutrients. Although a large root system and high RLD in the soil profile were beneficial for efficient N acquisition, amount of N taken up by the two maize genotypes in the presence of sufficient N supply was determined by the shoot growth potential, and not by the root size.  相似文献   

13.

Background

Fe toxicity occurs in lowland rice production due to excess ferrous iron (Fe2+) formation in reduced soils. To contribute to the breeding for tolerance to Fe toxicity in rice, we determined quantitative trait loci (QTL) by screening two different bi-parental mapping populations under iron pulse stresses (1,000 mg L−1 = 17.9 mM Fe2+ for 5 days) in hydroponic solution, followed by experiments with selected lines to determine whether QTLs were associated with iron exclusion (i.e. root based mechanisms), or iron inclusion (i.e. shoot-based mechanisms).

Results

In an IR29/Pokkali F8 recombinant inbred population, 7 QTLs were detected for leaf bronzing score on chromosome 1, 2, 4, 7 and 12, respectively, individually explaining 9.2-18.7% of the phenotypic variation. Two tolerant recombinant inbred lines carrying putative QTLs were selected for further experiments. Based on Fe uptake into the shoot, the dominant tolerance mechanism of the tolerant line FL510 was determined to be exclusion with its root architecture being conducive to air transport and thus the ability to oxidize Fe2+ in rhizosphere. In line FL483, the iron tolerance was related mainly to shoot-based mechanisms (tolerant inclusion mechanism). In a Nipponbare/Kasalath/Nipponbare backcross inbred population, 3 QTLs were mapped on chromosomes 1, 3 and 8, respectively. These QTLs explained 11.6-18.6% of the total phenotypic variation. The effect of QTLs on chromosome 1 and 3 were confirmed by using chromosome segment substitution lines (SL), carrying Kasalath introgressions in the genetic background on Nipponbare. The Fe uptake in shoots of substitution lines suggests that the effect of the QTL on chromosome 1 was associated with shoot tolerance while the QTL on chromosome 3 was associated with iron exclusion.

Conclusion

Tolerance of certain genotypes were classified into shoot- and root- based mechanisms. Comparing our findings with previously reported QTLs for iron toxicity tolerance, we identified co-localization for some QTLs in both pluse and chronic stresses, especially on chromosome 1.  相似文献   

14.
This study characterized Pokkali-derived quantitative trait loci (QTLs) for seedling stage salinity tolerance in preparation for use in marker-assisted breeding. An analysis of 100 SSR markers on 140 IR29/Pokkali recombinant inbred lines (RILs) confirmed the location of the Saltol QTL on chromosome 1 and identified additional QTLs associated with tolerance. Analysis of a series of backcross lines and near-isogenic lines (NILs) developed to better characterize the effect of the Saltol locus revealed that Saltol mainly acted to control shoot Na+/K+ homeostasis. Multiple QTLs were required to acquire a high level of tolerance. Unexpectedly, multiple Pokkali alleles at Saltol were detected within the RIL population and between backcross lines, and representative lines were compared with seven Pokkali accessions to better characterize this allelic variation. Thus, while the Saltol locus presents a complex scenario, it provides an opportunity for marker-assisted backcrossing to improve salt tolerance of popular varieties followed by targeting multiple loci through QTL pyramiding for areas with higher salt stress.  相似文献   

15.
Phosphorus(P) deficiency in soil is a major constrain for rice production. An important set of rice genotypes(landraces, old improved and new improved varieties) were screened for P deficiency tolerance in two major cropping seasons of Sri Lanka, in 2012. The Ultisol soil, which was collected from a plot cultivated with rice without fertilizer application for past 40 years(P0) at the Rice Research and Development Institute(RRDI), Bathalagoda, Sri Lanka, was used as the potting medium for greenhouse trials. Two field trials were conducted in the same plots at RRDI. Both P0 and P30(30 mg/kg P2O5) conditions were used in the two greenhouse trials. At the early vegetative(three weeks after transplanting), late vegetative(six weeks after transplanting) and flowering stages, plant height and number of tillers per plant were recorded. At the flowering stage, shoots were harvested and shoot dry weight, shoot P concentration, shoot P uptake and P utilization efficiency were measured. All data were statistically analyzed using analysis of variance, regression and cluster procedures. The measured parameters were significantly different between P0 and P30 conditions(P < 0.05). Higher shoot dry weight was reported by the rice genotypes H4 and Marss under P0 conditions. The regression analysis between shoot dry weight and P utilization efficiency revealed that the studied rice genotypes could be categorized to three P deficiency tolerance classes. A total of 13 genotypes could be considered as highly tolerant and 4 genotypes as sensitive for P deficiency. These results could be used to select parental genotypes for breeding and genetic studies and also to select interesting varieties or landraces for organic rice production.  相似文献   

16.
干旱是威胁油菜生产的重要非生物逆境,建立有效的耐旱鉴定方法,筛选鉴定耐旱油菜种质资源,对培育油菜耐旱新品种、提高油菜稳产性具有重要意义。本文以107份甘蓝型油菜微核心种质为材料,设置正常供水和干旱2个处理,采用干旱-复水-干旱-复水的处理方法,通过测定旱害指数、叶片萎蔫指数、地上部鲜重胁迫指数、地上部干重胁迫指数、根鲜重胁迫指数、根干重胁迫指数、植株总鲜重胁迫指数、植株总干重胁迫指数等指标,评价油菜种质耐旱性变异,筛选理想的耐旱评价指标。结果表明,干旱严重抑制了甘蓝型油菜的生长,8个评价指标均表现出显著差异,并呈正态分布。地上部鲜重胁迫指数、植株总鲜重胁迫指数和旱害指数3个指标之间显著相关,可作为甘蓝型油菜苗期耐旱性的主要评价指标,其中地上部鲜重胁迫指数最为简便、准确和有效;综合应用这3个评价指标,明确了107份微核心种质耐旱性,筛选出2份高耐旱种质,为耐旱相关研究及育种提供了评价方法和材料。  相似文献   

17.
Saline soils hamper various physiological functions in soybean [Glycine max (L.) Merr.]. One example is the reduction in nitrogen (N) uptake capacity, a major dysfunction that limits soybean growth and yield under saline conditions. Previous studies have revealed that tolerance to salinity varies with cultivar; however, the cultivars used in these studies were selected solely based on agro-morphological traits. In this study, we examined genotypic variation in salinity tolerance among 85 soybean genotypes which were selected based on an assessment of both single nucleotide polymorphisms (SNP) markers and agro-morphological traits. Additionally, we examined whether salt tolerance is associated with nodulation and N uptake. We used a subset of the world soybean mini-core collection (80 cultivars) and an additional five cultivars/genetic lines (NILs72-T, NILs72-S, Enrei, En-b0-1, and En1282). All plants were grown in pots and treated with saline (final concentration of 150 mM NaCl) during the vegetative growth stage. To evaluate salinity tolerance, we used the ratio of saline-treated (S) to control (C) plant total dry weight [DW (S/C)]. The ratio differed markedly according to genotype. Furthermore, salinity-tolerant genotypes exhibited superior nodulation, leaf greenness, and N uptake under saline conditions. These results indicate that there is a marked genotypic variation in salinity tolerance, and that the tolerant genotypes exhibit greater nodulation and N uptake, although further studies are needed to clarify whether the superior nodulation and N uptake of salinity-tolerant genotypes are responsible for the observed tolerance.  相似文献   

18.
花生苗期干旱处理后转录和代谢通路分析   总被引:2,自引:0,他引:2  
为解析花生耐旱性的调控基础,本研究通过对10个不同的花生材料苗期进行干旱-复水实验,结合转录组分析,探讨了干旱条件下不同花生材料抵御干旱胁迫的分子机制。研究结果显示,来源于非洲的花生材料Waliyar Tiga耐旱性最强,其次是kQ044抗青、中花16和早花生,干旱敏感的材料为狮头企、山花13、ICGV86745以及丰花2号;耐旱及干旱敏感材料的根冠比存在显著差异,耐旱材料的根冠比平均值为35.0%,干旱敏感材料的根冠比平均值为15.26%。早花生和中花16的根冠比最大。转录组结果表明抗感材料的差异表达基因主要富集在氧化磷酸化、光合作用和植物代谢途径;通过差异基因富集分析发现,耐旱材料在干旱条件下生长素应答途径基因的表达明显弱于敏感材料。生理和转录组的结果表明耐旱材料利用发达的根系系统、能量代谢的提升、次生代谢的加强和生长的抑制四个方面共同应对干旱胁迫。抗旱材料中花16和Waliyar Tiga在干旱条件下均具有较强的光合作用和氧化磷酸化的能力,中花16的根冠比显著大于Waliyar Tiga,但其耐旱性不及Waliyar Tiga,推测可能源于其较大的叶面积导致更多的叶面水分散失,从而使其耐旱能力低于Waliyar Tiga。  相似文献   

19.
刘莹  盖钧镒  吕慧能 《大豆科学》2007,26(2):127-133
从301份黄淮海和长江中下游地区代表性大豆地方品种和育成品种(系)中按根系类型选取62份,用以研究不同生态区大豆苗期根系性状的遗传特点、与地上部性状的相关以及与逆境胁迫的关系.大豆苗期一级侧根数、主根长、根干重、总根长和根体积等性状,在品种间、各苗龄间均存在显著遗传变异.不同生态区间生长进度不同,长江中下游晚熟品种的根干重、总根长、根体积发育速度较快,而北方早熟品种的根系发育较慢.根系性状与整株干重呈高度相关;根干重、根总长和根体积的相对值与耐旱平均隶属函数值,一级侧根数、主根长、总根长、根体积、根干重的相对值与耐铝毒平均隶属函数值呈极显著相关,且根系性状的相对值在品种间存在显著变异,可用做耐逆性选择的根系指标.黄淮海区品种的耐旱相关根系性状值高于长江中下游区品种,表明耐旱种质的相关根系性状具有生态适应性.  相似文献   

20.
大豆耐铝毒基因型筛选及筛选指标的研究   总被引:21,自引:2,他引:21  
通过溶液培养试验,研究了来自华东、东北地区18个优质大豆品种(系)对铝毒的反应.通过比较不同基因型各性状的相对耐性值及其与综合评价系数的相关性分析,明确了相对根系干重、相对地上部干重、相对株高、相对叶面积等可作为大豆耐铝毒基因型筛选的重要指标.提出了基于各种性状平均意义上的综合评价系数,并根据已筛选的鉴定指标计算了耐铝毒综合系数.在此基础上筛选出4个具有较强耐铝毒能力的大豆基因型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号