首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this work, we developed a new method that can achieve immobilization and protection of the Cu NPs coating on the cotton fabrics by a simple two-step impregnation method. Firstly, L-cysteine (Cys) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then Cu NPs were introduced on the fabric surface in the presence of a protective reagent, citric acid. Due to the doubled stabilization acts of Cys and citric acid, the Cu NPs immobilized on the fabric surface showed an excellent antibacterial effect and outstanding laundering durability. As a result, the mean size of the Cu NPs coating on the cotton fabric is about 62.4 nm, and the modified cotton fabrics showed satisfactory antibacterial ability against both S. aureus and E. coli, which the bacterial reduction rates are all higher than 98 % even withstand 50 washing cycles. Therefore, this method to prepare antibacterial cotton fabrics showed great potential applications in socks, cosmetic, and medical textiles.  相似文献   

2.
In this study, durable antibacterial cotton fabrics were prepared by a simple two-step impregnation method. Firstly, thioglycolic acid (TGA) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then silver nanoparticles (Ag NPs) were immobilized on the cotton fabric surface via coordination bonds with the TGA thiol groups. As a result, the mean size of Ag NPs coating on the cotton fabric is around 74 nm, and these functionalized cotton fabrics show superior antibacterial properties and excellent laundering durability. After withstand 50 laundering cycles, the obtained cotton fabrics still showed outstanding bacterial reduction rates (BR) against both S. aureus and E. coli, and the rates are all higher than 97 %. Therefore, this method to prepare antibacterial cotton fabric shows great potential applications in socks, cosmetic, and medical textiles.  相似文献   

3.
L-cysteine (Cys) and silver nanoparticles (Ag NPs) were successfully linked onto the cotton fabric surfaces. The Cys molecules were covalently linked to the cotton fibers via esterification with the cellulose hydroxyl groups, and the Ag NPs tightly adhered to the fiber surface via coordination bonds with the Cys thiol groups. As a result, the Ag NPs coating on the cotton fabric showed an excellent antibacterial function with an outstanding laundering durability. The bacterial reduction rates (BR) efficiency reached 100 % for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). After 50 consecutive laundering cycles, the bacterial reduction rates (BR) against E. coli and S. aureus were maintained over 97 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

4.
This article focuses on the functional finishing of textiles using silver nanoparticles (AgNPs) and chitosan derivative binder, which was synthesized by a modification of chitosan using α-ketoglutaric acid. The binder covalently linked to cotton fabric via esterification of the hydroxyl groups on the cotton surface, and tightly adhered to surface of the AgNPs by coordination bonds. As a result, the coating of AgNPs on the cotton fabric showed excellent antibacterial property and laundering durability. After 30 consecutive laundering cycles, the Ag content on the fabrics decreased to 37.6 %, but the bacterial reduction rates against both S. aureus and E. coli were maintained over 95 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

5.
A novel antibacterial agent polysulfopropylbetaine (PSPB) bearing carboxyl groups was synthesized and its application on cotton fabric to provide durable antibacterial property was also presented. The successful synthesis of PSPB and its immobilization onto the cotton fabric surface were verified by a series of tests including FTIR, 1H NMR, XPS and SEM. Viable cell counting method was employed to investigate antibacterial properties of the finished cotton fabrics. It was found that the cotton fabrics treated with PSPB were endowed with desirable antibacterial activity against both gram-negative bacteria Esherichia coli (E.coli, AATCC 6538) and gram-positive bacteria Staphylococcus aureus (S.aureus, AATCC 25922), with the bacterisotatic rates of 99.69 % and 99.95 %, respectively. Notably, the bacterial reduction rates still maintained over 90 % against both bacteria even after 50 consecutive laundering cycles. Moreover, tests concerning the hydrophilicity, air permeability, water vapor transmission, mechanical properties as well as thermal properties were carried out systematically. The experimental results indicated the hydrophilic performance, air permeability and moisture penetrability of the cotton fabrics finished with PSPB were improved greatly in spite of a slight reduction in thermal performance and little obvious influence on mechanical performance. The antibacterial cotton fabric has the potential to be applied in sportswear, underwear, household textiles, medical fields and much more.  相似文献   

6.
The fabric used for intimate apparel is widely required to have excellent antibacterial and comfort performances. In order to improve its antibacterial ability, this paper studied chitosan-silver finishing on the cotton knitted fabric. The study indicates that the chitosan-silver attached to the fabric exhibits excellent antibacterial action against the typical bacteria of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureu). The anti-bacterial mechanism of chitosan-silver against E. coli and S. aureu were investigated. To guarantee its prominent comfort performance, measurements were made on the finished fabric of its air permeability, water vapor transmission, hydrophily, surface friction and bending ability against the control fabric, which is currently used for intimate apparel. The antibacterial and comfort performances were compared between the tested fabrics. The results show that the air permeability and the hydrophily of the finished cotton fabric are significantly better than the control one, while the water vapor transmission, the surface friction and the adjustable rate remain similar to each other. The bending rigidity of the finished fabric is slightly better due to the attachment of chitosan within accepted threshold. The dual compounding theory of chitosan-silver proves to be useful for a higher synergistic effect of anti-bacteria, lower whiteness degradation and overall optimization of comfort performance. This dual compounding theory of chitosan-silver is valuable for improving antibacterial and comfort performances of intimate apparel.  相似文献   

7.
In this study, a facile method was developed to coat AgCl nanoparticles (NPs) onto knitted cotton fabrics. The AgCl NPs were characterized by ultraviolet absorption spectrum, X-ray diffraction (XRD) and dynamic laser light scattering (DLS). The AgCl NPs were coated onto cotton fabrics through a pad-dry-cure process with the assistance of 1,2,3,4- butanetetracarboxylic acid (BTCA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ICP-OES analysis and energy-dispersive X-ray spectroscopy (EDX) confirmed that AgCl NPs were successfully coated onto cotton fabrics. The prepared cotton samples exhibited excellent antimicrobial activity against both Gram-positive S. aureus and Gram-negative K. pneumonia bacteria. Rat skin fibroblast cytotoxicity testing demonstrated the treated cotton fabrics to be non-toxic. The washing durability evaluation showed that the antimicrobial function of cotton fabrics was durable to washing. In addition, the wrinkle resistance of the coated cotton fabrics was improved and there was no obvious change in whiteness.  相似文献   

8.
There has been growing interest in the use of bioresource waste for natural dyeing and finishing. This paper discusses dye extraction from the novel source fruit shell waste of Sterculia foetida and its application on mulberry silk fabric to confer aesthetic coloration and wellness properties such as ultra-violet (UV) protection and antibacterial properties. Treated fabrics showed a substantial increase in color depth and adequate wash, light, and rubbing fastness properties for dyed silk fabrics with and without mordanting. Pre-and post-mordanting of silk fabrics were carried out using mordants such as alum, harda (myrobalan), and copper sulfate. UV-visible spectrophotometric analysis of fruit shell extract (FSE) at different pHs and FSE with three different mordants at neutral pH was used to understand the phenomena of dye-fiber interaction. The treated fabrics characterised by ATR-FTIR, SEM-EDS, and XRD analysis indicate the nature of dye fiber interaction justifying the multifunctional properties. The treated fabric also showed very good ultraviolet protection property and antibacterial properties both against S. aureus and E. coli bacteria even after ten washes. The results indicate that Sterculia foetida fruit shell extract offers an excellent potential as coloration, antibacterial, and ultraviolet protective agent for mulberry silk fabric.  相似文献   

9.
In this study, Berberis vulgaris L. wood as an agricultural waste was used for dyeing and functional finishing of cotton. To facilitate the attachment of natural dye, citric acid was used to create carboxylic acid functional groups on cotton fibers. The process of crosslinking of cotton fabric with citric acid was optimized in order to obtain the maximum dyeability with the cationic natural dye. The effects of three important factors including citric acid concentration, sodium hypophosphite concentration and curing temperature on the color strength of the dyed samples with woods of barberry tree were analyzed by response surface methodology and the optimum conditions for obtaining the highest color strength was obtained. The crosslinking of citric acid on cotton fibers was confirmed by FTIR spectroscopy. The dyed sample prepared under the optimum conditions of crosslinking showed good wash and light fastness properties besides very good antibacterial activity against gram-negative and gram-positive bacteria.  相似文献   

10.
A novel reactive flame retardant (FR) containing phosphorus, nitrogen, and silicon was synthesized successfully, and its chemical structure was fully characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectrometry (1H-NMR and 31P-NMR). Then it was used to impart flame resistance to cotton fabrics. Vertical flammability and limiting oxygen index test were used to evaluate the flame retardancy of the cotton fabrics treated with FR. When the cotton treated with 150 g/l FR and 50 g/l sodium hypophosphite, the finished cotton can pass the vertical flammability test. Thermogravimetry (TG) was used to evaluate thermal behavior of FR and cotton fabrics. TG results demonstrated that the FR has good thermostability and char-forming ability. After treatment with FR, the thermal stability of the cotton fabrics was clearly improved, indicating that the FR can protect cotton fabric from fire to a certain degree. Furthermore, attenuated total reflection Fourier transform infrared spectroscopy was utilized to characterize the chemical structure of FR treated cotton fabrics. Finally, the surface morphology in different regions of the treated cotton was observed using scanning electron microscopy.  相似文献   

11.
In this study silver nanoparticles with different particle sizes and hence colors were synthesized on silk and cotton fabrics through reduction of silver nitrate. Particle sizes of the silver colloids were measured by dynamic light scattering (DLS). The structure and properties of the treated fabrics were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis reflectance spectroscopy. Various characteristics of the treated fabrics including antibacterial activities against a Gram positive (Staphylococcus aureus) and a Gram negative (Escherichia coli) bacteria, color effect, wash and light fastness, water absorption, fabric rigidity, and UV blocking properties were also assessed. The results indicated that the treated fabrics displayed different colors in the presence of silver nanoparticles with different particle sizes and exhibited good and durable fastness properties. Also, the size of the silver particles had a tangible effect on antibacterial activity of treated fabrics and its antibacterial performance was improved by decreasing the size of particles. Moreover, this process imparted significantly UV blocking activity to fabric samples.  相似文献   

12.
5,5-Dimethyl-3-((3’-triethoxysilylpropylamido)propyl)hydantoin (Si-Hy), a novel N-halamine precursor, has been synthesized in this work. The traditional pad-dry-cure process was used to coat the produced Si-Hy onto cotton fabrics. The coated fabric was characterized by SEM, FTIR and XPS. After exposure to chlorine bleach, the treated fabric presented good antimicrobial ability. The chlorinated sample demonstrated potent antibacterial ability against S. aureus (ATCC 6538) and E. coli O157:H7 (ATCC 43895) in brief contact time. Sixty seven percent of oxidative chlorine was retained and over 85 % of chlorine could be recharged after storage for 15 days and rechlorination. The antibacterial materials with good biocidal efficacies have potential applications in the healthcare industry.  相似文献   

13.
In this study, natural dyes were extracted from five plants, namely diospyros kaki, dioscorea cirrhosa, millettia (jixueteng), ecliptae, and macrocarpa nucuma, using environmentally-friendly solvents, including ethanol and deionized (DI) water. A plant mordant, tannin extracted from Emblica officinalis G., and a metal mordant, copper sulfate, were used in the pre-dyeing process. Cotton and silk fabric samples were treated using the five natural dyes without and with mordanting for comparison on their color strength and characteristics as well as protection against ultraviolet radiation (UVR). Results revealed that Emblica officinalis G. had the highest total phenol content, followed by dioscorea cirrhosa. The presence of abundant phenolic groups in the natural dyes and mordant makes them effective coloration agents for fabrics. Cotton and silk fabrics dyed using ecliptae without pre-mordanting had the highest K/S values. Silk fabrics had higher K/S values than cotton fabrics, indicating greater color strength in pre-mordanted silk treated with DI water-extracted dyes. Natural mordant used before treatment with natural dyes contribute to significant enhancement in color strength, and Emblica officinalis G. alone could darken the color of cotton and silk fabrics dyed with plant pigment. Moreover, treatment with natural dyes after mordanting can increase ultraviolet protection factor (UPF) and the enhancement in UVR protection is greater and more significant in cotton fabrics than in silk fabrics, and in fabrics treated with DI water-extracted natural dyes than in those treated with ethanol-extracted ones. In conclusion, pre-dyeing with natural mordant followed by treatment with natural dyes extracted using environmentally-friendly solvents can enhance significantly K/S and UPF, offering directions for manufacturing textiles without environmental hazards but with good appearance and health benefits.  相似文献   

14.
In the present work the natural madder dye (Rubia tinctorum L.) was applied to the simultaneous dyeing and functionalization of polyester (PET) fabric. In the first part of the study the color performance and the durability were revealed for exhaustion dyed fabric. The dyed fabric was then characterized with respect to ultraviolet (UV) protection ability and antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). CIELab color coordinates, namely the positive a* and b* values, confirmed a yellow/orange color of the dyed fabric. From durability tests, the color showed a moderate to good light fastness and good to excellent fastness to washing and rubbing. The madder dye improved both the UV protective performance and the antibacterial activity of the fabric. With 3 % on weight of fiber (owf) the UV protection factor increased up to 106, and the antibacterial activity up to 86 % against both types of bacteria tested.  相似文献   

15.
The use of natural dyes and natural finishes on textiles has become a matter of significant importance because of the increased environmental awareness to avoid some hazardous synthetic dyes and synthetic chemicals. The Delonix regia stem shells were extracted in distilled water methanol and ethanol solvents. Phytochemical analysis was carried out for the presence of bioactive chemical constituents such as saponin, terpenoid, flavonoid, glycoside, phenol and tannin using the standard procedure. All the tests showed positive for the presence of components except saponin in methanol and ethanol extract. The qualitative antibacterial analysis was done by AATCC 147 method with excerpts from three different solvents both against S. aureus (gram-positive) and E. coli (gram-negative) bacteria. Delonix regia stem shell extract (DSE) in distil water was used for natural dyeing of mulberry silk fabric. Pre-mordanting and post-mordanting of silk fabric were carried out using alum and myrobalan mordants. Treated fabrics showed a substantial increase in colour depth (K/S) and adequate wash, light and rubbing fastness properties without and with mordanted and dyed silk fabrics. Quantitative antibacterial analysis by AATCC 100 method was done on dyed silk fabric which showed very good resistance both against bacteria S. aureus and E. coli bacteria. Dyed silk fabric also showed good to very good ultraviolet (UV) protection property. The physicochemical composition of the untreated and without mordant treated silk fabrics were analysed by attenuated total reflection (ATR) Fourier transforms infrared (FTIR) spectroscopy, scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and atomic absorption spectrophotometer (AAS). In addition to that wash, durability was also measured of dyed silk fabric for antibacterial and ultraviolet protection (UPF) properties according to AATCC 61 2A washing method.  相似文献   

16.
An alternative approach to application of chitosan based on layer by layer (LbL) assembled technique is studied in this paper. For this aim, chitosan (CHT) was used as a bio-based cationic polyelectrolyte and pentasodium tripolyphosphate (TPP) and poly(sodium 4-styrene sulfonate) (PSS) were selected as anionic polyelectrolyte. TPP/CHT and PSS/CHT based bilayers were fabricated on the cationized woven cotton fabrics via layer-by-layer self-assembly technique. The characterization of coatings on the fabric surface in terms of surface appearance, atomal content, and chemical bondings were made in detail through SEM, XPS, and FTIR-ATR analysis. Also, the antibacterial activity, air permeability, and water contact angle were measured. Surface analyses demonstrate the interaction between TPP, PSS and chitosan separately. XPS spectra also showed the existence of LbL deposition over cotton substrates in terms of both elemental composition and the presence of different types of bondings on the fabric surface. The antibacterial activity analysis revealed that the modified cotton fabric with the addition of CHT/TPP and CHT/PSS bilayers could increase the degree of inhibition on K. pneumanie and S. aureus bacteria.  相似文献   

17.
In the present study, a novel eco-friendly production of silk fabrics dyed with different natural dye bath concentrations (40, 80, 120, 160, 200 and 240 g/l) extracted from neem (Azadirachta indica) leaves was developed. The surface morphology of the fabrics was examined by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy to characterize the chemical structure of the fabrics. The SEM images of the undyed fabric show that the fabric was tightly woven with little porosity between the fibres with dozens of silk threads in orthogonal directions. By increasing the neem concentration, a scale of fine particles grew on the surface of the silk fabrics with little macroscopical defects was demonstrated. The fiber diameters and tightness between filaments were significantly increased. The FTIR displayed that, neem dye does not change the characteristic peaks of the silk fabrics. Also, the evaluation of the antimicrobial activity of the undyed and neem dyed silk fabrics was monitored for Gram positive and Gram negative bacteria in addition to yeasts and fungi by using the agar diffusion method. The comparison between the different dye bath concentrations was based on the inhibition zones obtained after incubation. The antimicrobial activity in leaf extract of neem was estimated in Staphylococcus aureus, Bacillus subtilis and Lactobacillus cereus (Gram positive bacteria); Escherichia coli (Gram negative bacteria); Candida albicans and Candida tropicalis (yeasts); and Aspergillus niger and Fusarium solani (fungi). The results emphasized that, the highest neem dye bath concentration (240 g/l) was found to display good inhibitory effect against the Gram positive and reasonable activity against the Gram negative bacteria. Furthermore, the different dye bath concentrations possess no activities against yeast and fungi. In conclusion, the data reveal that the increase of neem dye concentration does not damage the silk fabric; however, it improves its antimicrobial activity by incorporating with antimicrobial agent. The current study highlighted that using neem leaves had beneficial effect in controlling the pathogenic microbial organisms.  相似文献   

18.
Maleic acid (MA) and itaconic acid (IA) used as crosslinking agents for cotton fabrics are more cost-effective than the most efficient nonformaldehyde crosslinker 1,2,3,4-butanetetracarboxylic acid (BTCA), but poor stability of finishing bath and fabric yellowing are the main disadvantage of MA/IA in situ polymerization and crosslinking system. In this research, the application performance improvement of MA/IA crosslinking system for cotton fabrics was studied. Replacement of the widely used sodium hypophosphite (SHP) with potassium hypophosphite (PHP) as catalyst allowed for obtaining a stable finishing bath under ambient temperature and led to improved final durable press (DP) performance of the treated fabrics. The influences of PHP concentration, curing temperature, and curing time on the performance of finished fabrics were investigated. Cotton fabrics treated by MA/IA/PHP crosslinking system exhibited comparable DP performance and laundering durability to that finished with BTCA. To address the fabric yellowing problem, the residual MA and IA attached on the treated fabrics by single-ended ester linkage was determined by HPLC. The data indicated that the degree of fabric yellowing was linearly related to the unpolymerized carboxylic acid MA and IA concentration on the treated fabrics. Several approaches were explored to improve the whiteness of MA/IA/PHP crosslinked fabrics. It was found that steam drying with 30-50 % humidity could effectively improve fabric whiteness. The findings of this study have significant implications for better application of unsaturated polycarboxylic acids in crosslinking of cellulose.  相似文献   

19.
In this study, an amidoxime-grafted cotton fabric ion exchanger was developed for methylene blue (MB) removal from wastewater. The ability of the amidoxime-grafted cotton fabrics to remove MB ions from an aqueous solution was investigated in equilibrium, kinetics and thermodynamics studies. Equilibrium data agreed well with the Freundlich and Langmuir isotherm models. The result indicated that, based on the Langmuir coefficient, the maximum capacity (monolayer saturation at equilibrium) of the amidoxime-grafted cotton fabric was 22.27 mg/g. The kinetic data were found to follow the pseudo-second-order model, and intra-particle diffusion is the sole rate-controlling factor. Negative values of ΔG 0, ΔH 0, and ΔS 0 revealed the spontaneous, exothermic and entropy-driven nature of the process.  相似文献   

20.
In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of polyester fabric using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at different bath conditions, ultrasound and stirrer, resulting in formation of ZnO nanospheres and ZnO nanorods. The presence of zinc oxide with different shapes on the surface of the polyester fabrics was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Also, the X-ray diffraction patterns established the composition of wurtzite structure of zinc oxide. The self-cleaning property of treated polyester fabrics was evaluated through discoloring dye stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyester fabrics were superior compared to the stirrer treated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号