共查询到20条相似文献,搜索用时 208 毫秒
1.
[目的]基于机载高光谱影像的分类研究中,利用不同尺度纹理特征与面向对象分类相结合的方法在树种分类的研究中应用较少,并且相关研究主要针对单一树种识别而不考虑多种树种,因此对于复杂林分中的树种识别能力有待进一步研究.本研究拟探究不同尺度纹理特征结合面向对象的分类技术在树种精细分类中的应用效果.[方法]利用机载高光谱数据进行... 相似文献
2.
该文探讨和评价了利用星载EO-1 Hyperion高光谱遥感数据定量估测森林郁闭度的能力.高光谱数据光谱特征空间降维采用两种方式, 一种是光谱特征选择的波段选择法(BS),另一种是光谱特征提取的主成分变换法(PCA).从森林资源变化图上获取200个样点的实测郁闭度值,130个用于建模,70个用于验证.对应图像的取值采用单像元值(NP)和3×3窗口的平均值(W33) 两种方法.两种光谱特征降维方式和两种图像取值方法构成4种估测模型(BS-NP、BS-W33、PCA-NP和PCA-W33).分析过程为:①对图像进行预处理,选出质量好的波段;②采用逐步回归技术提取与郁闭度相关性高的波段或变量;③建立多元回归模型估测郁闭度;④估测精度验证.经检验,估测精度分别为: BS-NP 83.17%、BS-W33 84.21%、 PCA-NP 85.62% 和 PCA-W33 86.34%.初步结果表明,光谱特征提取的主成分变换分析法比光谱特征选择的波段选择法的郁闭度估测更有效;3×3窗口的图像取值方法比单像元取值方法的估测精度高. 相似文献
3.
该文简述了高光谱遥感影像分类的策略,主要有监督分类与非监督分类,基于分类判据的实现策略划分,硬分类和软分类,基于像素的分类和基于对象的分类,单分类器和多分类器集成。并简单介绍了一些分类方法,包括监督分类法(最小距离分类法、最大似然分类法和平行多面体分类法)、基于光谱相似性度量的分类方法、人工神经网络分类法、支持向量机分类、决策树分类、面向对象分类和非监督分类。 相似文献
4.
以吉林省白河林业局为中心研究区,利用星载高光谱Hyperion数据并结合其他辅助数据,综合利用影像光谱特征、纹理特征、地形特征、典型地类和主要森林类型外业调查样本数据,探究针对C5.0决策树算法的高光谱影像土地覆盖类型多层次信息提取与森林类型识别的有效方法。在分析典型地物光谱特征的基础上,优选8种纹理特征,引入主成分分量及与主要森林类型空间分布相关的敏感地形因子,采用分层分类的策略,根据光谱特征将地类划分层次,在层次间建立基于C5.0决策树算法的决策树模型,对研究区的地类进行细分。为便于对比,以相同的策略采用支持向量机(SVM)分类器进行分类。最后,结合野外采集样本并参考高分辨率影像,采用分层随机抽样的独立检验样本对森林类型精细识别结果进行精度验证。结果表明:C5.0决策树算法可综合利用高光谱影像的光谱、纹理及其他辅助数据,自动寻找出区分各类别的最佳特征变量及分割阈值,运算速度快,占用内存较小且无需人为参与,其分类精度达到优势树种级别,总体分类精度达81.9%,Kappa系数0.709 8。 相似文献
5.
高光谱林业遥感分类研究进展 总被引:1,自引:0,他引:1
为了深入了解高光谱分类领域的研究现状,基于Web of Science数据库和CNKI数据库,检索了关于高光谱遥感分类的相关文献,并对文献的分布情况和研究方法等进行了归纳和分析.结果表明,关于高光谱分类的文献发布数量总体呈上升趋势,其中美国的文献发布量最多,热带森林类型受关注最多.采用最多的分类方法有最大似然法、支持向量机、随机森林、光谱角度制图和判别分析5种,5种方法各有优缺点,分类精度都较高,分类敏感波段大多在可见光、近红外和短波红外等波段.该研究可为高光谱林业遥感分类领域森林类型和分析方法的进一步研究提供参考. 相似文献
6.
【目的】农作物精细分类对于农作物长势监测、产量预估、灾害评估、保障国家粮食安全具有重要意义。高光谱遥感影像具有丰富的光谱波段,能够探测到各类农作物之间细微差别,已逐渐成为分类的理想数据源。【方法】研究以由AVIRIS传感器收集的美国加利福尼亚州南部萨利纳斯山谷的农作物区域的高光谱数据为数据源,提出了一种基于条件随机场的高光谱遥感农作物精细分类方法,利用SVM分类器计算各类地物的概率,并定义为条件随机场的一元势函数以融合空间特征信息;将空间平滑项和局部类别标签成本项加入到二元势函数中,以考虑空间背景信息,并保留各类别中的详细信息。最后与传统的最小距离法和SVM算法进行比较。【结果】文章提出的方法较最小距离分类法、SVM传统方法相比,整体精度分别提高了16%和2%,除了C15类(葡萄园3)精度为72.32%与74.11%外,各类地物精度均在94%以上,各种\"椒盐\"噪声与分类混淆现象得到了改善。【结论】实验结果表明,该方法在农作物精细分类应用中具有较大优势。 相似文献
7.
《农技服务》2017,(5):1-3
牛奶是一种非常有营养的乳制品,牛奶中主要有酪蛋白、白蛋白、球蛋白、乳蛋白等蛋白质,所含的20多种氨基酸中有8种氨基酸是人体必须的氨基酸。牛奶中含有的半乳糖和乳糖,是最容易消化吸收的糖类。奶中的矿物质和微量元素都是溶解状态,且各种矿物质的含量比例合适,很容易消化吸收。牛奶经过消毒杀菌后,还需要检测其是否含有致病菌及其菌群的浓度,来判断是否能投入市场。高光谱成像系统结合纹理特征分析可以快速无损检测牛奶中是否含有致病菌,对senth纹理特征值下的各波长的高光谱反射率进行主成分分析得到9个主成分,可以94.93%解释总方差。对经过主成分分析后的数据进行聚类分析,可以较好的区分含菌样本及无菌样本。可以将不同浓度、不同菌种的样本按菌落种类区分开。 相似文献
8.
基于高光谱遥感的农作物分类研究进展 总被引:2,自引:1,他引:2
【目的】农作物类型识别是农作物面积、长势监测与产量预测的重要前提。及时、准确地获取农作物类型、空间分布以及种植面积对制定农业政策、促进社会经济发展和保障国家粮食安全具有重要意义。近年来,高光谱遥感凭借光谱分辨率高、光谱信息丰富等优点,已广泛应用于农作物制图中。【方法】文章归纳了高光谱遥感应用于农作物分类的研究进展,总结了国内外农作物分类常用的高光谱数据源,并分析了各种数据源的适用范围。梳理了农作物高光谱遥感分类方法,讨论了各种分类方法的优缺点。【结果】现有农作物高光谱遥感分类研究存在一些不足:(1)机载高光谱影像光谱分辨率高,但影像监测面积小,不适合大区域农作物面积提取研究;(2)星载高光谱影像监测面积较大,但空间分辨率较低,某些农作物面积提取实际应用中精度较低;(3)由于缺乏对农作物高光谱特征的研究,导致分类算法机理性不足,普适性较差。【结论】农作物高光谱遥感分类未来研究方向是:(1)丰富高光谱遥感监测的农作物类型;(2)提高高光谱影像的空间分辨率,实现农作物种植结构复杂、地块破碎地区的农作物分类研究;(3)进一步研究利用高光谱遥感进行农作物分类的机理和多源数据融合的方法。 相似文献
9.
本文选取珠海一号影像数据,以哨兵二号数据为参考,将平朔矿区按权属划分五个子研究区,采用面向对象结合最邻近特征的分类方法,融合光谱特征、纹理特征、植被指数等特征因子,对珠海一号矿区土地利用分类精度进行评价。研究结果表明:(1)珠海一号分类总体精度为78.87%,Kappa系数为0.7285;哨兵二号分类总体精度为78.38%,Kappa系数为0.7203,珠海一号分类精度略高于哨兵二号;(2)部分耕地、草地、裸地产生误分,可能由于选取影像成像时间过晚地物特征相似导致。总体来说,珠海一号高光谱数据光谱及空间分辨率高,具有应用于矿区生态监测、复垦区植被演替特征等研究的潜力。 相似文献
10.
11.
为探讨高分辨率遥感图像用于中小尺度森林分类的模式,利用SPOT5遥感数据、地面样地调查数据和前期森林资源规划设计调查G IS资料,以图像的光谱和纹理信息为主、历史调查数据的知识为辅构建专家知识分类系统对SPOT5图像进行森林分类,并探讨了历史调查数据在该模式中的贡献率。结果表明,对于所选取的8个类别,总体分类精度达到了92.97%,各类别的分类精度均达到87%以上,分类效果良好;历史调查数据在分类过程中的总体贡献率为11.55%,对提高SPOT5图像分类有较大的帮助作用,尤其对竹林、八角和玉桂、灌木林分类的辅助作用表现更为明显。 相似文献
12.
森林类型遥感分类研究进展 总被引:1,自引:0,他引:1
从光学遥感和微波遥感2方面分析森林类型遥感分类的理论基础,总结国际和国内关于森林类型识别及提取技术,以及森林物理参数估测等方面的相关研究和探讨,归纳目前常用的森林类型遥感分类方法,并介绍其相关研究成果,还从3方面阐述森林类型遥感分类技术的发展趋势。 相似文献
13.
14.
基于RS和GIS的森林火险区划 总被引:3,自引:0,他引:3
以闽北某县(区)域为研究对象,选取地物类型、坡度、海拔、坡向和离居住区远近作为林火评价主要因子,采用层次分析法和综合评价法,对研究区域森林火险情况进行了定量评价.按火险等级,将全区分为5类火险区,实现了研究区森林火险等级的区划.无、低、中、高、极高5类火险区分别占研究区的25.51%、59.27%、10.95%、4.22%和0.05%;居民居住区及周边的火险等级较其他地方高. 相似文献
15.
基于随机森林模型的陆地卫星-8遥感影像森林植被分类 总被引:6,自引:0,他引:6
以黑龙江省漠河县为研究区域,采用陆地卫星-8遥感影像为数据源,结合影像的光谱信息和数字高程模型辅助数据,分别采用最大似然分类法(MLC)和随机森林模型法(RFM)对研究区森林植被进行分类,并分析和评价光谱特征变量对模型的重要性、2种分类方法对森林植被类型分类的适用性。结果表明:随机森林分类方法的总体分类精度为81.65%、卡帕(Kappa)系数为0.812。与传统的MLC方法相比,RFM法均提高了3种森林类型的生产者精度和使用者精度,其中针阔混交林精度提高最多。通过分析特征变量的重要性,发现高程、归一化植被指数、红光波段、近红外波段、短波红外波段对模型分类精度有较重要的影响。说明随机森林模型方法结合多源信息是森林植被类型遥感分类的一种有效手段。 相似文献
16.
人工神经网络在遥感图像森林植被分类中的应用 总被引:10,自引:0,他引:10
应用人工神经网络模型对陆地卫星TM多光谱图像进行了森林植被分类的研究 ,共选取了 8种主要植被类型 ,重点是研究在不同背景条件下存在同谱异物现象的云杉、油松和落叶松等针叶林树种的分类方法 .所采用的网络模型为 3层误差后向传播神经网络模型 ,鉴于贺兰山自然植被垂直带谱明显 ,利用误差后向传播网络模型的并行分布式结构 ,研究中引入高程数据作为一个独立波段与 3个多光谱波段一起直接进行分类 ,取得了很好效果 .该方法与常规的最大似然法相比 ,存在同谱异物现象的云杉、油松和落叶松的分类精度平均提高了 2 7 5个百分点 .对存在同物异谱现象的阔叶林的分类精度也有一定程度的提高 . 相似文献
17.
针对传统支持向量机方法中存在的野值噪声敏感问题,提出了一种基于紧密度的Grey-Sigmoid核函数支持向量机,不仅考虑样本与所属类中心之间的关系,还考虑了各个样本之间的距离。通过样本之间的紧密度来描述各个样本之间的关系,利用包围同一类样本的最小超球半径来衡量样本间的紧密度,样本灰度依据样本在球中的位置确定。通过对田间小麦全蚀病的遥感图像分类的实验验证,证明Grey-Sigmoid核函数和传统的Sigmoid核函数相比,计算速度更快,且精度没有明显损失。 相似文献
18.
19.
20.
基于决策树的土地利用分类方法研究 总被引:4,自引:0,他引:4
以新疆乌鲁木齐市部分区域为研究区,利用主成分分析法对Spot-5影像进行数据压缩,运用灰度共生矩阵对第一主成份进行纹理信息提取,分析Landsat-7影像的光谱特征值及NDVI和NDBI特征值,确定各类地物的综合阈值,最后运用决策树分类法对Landsat-7影像进行分类.将分类结果与最大然法分类结果相比较,结果表明,决策数分类较最大似然法分类的精度提高了5.66; ,Kappa 系数提高了7.89; .说明决策树分类能够灵活、有效运用纹理等辅助信息,更好地区分光谱特征相似的目标地物,具有更高的准确性. 相似文献