首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lunasin and BBI (Bowman Birk protease inhibitor) are bioactive soy peptides that have been shown to be effective suppressors of carcinogenesis in in vitro and in vivo model systems. Since they are subject to digestion in the gastrointestinal tract, we investigated here the stabilities of lunasin and BBI to digestion in vitro by simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). Samples containing lunasin and BBI of varying purities were subjected to in vitro digestion by SIF and SGF at different times and analyzed by Western blot. While the pure BBI reaction is stable after SIF and SGF digestions, the purified lunasin from soybean and synthetic lunasin are easily digested after 2 min in both in vitro digestions. In contrast, lunasin from soy protein containing BBI is comparatively stable after SIF and SGF digestions. Both lunasin and BBI are able to internalize into the cell and localize in the nucleus even after digestion, suggesting that some of the peptides are intact and bioactive. These data suggest that BBI plays a role in protecting lunasin from digestion when soy protein is consumed orally. The role of other soy protease inhibitors such as Kunitz Trypsin Inhibitor (KTI) cannot be excluded from these experiments.  相似文献   

2.
It has been previously demonstrated that lunasin is a novel and promising cancer preventive peptide from soybean. The Bowman-Birk protease inhibitor (BBI) and isoflavones are well-studied substances from soy. This study evaluated the levels and bioactivities of these three compounds as affected by stages of seed development and sprouting under light and dark conditions. BBI and lunasin appear at 7 and 6 weeks, respectively, after flowering and increase as the seed matures. Daidzein and genistein both decrease during seed maturation. During sprouting under light, BBI increases up to the 6th day and decreases thereafter, disappearing at the 9th day after soaking. Under dark conditions, BBI increases up to the 7th day after soaking and decreases thereafter, disappearing at the 10th day. Lunasin starts to decrease at 2 days after soaking and disappears completely at 7 days under light and dark conditions. Daidzein and genistein increase continuously during the 10 days of soaking, and both increase more in the dark than under light conditions. Protein extracts from early seed development (2-5 weeks after flowering) suppress cell viability to a greater degree than those from later stages (6-9 weeks). Inhibition of foci formation by protein extracts from later stages is greater than those from earlier stages. Lunasin and BBI suppress foci formation more than the isoflavones. Sprouting decreases lunasin and BBI contents but increases isoflavones. Protein extracts from early soaking times inhibit foci formation more and suppress cell viability less than those from later soaking times. Light and dark conditions have no influence on the bioactivities of protein extracts. These data are useful in the preparation of soy fractions enriched in lunasin, BBI, and isoflavones and in making dietary recommendations.  相似文献   

3.
Soybean is a complex matrix containing several potentially bioactive components. The objective was to develop a statistical model to predict the in vitro anticancer potential of soybean varieties based on the correlation between protein composition and bioactive components after simulated gastrointestinal enzyme digestion with their effect on leukemia mouse cells. The IC 50 values of the hydrolysates of soy genotypes (NB1-NB7) on L1210 leukemia cells ranged from 3.5 to 6.2 mg/mL. Depending on genotype, each gram of soy hydrolysates contained 2.7-6.6 micromol of total daidzein, 3.0-4.7 micromol of total genistein, 0.5-1.3 micromol of glycitein, 2.1-2.8 micromol of total saponins, 0.1-0.2 micromol of lunasin, and 0.1-0.6 micromol of Bowman-Birk inhibitor (BBI). The IC 50 values calculated from a partial least-squares (PLS) analysis model correlated well with experimental data ( R (2) = 0.99). Isoflavones and beta-conglycinin positively contributed to the cytotoxicity of soy on L1210 leukemia cells. Lunasin and BBI were potent L1210 cell inhibitors (IC 50 = 13.9 and 22.5 microM, respectively), but made modest contributions to the activity of defatted soy flour hydrolysates due to their relatively low concentrations. In conclusion, the data demonstrated that beta-conglycinins are among the major protein components that inhibit leukemia cell growth in vitro. Furthermore, it was feasible to differentiate soybean varieties on the basis of the biological effect of their components using a statistical model and a cell-based assay.  相似文献   

4.
Protease inhibitors play a protective role against pathogenic microorganisms and herbivorous insects. The two predominant protease inhibitors of soybean seeds are the Kunitz trypsin inhibitor (KTI) and Bowman-Birk protease inhibitor (BBI). In this study, we report that soybean seeds incubated in warm water release large amounts of proteins into the surrounding media. Two-dimensional gel electrophoresis analysis of the seed exudates resulted in the separation of 93 distinct protein spots out of which 90 spots were identified by LC-MS/MS. The basic 7S globulin and the BBI are the two predominant proteins found in the soybean seed exudates. In addition to 7S and 11S seed storage proteins, others known to protect the seeds against pathogens and pests including KTI, peroxidase, α-galactosidase, and endo-1.3-β-glucanase were also identified in the seed exudates. Soybean seed exudate obtained by incubating the seeds in warm water was also able to inhibit the growth of human breast cancer cell line MCF-7. Since soybean seeds release large amounts of enzymatically active BBI when immersed in warm water, our procedure could be exploited as a simplified alternative method for the preparation of BBI concentrate which is being used as a cancer chemoprotective agent.  相似文献   

5.
Lunasin is a unique and novel cancer preventive peptide originally isolated from soy. Information on lunasin concentration of soybean cultivars and commercial soy proteins would be useful in developing lunasin-enriched cultivars and soy products. We report the development of an enzyme-linked immunosorbent assay (ELISA) method to identify lunasin and quantify the variations in concentration in 144 selected, diverse soybean accessions from the U.S. Department of Agriculture Soybean Germplasm Collection, several commercially available soy protein fractions and isoflavone-enriched products. With synthetic lunasin and monoclonal antibody, ELISA shows a linear concentration range of 24-72 ng/mL, good reproducibility, a detection limit of 8 ng/mL, and a recovery of 90% on spiked soy samples. Lunasin concentrations in the tested materials range from 0.10 to 1.33 g/100 g flour. Differences that exceeded 100% have been observed among accessions of similar maturity that were grown in the same environment, indicating that genetic differences in soybeans exist for lunasin. The mean of 23 major ancestral lines of U.S. cultivars is similar to the mean of 16 modern cultivars selected to represent the current diversity of the crop, but the highest values were found within the ancestral and exotic accessions. Soy protein concentrate, isolate, and hydrolyzate contain 2.81 +/- 0.30, 3.75 +/- 0.43, and 4.43 +/- 0.59 g lunasin/100 g flour, respectively, while soy flour and soy flakes contain 1.24 +/- 0.22 g lunasin/100 g flour. Isoflavone-enriched products contain very little or no lunasin. The relative mass (M(r)) of lunasin in the samples is 5.45 +/- 0.25 kDa. The wide range of lunasin concentrations within the Glycine max species indicates that the levels of this important bioactive peptide can be genetically manipulated. Furthermore, soy isolates and hydrolyzed soy proteins contain the highest concentrations of lunasin.  相似文献   

6.
The Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI) of trypsin and chymotrypsin contain disulfide bonds. Glycinin, the major storage protein in soybeans also contains disulfide bonds. Treatment of soy white flour with a NADP-thioredoxin system (NTS) effectively reduced disulfide bonds in soy flour and increased protein digestibility by trypsin and pancreatin as measured by the pH stat method. Treatment of soy flour with NTS increased the digestibility compared to soy white flour by 29.3 and 60.6% for trypsin and pancreatin, respectively. NTS-treated soy flour had similar digestibility by trypsin to autoclaved soy flour and casein, but digestibility by pancreatin was less than autoclaved soy flour and casein. The degree of reduction by NTS was highly correlated to the degree of hydrolysis (DH) by trypsin (R(2) = 0.93) and pancreatin (R(2) = 0.99). The DH of NTS-treated soy flour by trypsin is reflective of both inactivation of trypsin inhibitors and overall protein digestibility while pancreatin hydrolysis is reflective of only overall protein digestibility.  相似文献   

7.
Lunasin and Bowman-Birk protease inhibitor (BBI) are two soybean peptides to which health-promoting properties have been attributed. Concentrations of these peptides were determined in skim fractions produced by enzyme-assisted aqueous extraction processing (EAEP) of extruded full-fat soybean flakes (an alternative to extracting oil from soybeans with hexane) and compared with similar extracts from hexane-defatted soybean meal. Oil and protein were extracted by using countercurrent two-stage EAEP of soybeans at 1:6 solids-to-liquid ratio, 50 °C, pH 9.0, and 120 rpm for 1 h. Protein-rich skim fractions were produced from extruded full-fat soybean flakes using different enzyme strategies in EAEP: 0.5% protease (wt/g extruded flakes) used in both extraction stages; 0.5% protease used only in the second extraction stage; no enzyme used in either extraction stage. Countercurrent two-stage protein extraction of air-desolventized, hexane-defatted soybean flakes was used as a control. Protein extraction yields increased from 66% to 89-96% when using countercurrent two-stage EAEP with extruded full-fat flakes compared to 85% when using countercurrent two-stage protein extraction of air-desolventized, hexane-defatted soybean flakes. Extruding full-fat soybean flakes reduced BBI activity. Enzymatic hydrolysis reduced BBI contents of EAEP skims. Lunasin, however, was more resistant to both enzymatic hydrolysis and heat denaturation. Although using enzymes in both EAEP extraction stages yielded the highest protein and oil extractions, reducing enzyme use to only the second stage preserved much of the BBI and Lunasin.  相似文献   

8.
Thermal behavior of lyophilized soy whey (LSW) and whey soy proteins (WSP) at different water contents (WC) was studied by DSC. In anhydrous condition, Kunitz trypsin inhibitor (KTI) and lectin (L) were more heat stable for WSP with respect to LSW sample. The increase of WC destabilized both proteins but differently depending on the sample analyzed. Thermal stability inversion of KTI and L was observed for WSP and LSW at 50.0% and 17.0% WC, respectively, which correspond to the same water-protein content mass ratio (W/P ≈ 1.9). At W/P < 1.9, KTI was more heat stable than L. Before the inversion point, WC strongly modified the peak temperatures (T(p)) of KTI and L for WSP, whereas this behavior was not observed for LSW. The high sugar content was responsible for the thermal behavior of KTI and L in LSW under anhydrous condition and low WC. These results have important implications for the soy whey processing and inactivation of antinutritional factors.  相似文献   

9.
Proteins of soybeans (Glycine max) are widely used in animal and human nutrition. In addition to the bulk of the seed storage proteins, which are classified as albumins and globulins, approximately 6% of soybean proteins are classified as inhibitors of trypsin and chymotrypsin and approximately 0.5% are sugar-binding lectins. The two major classes of inhibitors are the Kunitz trypsin inhibitor, which inhibits trypsin, and the Bowman-Birk inhibitor (BBI), which inhibits both trypsin and chymotrypsin. Unless removed or inactivated, these inhibitors and lectins can impair the nutritional quality and safety of soy-based diets. On the other hand, several studies suggest that BBI can also function as an anticarcinogen, possibly through interaction with a cellular serine protease. Good-quality soybean proteins contribute to the nutritional value of many specialty foods including infant soy formulas and milk replacers for calves, and provide texture to many processed foods. However, they may also induce occasional allergic responses in humans. This paper outlines immunoassays developed to analyze for soy proteins in different soybean lines, in processed foods, and in nonsoy foods fortified with soy proteins. An assessment of the current status of immunoassays, especially of enzyme-linked immunosorbent assays for soybean inhibitors of digestive enzymes, soy globulins, and soy lectins, demonstrates the usefulness of these methods in plant and food sciences and in medicine.  相似文献   

10.
Nutritional and health benefits of soy proteins   总被引:24,自引:0,他引:24  
Soy protein is a major component of the diet of food-producing animals and is increasingly important in the human diet. However, soy protein is not an ideal protein because it is deficient in the essential amino acid methionine. Methionine supplementation benefits soy infant formulas, but apparently not food intended for adults with an adequate nitrogen intake. Soy protein content of another essential amino acid, lysine, although higher than that of wheat proteins, is still lower than that of the milk protein casein. Adverse nutritional and other effects following consumption of raw soybean meal have been attributed to the presence of endogenous inhibitors of digestive enzymes and lectins and to poor digestibility. To improve the nutritional quality of soy foods, inhibitors and lectins are generally inactivated by heat treatment or eliminated by fractionation during food processing. Although lectins are heat-labile, the inhibitors are more heat-stable than the lectins. Most commercially heated meals retain up to 20% of the Bowman-Birk (BBI) inhibitor of chymotrypsin and trypsin and the Kunitz inhibitor of trypsin (KTI). To enhance the value of soybeans in human nutrition and health, a better understanding is needed of the factors that impact the nutrition and health-promoting aspects of soy proteins. This paper discusses the composition in relation to properties of soy proteins. Also described are possible beneficial and adverse effects of soy-containing diets. The former include soy-induced lowering of cholesterol, anticarcinogenic effects of BBI, and protective effects against obesity, diabetes, irritants of the digestive tract, bone, and kidney diseases, whereas the latter include poor digestibility and allergy to soy proteins. Approaches to reduce the concentration of soybean inhibitors by rearrangement of protein disulfide bonds, immunoassays of inhibitors in processed soy foods and soybean germplasm, the roles of phytoestrogenic isoflavones and lectins, and research needs in all of these areas are also discussed. This integrated overview of the widely scattered literature emphasizes general concepts based on our own studies as well as recent studies by others. It is intended to stimulate interest in further research to optimize beneficial effects of soy proteins. The payoff will be healthier humans and improved animal feeds.  相似文献   

11.
Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI) have trypsin inhibitor activities (TIA), which could cause pancreatic disease if at a high level. It is not clear why some KTI and BBI lose TIA and some does not in the soymilk processing. This would be examined in this study. TIA assay showed residual TIA was decreased with elevated temperature and TIA was decreased quickly in the beginning and then slowly in boiling water bath. Interestingly, ultracentrifugation showed low residual TIA soymilk had more precipitate than high residual TIA soymilk and soymilk TIA loss had a high correlation coefficient (R(2) > 0.9) with precipitate amount. In addition, the TIAs of floating, supernatant, and precipitate obtained by ultracentrifugation were assayed and >80% residual TIA was concentrated in the supernatant. Tricine-SDS-PAGE showed KTI in supernatant was mainly a noncovalent bound form which might exist as itself and/or incorporated into a small protein aggregate, while KTI in precipitate was incorporated into a protein aggregate by disulfide and/or noncovalent bonds. Chymotrypsin inhibitor activity (CIA) assay showed about 89% of the original CIA remained after 100 °C for 15 min. Ultracentrifugation showed that >90% residual CIA was concentrated in supernatant. Tricine-SDS-PAGE showed soymilk (100 °C, 15 min) BBI mainly existed in supernatant but not in precipitate. It was considered that BBI tended to exist as itself with its natural conformation. Thus, it was suggested residual TIA was mainly from the free BBI and TIA inactivation was mainly from KTI incorporation into protein aggregate. This study is meaningful for a new strategy for low TIA soymilk manufacture based on the consideration of promoting protein aggregate formation.  相似文献   

12.
Seed protein concentration of commercial soybean cultivars calculated on a dry weight basis ranges from approximately 37 to 42% depending on genotype and location. A concerted research effort is ongoing to further increase protein concentration. Several soybean plant introductions (PI) are known to contain greater than 50% protein. These PIs are exploited by breeders to incorporate the high-protein trait into commercial North American cultivars. Currently, limited information is available on the biochemical and genetic mechanisms that regulate high-proteins. In this study, we have carried out proteomic and molecular analysis of seed proteins of LG00-13260 and its parental high-protein lines PI 427138 and BARC-6. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed that the high-protein lines accumulated increased amounts of beta-conglycinin and glycinins, when compared with Williams 82. High-resolution two-dimensional electrophoresis utilizing pH 4-7 and pH 6-11 ampholytes enabled improved resolution of soybean seed proteins. A total of 38 protein spots, representing the different subunits of beta-conglycinin and glycinin, were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. High-protein was correlated with an increase in the accumulation of most of the subunits representing beta-conglycinin and glycinin. Comparisons of the amino acid profiles of high-protein soybean lines revealed that the concentration of sulfur amino acids, a reflection of protein quality, was not influenced by the protein concentration. Southern blot analysis showed the presence of genotypic variation at the DNA level between PI 427138 and BARC-6 for the genes encoding group1 glycinin, beta-conglycinin, Bowman-Birk inhibitor (BBI), and the Kunitz trypsin inhibitor (KTI). LG00-13260 inherited the allelic variants of the parental line PI 427138 for glycinin, beta-conglycinin, and KTI, while BBI was inherited from the parental line BARC-6. The results of our study indicate that high-seed protein concentration is attributed to greater accumulation of specific components of beta-conglycinin and glycinin subunits presumably mediated by preferential expression of these genes during seed development.  相似文献   

13.
14.
The nutritional and health benefits of soy protein have been extensively studied over recent decades. The Bowman-Birk inhibitor (BBI), derived from soybeans, is a double-headed inhibitor of chymotrypsin and trypsin with anticarcinogenic and anti-inflammatory properties, which have been demonstrated in vitro and in vivo. However, the lack of analytical and purification methodologies complicates its potential for further functional and clinical investigations. This paper reports the construction of anti-BBI antibody fragments based on the principle of protein design. Recombinant antibody (scFv and diabody) molecules targeting soybean BBI were produced and characterized in vitro (K(D)~1.10(-9) M), and the antibody-binding site (epitope) was identified as part of the trypsin-specific reactive loop. Finally, an extremely fast purification strategy for BBI from soybean extracts, based on superparamagnetic particles coated with antibody fragments, was developed. To the best of the authors' knowledge, this is the first report on the design and characterization of recombinant anti-BBI antibodies and their potential application in soybean processing.  相似文献   

15.
Amaranth seeds are rich in protein with a high nutritional value, but little is known about their bioactive compounds that could benefit health. The objectives of this research were to investigate the presence, characterization, and the anticarcinogenic properties of the peptide lunasin in amaranth seeds. Furthermore, to predict and identify other peptides in amaranth seed with potential biological activities. ELISA showed an average concentration of 11.1 microg lunasin equivalent/g total extracted protein in four genotypes of mature amaranth seeds. Glutelin fraction had the highest lunasin concentration (3.0 microg/g). Lunasin was also identified in albumin, prolamin and globulin amaranth protein fractions and even in popped amaranth seeds. Western blot analysis revealed a band at 18.5 kDa, and MALDI-TOF analysis showed that this peptide matched more than 60% of the soybean lunasin peptide sequence. Glutelin extracts digested with trypsin, showed the induction of apoptosis against HeLa cells. Prediction of other bioactive peptides in amaranth globulins and glutelins were mainly antihypertensive. This is the first study that reports the presence of a lunasin-like peptide and other potentially bioactive peptides in amaranth protein fractions.  相似文献   

16.
The Bowman-Birk trypsin-chymotrypsin inhibitor (BBI) from soybean has been described as a potential cancer chemopreventive agent. We have compared the effects of BBI with those of two variant recombinant pea (Pisum sativum L.) seed protease inhibitors, rTI1B and rTI2B, homologous to BBI but differing in inhibitory activity, on the growth of human colorectal adenocarcinoma HT29 cells in vitro. A significant and dose-dependent decrease in the growth of HT29 cells was observed using all protease inhibitors, with rTI1B showing the largest decrease (IC50 = 46 microM). Inclusion of the pan-caspase inhibitor, Boc-D-FMK, did not negate the effects of rTI1B or rTI2B in the cell assays. The relative effectiveness of rTI1B and rTI2B may correlate with a variant amino acid sequence within their respective chymotrypsin inhibitory domain, in agreement with a chymotrypsin-like protease as a potential target.  相似文献   

17.
Lunasin is a unique 43 amino acid soy peptide that has been shown to be chemopreventive in mammalian cells and in a skin cancer mouse model in this work against oncogenes and chemical carcinogens. The observation that lunasin inhibits core histone acetylation led to the proposal of an epigenetic mechanism by which lunasin selectively kills cells that are being transformed by disrupting the dynamics of cellular histone acetylation-deacetylation when the transformation event is triggered by the inactivation of tumor suppressors that function via histone deacetylation. Here is reported for the first time the core histone H3- and H4-acetylation inhibitory properties of lunasin from different Korean soybean varieties used for various food purposes and from tissues of rats fed with lunasin-enriched soy (LES) to measure bioavailability. Lunasin was analyzed by immunostaining and inhibition of core histone acetylation by a non-radioactive histone acetyl transferase assay. Various amounts of lunasin are found in the soybean varieties, which correlated with the extent of inhibition of core histone acetylation. Both soy lunasin and synthetic lunasin inhibit core histone acetylation in a dose-dependent manner. Lunasin in LES is protected from in vitro digestion by pepsin. Lunasin extracted from blood and liver of rats fed with LES is intact and inhibits core histone acetylation.  相似文献   

18.
The composition and contents of nutritional factors such as proteins, lipids, carbohydrates, fibers, amino acids, and antinutritional factors such as trypsin inhibitors, phytic acid, and tannins were compared in soybean and fababean seeds with emphasis placed on the nutritional improvement of the seeds by cortex removal. Protein hydrolysis analysis for both whole seeds and seed with cortex removed revealed the presence of a large amount of lysine, arginine, aspartic acid, glutamic acid, glycine, and leucine while these seeds contained a low level of tryptophan, cystine, and methionine. Some antinutritional factors such as trypsin inhibitors, phytic acid, and tannins were detected in soybean and fababean seeds: phytic acid content and trypsin inhibitor activity were higher in soybean seeds than in fababean seeds while the difference in the tannin content was less pronounced. It was found that most of the tannins occurred in the cortex of the soybean and fababean seeds. Tannins are polyphenolic compounds that readily form indigestible complexes with proteins and other macromolecules under specific environmental conditions. By removal of the cortex, tannins were almost completely eliminated without changes in the protein composition and amino acids. From these results, it is assumed that since soybean and fababean seeds contained a high concentration of antinutritional factors in the cortex such as tannins, the utilization of the legume seeds after removal of all of the cortex is suitable for human diet or industrial products.  相似文献   

19.
高春霞  王凤忠  袁莉 《核农学报》2019,33(5):962-968
大豆是一种优质的蛋白质资源。大豆种子发芽过程中大豆多肽、大豆异黄酮、大豆皂苷、γ-氨基丁酸及维生素C等活性物质含量增加,大豆胰蛋白酶抑制剂、血球凝集素、脂肪氧化酶和植酸等抗营养因子含量下降。随着发芽时间的延长,大豆DPPH自由基清除能力和铁还原力等抗氧化能力增强。因此,发芽可作为提高大豆及其制品的营养价值、消化性、适口性及生物利用性的重要手段。本文对发芽期间大豆中生物活性物质、抗营养因子及抗氧化活性的变化进行综述,并展望了发芽大豆的综合性应用,以期明确大豆发芽过程中各活性物质变化规律,为发芽大豆在食品中的应用提供科学依据。  相似文献   

20.
Bioactive compounds in legumes and their germinated products   总被引:1,自引:0,他引:1  
Nineteen domestic legume varieties, including 6 soybeans, 7 black soybeans, 4 azuki beans, and 2 mung beans, were evaluated for contents of dietary fiber, total phenolics, and flavonoids. Nine varieties of legumes (black soybean TN6, TN3, BM, and WY; soybean KS1, KS2, and KS8; azuki bean AKS5 and AKS6) were good sources of bioactive compounds and were selected for germination tests. After short- and long-term germinations, the bioactive compounds were determined and compared with compositions of isoflavones in soybeans. The reducing power of legumes correlated well with their total flavonoid contents (r (2) = 0.9414), whereas less correlation was found between reducing power and total phenolics contents (r (2) = 0.6885). The dark-coat seeds, such as azuki beans and black soybeans, contained high amounts of phenolic compounds and contributed to high antioxidative ability, whereas their phenolics content and antioxidative abilities significantly decreased after short-term germination due to losses of pigments in the seed coats. After long-term germination, the contents of bioactive compounds (total phenolics and flavonoids) increased again and the ratio of aglycones to total isoflavones significantly increased in black soybeans. TN3 and TN6 seeds and their long-term germinated seeds and AKS5 seeds were identified as the legume samples that might have the highest antioxidant ability according to the results of chemometric analysis. Selection of the right legume varieties combined with a suitable germination process could provide good sources of bioactive compounds from legumes and their germinated products for neutraceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号