首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

2.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

3.
Field experiments were conducted in farmyard manure (FYM) and maize-residue (MR) blocks during 1984–2011 with the objective of identifying a superior treatment for attaining maximum finger millet yield and soil fertility at Bangalore. The treatments tested in the FYM block were Control; FYM@10tha?1; FYM@10tha?1 + 50% nitrogen, phosphorus, and potassium (NPK); FYM@10tha?1 + 100%NPK; 100%NPK; and in the MR block, Control; MR@5tha?1; MR@5t ha?1 + 50%NPK; MR@5tha?1 + 100%NPK; 100%NPK. FYM@10t/ha + 100%NPK gave a maximum mean yield of 3207 kg/ha in the FYM block, while MR@5t/ha + 100%NPK gave 2548 kg/ha in the MR block. Regression and principal component (PC) models of yield were developed through soil fertility and rainfall variables to assess the treatments. Maximum yield predictability of 60% and 65% under regression, and 76% and 75% under the PC model were observed for the FYM and MR blocks, respectively. FYM@10t/ha + 50%NPK was superior, with maximum gross returns of Rs.41286/ha and benefit–cost ratio (BCR) of 2.27 in the FYM block compared to MR@5t/ha + 100%NPK (gross returns of Rs.34530/ha and BCR of 2.09) in the MR block with maximum soil fertility, and are recommended for adoption under semi-arid Alfisols.  相似文献   

4.
In the present study, seven fertilizer treatments [T1, 50% NPK; T2, 100% NPK (Recommended dose of fertilizer, 200–65.4–124.5 kg N-P-K ha?1); T3, 150% NPK; T4, 100% PK; T5, 100% NK; T6, 100% NP and T7, control (zero NPK)] with four replications were assessed in the new alluvial soil zone (Entisols) of West Bengal, India. The objectives of the study were to generate information on potato productivity, profitability, indigenous nutrient supply and net gain/loss of NPK in post-harvest soil. Plants grown under higher NPK supply resulted in higher tuber yield and there were significant (p ≤ 0.05) reductions in total yield with nutrient omissions. Nutrient?limited yields were 19.78, 2.83 and 1.77 t ha?1 for N, P and K, considering total tuber yield (28.24 t ha?1) obtained under 100% NPK as targeted yield. Indigenous nutrient supply of N, P and K were estimated at 24.1, 22.34 and 110.22 kg ha?1, respectively that indicates higher K?supplying capacity of experimental soil as compared to N and P. Net income (US$1349 ha?1 year?1) and B:C ratio (1.91) was highest with 100% NPK, and further addition of NPK (150%) resulted in decrease on net return (US$1193 ha?1 year?1) and B:C ratio (1.73).  相似文献   

5.
The effects of integrated nutrient management, cultivation method, and variety on root and shoot growth, grain yield and its components of lowland rice under alternate wetting and drying (AWD) irrigation were evaluated. Treatments included were three varieties (Pathumthani 1, RD57, and RD41), three cultivation methods [dry direct seeding, wet direct seeding, and transplanting], and three nutrient combinations [100% NPK (160?kg ha?1), 50% NPK (80?kg ha?1) + 50% FYM (5 t ha?1), and 100% FYM (10 t ha?1)] under AWD. Root dry matter of RD41 and RD57 was reduced by 12–25% at the 100% NPK and 100% FYM compared with the 50% NPK + 50% FYM. Panicle number, panicle length, and 1000-grain weight were higher at the 50% NPK + 50% FYM. Application of the 50% NPK + 50% FYM could be a feasible option under AWD irrigation; however, benefits may vary with varieties and cultivation methods.  相似文献   

6.
A greenhouse experiment was conducted in the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India, during kharif 2013 to find out the effect of biochar and sewage sludge (SS) on growth, yield, and micronutrient uptake in rice crop. Nine treatments were employed using six different doses of biochar (2.5, 5.0, 7.5 10, 15, and 20 t ha?1) amended with a fixed dose of SS (30 t ha?1) and 50% recommended dose of nitrogen (50% RDN), i.e., 60 kg ha?1. Other three treatments were absolute control (no fertilizers), 100% recommended dose of fertilizers (100% RDF) which was 120:60:60 kg ha?1 as nitrogen (N): phosphorus pentoxide (P2O5):dipotassium oxide (K2O), and 30 t ha?1SS + 50% RDN. Experimental results showed a significant increase in yield of rice crop with increasing levels of biochar along with SS. Application of biochar at 20 t ha?1 along with 30 t ha?1SS increased grain yield to the extent of 2.5 times over absolute control (no fertilizers) and 8.5% over control (100% RDF). The uptake of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) (micronutrients) increased significantly with graded doses of biochar application from 2.5 to 20 t ha?1 in the soil. The maximum micronutrient uptake and grain yield of rice were found in T9 where 30 t ha?1SS along with 20 t ha?1 biochar was applied with only 50% RDN. The maximum availability of micronutrients in soil was found with 30 t ha?1 of SS + 50% RDN (T3) followed by conjoint application of 20 t ha?1 of biochar and 30 t ha?1 SS + 50% RDN (T9).  相似文献   

7.
A field study evaluated the effects of NPK (21:17:17) and compost on vegetative growth, proteins, and carbohydrates of Moringa oleifera. The experimental design was randomized complete block design (RCBD) with six treatments replicated three times. Compost and NPK fertilizers were applied together which include control (without fertilizer) 5 t ha?1 (Compost), 120 kg ha?1 (NPK), 50 + 50% ha?1 (NPK + Compost), 10 + 50% ha?1 (NPK + Compost), and 50 + 10% ha?1 (NPK + Compost) per plot. For NPK fertilizer, the rate was 10 and 50% of 120 kg ha?1 and for compost it was 10 and 50% of 5 t ha?1. The measured growth parameters were plant height (cm), stem girth (mm), number of leaves, and number of branches per plant. Results showed that 120 kg ha?1 (NPK) treatment produced plants of more height, stem girth, more number of leaves, maximum number of branches as compared to other treatments at week 8 with higher protein. Carbohydrate content was high in 50 + 50% (NPK + Compost) compared to others.  相似文献   

8.
This present investigation took place on a continuing long-term fertilizer experiment, initiated in 1972 at the experimental farm of the College of Agriculture CSK HPKV, Palampur, aimed at studying nutrient dynamics of micronutrients, especially Zn, after continuous use of chemical fertilizers and amendments over the previous 36 years in an acid Alfisol under a maize–wheat system. Treatments investigated were as follows: T1: Control; 100% N; 100% NP; 100% NPK (optimal application - 120:26:33(maize)/25(wheat)); 100% NPK + FYM (10 t ha−1 to the maize crop); T6: 100% NPK + lime (900 kg ha−1); T7: 100% NPK + Zn (25 kg ha−1 as ZnSO4); T8: 100% NPK + Hand weeding; T9: 100% NPK (-S); T10: 150% NPK (super-optimal application); and T11: 50% NPK (sub-optimal application). Different forms of zinc in soil were determined through a sequential extraction method. Results revealed that previous applications of high-analysis fertilizers and amendments caused a marked depletion in the pools of Zn as compared to buffer plots. All pools of Zn as well as crop productivity and Zn uptake were noticeably greater in farmyard manure (FYM)-amended plots compared with plots not receiving fertilizer. The residual fraction was the dominant form but organically bound and exchangeable forms were found to play major role in nutrient supply, crop productivity and nutrient uptake. Correlation and regression analysis studies showed that organic forms constituted the most important pool contributing towards variation in yield and uptake by maize and wheat crops. Exchangeable and organically bound forms contributed significantly towards the availability of DTPA-extractable Zn in soil.  相似文献   

9.
This field study evaluates the integrated impact of poultry manure (PM), rock phosphate (RP), composted rock phosphate (CRP) and single super phosphate (SSP) on the growth, yield, and phosphorus use efficiency (PUE) of winter wheat and their effect on postharvest soil characteristics. The seven treatments were as follows: T1 = control; T2 = SSP full; T3 = PM full; T4 = RP full; T5 = CRP full; T6 = 50% SSP + 50% CRP (50:50); T7 = 50% PM + 50% CRP (50:50) at a recommended P rate of 90 kg ha?1. The combined treatment with PM + CRP produced the highest straw yield of 3582 kg ha?1, grain yield of 2226 kg ha?1, P uptake of 21.3 kg ha?1, and PUE of 18%. The postharvest soil organic carbon, total nitrogen and soil available phosphorus were sig-nificantly higher in integrated treatments.  相似文献   

10.
Effect of integrated use of mycorrhiza, lime, inorganic fertilizers, and organic manures on microbial activities and yield performance of yam bean (Pachyrhizus erosus L.) was studied for two consecutive kharif (rainy) seasons during 2013–14 and 2014–15 in an acid Alfisol. The experiment was laid out with 16 treatments consisting of graded doses of soil test–based nitrogen, phosphors, and potassium (NPK); lime; mycorrhiza; organic sources, that is, farmyard manure (FYM), vermicompost, and green manure; secondary magnesium sulfate (MgSO4) and micronutrients zinc sulfate (ZnSO4 and borax). Significantly highest mean tuber yield (29.61 t ha?1) was recorded due to integrated application of lime + FYM + NPK + ZnSO4. Graded doses of NPK showed a mean yield response of 65%, 134%, and 191% due to addition of 50%, 100%, and 150% of NPK over control, respectively. Inoculation of vesicular–arbuscular mycorrhiza (VAM) combined with NPK and FYM recorded a mean tuber yield of 25.14 t ha?1. Highest mean dry matter (18.85%) was recorded due to application of 150% NPK, whereas highest starch content on fresh weight basis was recorded due to integrated use of lime + FYM + NPK + MgSO4 (11.11%). Application of 150% NPK has recorded highest dehydrogenase activity (2.018 µg TPF h?1 g?1) and fluorescein diacetate hydrolysis assay (2.012 µg g?1 h?1). Fungal inoculation of VAM in combination with lime + FYM + NPK recorded highest acid and alkaline phosphatase activities (82.20 and 67.02 µg PNP g?1 soil h?1, respectively). Soil biological activities and phosphatase activities had highly significant relationship with tuber yield and biochemical constituents of yam bean. The study emphasized the conjunctive use of soil test–based inorganic fertilizers, lime, and organic manures to enhance the enzymatic activities and to realize higher crop yields of yam bean in acid Alfisols.  相似文献   

11.
Field experiments were conducted during 2005–2007 to test effects of nineteen treatments on turmeric rhizome yield in Alfisol at Utukur and Inceptisol at Jagtial in India. The treatments were comprised of nitrogen (N) at 0, 60, 120 and 180 kg ha?1; phosphorus (P) at 0, 40, 80, and 120 kg ha?1; and potassium (K) at 0, 50, 100, and 150 kg ha?1. Application of 180-120-100 kg ha?1 NPK gave maximum yield of 4302 kg ha?1 in Alfisols, whereas application of 120-80-100 kg ha?1 gave 4817 kg ha?1 in Inceptisols. Regression and principal component (PC) models were calibrated through soil-plant-fertilizer variables. The regression model gave significant R2 of 0.75 in Alfisols compared to 0.88 in Inceptisols, whereas the PC model explained variance of 66.5 percent in Alfisols and 76.3 percent in Inceptisols. Regression model through PC scores gave R2 of 0.54 in Alfisols and 0.47 in Inceptisols. Maximum sustainability yield indexes of 58.8 and 55.5 percent by 180-120-120 kg ha?1 (Alfisol) and 67.1 and 60.6 percent by 120-80-100 kg ha?1 (Inceptisol) were attained based on regression and PC models respectively.  相似文献   

12.
A long-term study was conducted to study the impact of integrated nutrient management on soil quality in post-monsoon sorghum (Sorghum bicolor) at Solapur in Maharashtra State in Western India under All India Coordinated Research Project for Dryland Agriculture. The experiment was laid out with ten Integrated Nutrient Management Treatments in a randomized block design with three replications. The results of the study indicated that among all the integrated nutrient management treatments practiced, the application of 25 kg nitrogen (N) ha?1 through crop residue (CR) + 25 kg N ha?1 (urea) showed the highest soil quality index of 2.36, which was at par with other treatments receiving farmyard manure (FYM) and crop residues along with urea. The relative order of performance of the integrated nutrient management treatments in influencing soil quality was: T6: 25 kg N ha?1 (CR) + 25 kg N ha?1 (urea) (2.36) >T5: 25 kg N ha?1 (FYM) (2.31) > T7: 25 kg N ha?1 (FYM) +25 kg N ha?1 (urea) (2.30) = T8: 25 kg N ha?1 (CR) +25 kg N ha?1 (Leucaena loppings) (2.30) > T10: 25 kg N ha?1 (Leucaena loppings) +25 kg N ha?1 (urea) (2.17) > T4: 25 kg N ha?1 (CR:crop residues) (2.16) > T9: 25 kg N ha?1 (Leucaena loppings) (2.15) > T3: 50 kg N ha?1 (urea) (2.10) > T2: 25 kg N ha?1 (urea) (1.99) > T1: 0 kg N ha?1 (control) (1.77). The results of the study also indicated that average percent contribution of each soil key indicator towards soil quality indices was: pH (3.97%), EC (1.94%), organic carbon (18.6%), available P (2.80%), available K (6.57%), exchangeable Ca (7.02%), available S (3.45%), Available Zn (17.9%), dehydrogenase (DHA) (16.2%), microbial biomass carbon (MBC) (18.5%) and mean weight diameter (MWD) (3.14%). Thus, the results of the present study will be highly useful to the land managers in planning effective management of soil quality.  相似文献   

13.
The field study was conducted in April 2006 in a long-term fertilization experiment that was set up in 1983. The aims of this study are to compare the weediness in plots with nitrogen–phosphorus–potassium (NPK), NPK + farmyard manure (FYM), and NPK + stalk treatments and to study the effect of increasing N doses on the weeds and winter wheat plants. The bifactorial test was arranged in a split-plot design with three replications. The treatments were the following: 0, 50, 100, 150, and 200 kg ha?1 N, 100 kg ha?1 phosphorus pentoxide (P2O5), and 100 kg ha?1 potassium oxide (K2O). Three weed species were dominant in the experiment: Veronica hederifolia, Consolida regalis, and Stellaria media. The NPK treatment resulted in the smallest average weed cover. The significantly greatest weed cover was found on the plots treated with NPK + FYM, but the greatest biomass production of winter wheat was measured also in the NPK + FYM treatment, which resulted in a good crop competition. The weed cover was increased proportionally by the rising N doses. The effect of increasing N rates was positive on the winter wheat biomass and on wheat competition to the weeds. Results of our study show that we can manage weeds better using favorable plant nutrition.  相似文献   

14.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

15.
The scarcity of non-renewable fertilizers resources and the consequences of climate change can dramatically influence the food security of future generation. Introduction of high yielding varieties, intensive cropping sequence and increasing demand of food grains day-by-day, application of recommended dose of fertilizers could not fulfill our targets due to outdated fertilizers recommendations are yet in practice. It not only alters soil quality, nutrient balance, microbial and enzymatic ecology but also affected productivity and sustainability of rice in Gangetic alluvial soils of India. The effect of fertilizers application based on “fertilizing the soil versus fertilizing the crop” which insure real balance between the applied and available soil nutrient is urgently needed. Hence, the present study was conducted during three consecutive crop seasons (2010, 2011, and 2012) to assess the effect of imbalance and balance fertilization based on initial soil test values and targeted yields, and to determine the effect of farmyard manure (FYM) when superimposed with balanced fertilizers on identification of minimum data set for the development soil quality, nutrient acquisition, and grain yield of rice. The six fertilizer treatments were laid out in a randomized block design with three replications. The treatments were: T1-control (no fertilization), T2-farmyard manure @ 5 t ha?1, T3-farmers practice (60:30:30 kg N:P2O5:K2O ha?1), T4-precise application of mineral fertilizers based on initial soil test values (77:24:46 kg N:P2O5:K2O ha?1) for targeted grain yield of 4.0 t ha?1, T5-precise application of mineral fertilizers based on initial soil test values (74:23:43 kg N:P2O5:K2O ha?1) plus FYM (5 t ha?1) for targeted grain yield of 4.0 t ha?1 and T6-precise application of mineral fertilizers based on initial soil test values (135:34:65 kg N:P2O5:K2O ha?1) for targeted rice grain yield of 5.0 t ha?1. Result revealed that the targeted rice grain yield of 4.0 and 5.0 t ha?1 was achieved in T4 and T6 treatments with 1.59% (4.06 t ha?1) and –3.40% (4.83 t ha?1) deviations, respectively. T4, T5, and T6 significantly increased crop growth, nutrient uptake, available P (Pa) and K (Ka) and augmented rice grain yield by 10.6, 20.2 and 31.6%, respectively, over T3. Microbial biomass carbon, soil respiration and enzymatic activity were enhanced significantly in T5 as compared to T6. Highest soil quality index was found in T5 (0.95) followed by T6 (0.90) and, lowest was in T1 (0.63). The contribution of minimum data set (MDS) toward the SQI was in the descending order of ALP (30.6%) > SOC (21.5%) > Ka (11.3%) > PSM (9.68%) > Na (8.51%). Overall, rice yield and soil quality was improved by using balance fertilization based on fertilizing the crop Vs fertilizing the soil in alluvial soils of India.  相似文献   

16.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

17.
The study was investigated at Agricultural Experimental Farm, Giridih, India during winter seasons of 2007–2008 and 2008–2009. Plants grown with 100% recommended dose of fertilizer (RDF) [nitrogen (N): phosphorus pentoxide (P2O5): potassium oxide (K2O) = 150:60:60 kg ha?1] + AM + Azospirillum (T15) produced maximum chlorophyll, baby cob, and green fodder yield. Root biomass was highest with application of 150% RDF + arbuscular mycorrhizae (AM) + Azospirillum (T16). Co-inoculated plants produced higher chlorophyll, root biomass resulted higher cob and green fodder yield. Biofertilizers supplied along with chemical fertilizers saved 70, 29, and 33 kg N, P2O5 and K2O per hectare, respectively. Nutrient (NPK) uptake was greatest in T15. Residual soil fertility in terms of NPK was recorded maximum in T16. Although, co-inoculated plots built up higher residual soil fertility as compare to sole inoculation. Nutrients use efficiency and benefit cost ratio were higher due to application of 50% RDF with co-inoculants. T16 was most costly whereas T14 (50% RDF + AM + Azospirillum) was most beneficial.  相似文献   

18.
A long-term field experiment was conducted at the research farm of the All-India Coordinated Research Project for Dryland Agriculture, Phulbani, Orissa, India, from 2001 to 2006 to identify the best integrated nutrient-use treatments for ensuring greater productivity, profitability, sustainability, and improved soil quality in pigeon pea + rice (two rows of pigeon pea followed by five rows of rice alternately) intercropping system. In all, nine treatments, eight comprising integrated nutrient-use practices, chemical fertilizer (CF), farmyard manure (FYM), and green leaf manure (GLM) to supply nitrogen (N) at 45 kg N ha–1 and one farmer's practice equivalent to 25 kg N ha–1 (FYM 5 t ha–1), were tested on a long-term basis. Results of the study revealed that 20 kg N ha–1 (FYM) + 25 kg N (CF) gave maximum mean rice grain yield of 1.52 t ha–1, followed by 20 kg N (GLM) + 25 kg N (urea) with grain yield of 1.51 t ha–1. In the case of pigeon pea, 30 kg N (FYM) +15 kg N (urea) gave maximum pigeon pea grain yield of 0.94 t ha–1, which was 34% greater than the sole application of chemical fertilizer. Pigeon pea grain yield tended to increase with increasing proportion of organic N in FYM + CF or GLM + CF combinations. Application of 20 kg N (FYM) + 25 kg N (urea) recorded maximum mean rice equivalent yield of 3.59 t ha–1 and sustainability yield index of 59%. While studying profitability, application of 20 kg N (FYM) + 25 kg N (CF) gave maximum net returns of US$168.94 ha–1. Impact of treatments on soil quality as assessed in terms of relative soil quality indices (RSQI) increased with increasing proportion of organic sources of N. Using an innovative and new approach, an index of integrated productivity–sustainability–profitability–soil quality performance index (I P,S,Pr,SQ) was computed to make a precise evaluation of the treatments. Based on this index, the order of performance of the treatments was T6 [20 N (FYM) + 25 N (CF)] (7.7) > T7 [30 N (FYM) + 15 N (CF) (6.9)] > T3 [20 N (GL) + 25 N (CF)] (6.8) > T5 [10 N (FYM) + 35 N (CF) (6.6)] > T9 [GL] (6.5) > T8 [CF] (6.2) > T4 [30 N (GL) + 15 N (CF)] (6.0) > T2 [10 N (GL) + 35 N (CF)] (5.7) > T1 [FYM at 5 t ha–1] (4.1). Thus, the results and the methodology adopted in this study using long-term data would be very useful to researchers, farmers, land managers, and other stakeholders not only in India but also across the world under similar climatic and edaphic situations.  相似文献   

19.
Leaf color chart (LCC) guides fertilizer nitrogen (N) application to rice as per requirement of the crop on the basis of a critical leaf color. Two field experiments were conducted to evaluate the effect of silicon (Si) and LCC based N management in aerobic rice. Following LCC-based N management, from 60 to 90 kg N ha?1 and 75 to 100 kg N ha?1 with 10–40% and 25–30% less fertilizer N was used without any reduction in yield as compared to the package of practices of 100 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) kg N ha?1 respectively, during both the seasons. The highest grain yield was noticed with 90 kg N ha?1 (30 kg N ha?1 as basal + LCC-3) and 100 kg N ha?1 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) along with the application of calcium silicate (CaSiO3) at 2 t ha?1 as sources of Si and on par with 60 kg N ha?1 (no basal + LCC-3) and 75 kg N ha?1 (30 kg N ha?1 as basal + LCC-3), respectively, during the season in 2008 and 2009. Higher fertilizer N use efficiency was recorded with Si and need-based N management using LCC-3 rather than recommended dose of fertilizer N.  相似文献   

20.
In a 20‐yr‐old long‐term experiment, the impact of continuous application of organic manures and inorganic fertilizers on soil quality and the sustainability of finger millet production was conducted on two cropping systems: finger millet and finger millet–groundnut on an Alfisol of semi‐arid southern India. The study was conducted from 1992 to 2011 at the All India Coordinated Research Project for Dryland Agriculture, UAS, Bangalore, using a randomized block design. The treatments comprised of T1: control [no fertilizer and no farmyard manure (FYM) applied], T2: FYM 10 t/ha, T3: FYM 10 t/ha + 50% of recommended NPK (50:50:25 kg/ha), T4: FYM 10 t/ha + 100% of recommended NPK and T5: 100% recommended NPK. Comparison of long‐term yield data between treatments was used to calculate a ‘sustainability yield index’ (SYI), which was greatest for T4 (FYM 10 t/ha + 100% of recommended NPK), in both rotational (0.68) and monocropping (0.63) situations. Soil quality indices were determined using principal component analysis linear scoring functions. The key indicators which contributed to the soil quality index (SQI) under rotation were organic C; potentially available N; extractable P, K and S; exchangeable Ca and Mg; dehydrogenase activity and microbial biomass C and N. The largest SQI (7.29) was observed in T4 (FYM 10 t/ha + 100% NPK), and the smallest (3.70) SQI was for the control. Application of 10 t/ha FYM together with NPK (50:50:25 kg/ha) sustained a mean yield of 3884 kg/ha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号