首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of suppression of fusarium wilt of carnation by two fluorescentPseudomonas strains were studied.Treatments of carnation roots withPseudomonas sp. WCS417r significantly reduced fusarium wilt caused byFusarium oxysporum f. sp.dianthi (Fod). Mutants of WCS417r defective in siderophore biosynthesis (sid) were less effective in disease suppression compared with their wild-type. Treatments of carnation roots withPseudomonas putida WCS358r tended to reduce fusarium wilt, whereas a sid mutant of WCS358 did not.Inhibition of conidial germination of Fod in vitro by purified siderophores (pseudobactins) of bothPseudomonas strains was based on competition for iron. The ferrated pseudobactins inhibited germination significantly less than the unferrated pseudobactins. Inhibition of mycelial growth of Fod by bothPseudomonas strains on agar plates was also based on competition for iron: with increasing iron content of the medium, inhibition of Fod by thePseudomonas strains decreased. The sid mutant of WCS358 did not inhibit Fod on agar plates, whereas the sid mutants of WCS417r still did. This suggests that inhibition of Fod by WCS358r in vitro was only based on siderophore-mediated competition for iron, whereas also a non-siderophore antifungal factor was involved in the inhibition of Fod by strain WCS417r.The ability of thePseudomonas strains to induce resistance against Fod in carnation grown in soil was studied by spatially separating the bacteria (on the roots) and the pathogen (in the stem). Both WCS417r and its sid mutant reduced disease incidence significantly in the moderately resistant carnation cultivar Pallas, WCS358r did not.It is concluded that the effective and consistent suppression of fusarium wilt of carnation by strain WCS417r involves multiple mechanisms: induced resistance, siderophore-mediated competition for iron and possibly antibiosis. The less effective suppression of fusarium wilt by WCS358r only depends on siderophore-mediated competition for iron.  相似文献   

2.
Differential interactions ofColletotrichum gloeosporioides isolate KG 13 with green and red pepper fruits (Capsicum annuum were found when it was inoculated on unwounded and wounded fruits. The isolate produced the typically necrotic, sunken anthracnose symptom on unwounded and wounded green fruits, and wounded red ones, but not on unwounded red ones. Appressorial formation of the fungus on the surfaces of compatible green fruits was higher than on incompatible red ones up to 12 h after inoculation. More and longer infection pegs from appressoria were produced on green than on red fruits. When cuticular wax layers of green and red fruits were removed by dipping in chloroform, red ones only produced larger lesions and more conidia than water-dipped controls did. However, differences in lesion diameter and conidial production were not observed between green and red fruits wounded by pin-pricking. In addition, concentrations of wax extracted from the surface of green and red fruits affected conidial germination and appressorial formation of the fungus. These findings suggest that the isolate KG 13 ofC. gloeosporioides may react differentially to green and red pepper fruits, probably due to the physical and chemical differences in cuticular layers of the fruits.  相似文献   

3.
为了解橡胶树2种炭疽病菌的侵染结构发育分化过程,采用平板菌落生长速率法测定了3株胶孢炭疽菌Colletotrichum gloeosporioides和3株尖孢炭疽菌C.acutatum的菌丝生长速率,测量其分生孢子大小,显微观察2种炭疽菌在疏水表面诱导下侵染结构的发育分化过程。结果表明,胶孢炭疽菌菌丝生长速率为0.96~1.36 cm/d,显著高于尖孢炭疽菌的菌丝生长速率0.72~0.89 cm/d,但二者分生孢子大小无显著差异。在疏水表面诱导下,2种炭疽菌分生孢子在接种2~6 h后开始萌发,12 h孢子萌发率为71.70%~88.05%,13~16 h开始分化附着胞,24 h附着胞形成率为48.99%~70.74%,36 h菌丝诱发形成大量附着枝,48 h后分生孢子产生的次生菌丝也可诱发形成附着枝,附着枝呈圆形、姜瓣形、梨形或不规则形。分生孢子极易产生,可在菌丝顶端成簇或菌丝侧面排列产生,也可由分生孢子形成的芽管产生,或在芽管分化附着胞过程分枝形成分生孢子;附着胞多着生于芽管顶端,少数附着胞顶端可继续萌发类似短芽管结构,再次分化形成可黑色化的次级附着胞。表明橡胶树2种炭疽菌不同菌株间分生孢子萌发时间、孢子萌发率、附着胞形成时间和形成率有一定差异,但种间无明显差异;橡胶树炭疽菌分生孢子极易形成,在疏水表面容易分化形成附着胞和附着枝,说明具有极强的适生性。  相似文献   

4.
The development of appressoria by germinating Blumeria graminis conidia depends on its germ tubes making contact with the host surface. Low angle, low temperature scanning electron microscopy showed that 80% or more of first-formed germ tubes of f. spp. hordei, tritici and avenae conidia emerged from close to the host leaf surface, and so made contact with it allowing them to become functional primary germ tubes. Light microscopy of f. sp.hordei confirmed this result and, in addition, showed that germ tubes frequently emerged close to, and contacted, various hydrophobic and hydrophilic artificial substrata. Geometric models of conidium-substratum interfaces were developed and a “surface point method” was derived to predict the frequency with which contact would result if germ tube emergence was a random phenomenon. However, observed contact frequencies were far higher (c. three to eight times) than predicted. Thus, the germ tube emergence site was determined as a response to substratum contact. In part, this appeared to be a non-specific response. Nevertheless, germ tube contact frequencies were greater on the curved surface of leaf epidermal cells than on planar surface, suggesting that specific recognition of leaf surface characteristics may promote directional emergence. The area of contact required to stimulate directional germ tube emergence was very small: contact with a microneedle tip or with a spiders’ suspension thread was sufficient for many conidia. Similarly, on leaves, the only contact is between the tips of a limited number of conidial wall projections and the edges of epicuticular leaf wax plates. Micromanipulation to roll conidia so that their original site of contact with a leaf was rotated away from it, led to the majority of first-formed germ tubes growing away from the leaf, i.e. emerging close to the site of original contact. The experiments indicated that the site of germ tube emergence is determined within 1 min of deposition. This implicated the release of conidial extracellular materials in recognition of the conidium-leaf surface contact site.  相似文献   

5.
In darkness, most Erysiphe pisi conidia responded rapidly to contact with a hydrophobic artificial substratum and released extracellular material (ECM) in the same way as on pea cuticle. On this substratum and barley leaf epidermis, conidia then produced a germ tube that emerged close to the substratum, contacted it, and differentiated an appressorium. By contrast, on a hydrophilic substratum, ECM release and germination were delayed and infrequent, and germ tubes often emerged and faced away from the substratum toward vertical light, thereby failing to make contact and form appressoria. This finding supported the hypothesis that ECM release is involved in both triggering germination and sensing substratum contact. Exposure to white light dramatically affected the germ tube emergence site so most emerged from a site in the conidial wall facing the light. Lateral light did not affect the frequency of germ tubes making substratum contact; but when lit from above, most germ tubes emerged up, facing away from the substratum. The germ tubes formed in light were longer than those formed in darkness, but no phototropism was found for the elongating tubes. Examination of Blumeria graminis indicated that its conidia and germ tubes are insensitive to white light.  相似文献   

6.
One of the components of partial resistance of barley to leaf rust,Puccinia hordei, is a reduced infectibility. It was investigated whether this low infectibility may rest on a hampered appressorium formation of the leaf rust fungus. The appressorium formation on the primary leaves of 11 barley genotypes with an intermediate-to-low infectibility was compared with that on the highly infectible L94. The number of stomata per cm2 leaf area occupied by appressoria ofP. hordei was determined per genotype by means of fluorescence microscopy. No cosistent differences could be detected, indicating that the mechanisms causing a low infectibility of partially resistant barley seedlings act at a phase later than the formation of the appressoria. On the non-host wheat not fewer appressoria were formed than on L94, but no appressoria were found on a lettuce genotype. The latter probably lacks the stimuli that enable the fungus to find stomata.Samenvatting Eén van de componenten van partiële resistentie van gerst tegen dwergroest,Puccinia hordei, is een verminderde infectiedichtheid. Het mechanisme, dat hieraan ten grondslag ligt, is onbekend. Een experiment werd uitgevoerd om na te gaan of bij partieel resistente rassen een verminderde appressoriumvorming optreedt. Na inoculatie in een inoculatietoren en een zorgvuldig uitgevoerde incubatie werd het aantal huidmondjes per cm2 bladoppervlak bepaald dat bezet was door appressoria vanP. hordei. De elf weinig vatbare gerstlijnen uit deze studie bleken niet reproduceerbaar te verschillen van de zeer vatbare gerstlijn L94 in de mate van appressoriumbezetting. Dit wijst erop dat infectiedichtheidsverschillen t.g.v. partiële resistentie veroorzaakt worden door mechanismen die werken na de appressoriumvorming. In een tweede experiment werd aangetoond dat zelfs op de niet-waardsoort tarwe, waaropP. hordei geen symptomen veroorzaakt, niet minder appressoria worden gevormd dan op L94. Op een sla-genotype trad echter geen appressoriumvorming op. Op deze laatste niet-waardsoort ontbreken waarschijnlijk de stimuli die de schimmel in staat stellen huidmondjes te vinden.  相似文献   

7.
Spores and infection structures such as germ tubes and appressoria of Magnaporthe oryzae, the fungus causing blast disease of wheat, produced an extracellular matrix (ECM) on the surfaces of host leaves during fungal differentiation. The chemical components and function of the ECM were studied to understand the pathological roles using two immunological techniques and ECM-digesting enzymes. The ECM was characterized by fibrous and amorphous materials, located in the spaces between fungal cell walls and plant cuticles. Immunohistochemical and immunoelectron microscopy suggested that ECM includes components positively reacted with antibodies of four animal cell adhesion factors (collagen VI, vitronectin, fibronectin and laminin) and an animal integrin α3. ECM, incubated on a cellulose membrane, was rapidly digested by matrix metalloproteinases (collagenase and gelatinase B), resulting in the detachment of most infection structures from membrane surfaces. Both ultrastructural observation and immunological responses showed that more ECM was located at the appressoria than at the spores and germ tubes. This result suggested that appressoria needed a powerful adhesion force for aggressive action of penetration pegs into plant cuticles. An erratum to this article can be found at  相似文献   

8.
The capacity of several strains of root-colonizing bacteria to suppressPythium aphanidermatum, Pythium dissotocum and root rot was investigated in chrysanthemums grown in single-plant hydroponic units containing an aerated nutrient solution. The strains were applied in the nutrient solution at a final density of 104 CFU ml−1 and 14 days later the root systems were inoculated withPythium by immersion in suspensions of 104 zoospores ml−1 solution. Controls received no bacteria, noPythium, or one of thePythium spp. but no bacteria. Strain effectiveness was estimated based on percent roots colonized byPythium and area under disease progress curves (AUDPC). In plants treated respectively withPseudomonas (Ps.)chlororaphis 63-28 andBacillus cereus HY06 and inoculated withP. aphanidermatum, root colonization by the pathogen was 83% and 72% lower than in the pathogen control, and AUDPC values were reduced by 61% and 65%. ForP. dissotocum, the respective strains reduced root colonization by 87% and 91%, and AUDPC values by 70% and 90%. In plants treated respectively withPs. chlororaphis Tx-1 andComamonas acidovorans C-4-7-28, root colonization byP. aphanidermatum was 84% and 80% lower than in the controls and AUDPC values were reduced by 66% and 57%; these strains did not suppressP. dissotocum. Burkholderia gladioli C-2-74 andC. acidovorans OCR-7-8-38, respectively, suppressed colonization of roots byP. dissotocum by 74% and 86%, and reduced AUDPC values by 60% and 70%, but were ineffective againstP. aphanidermatum. C. acidovorans OCR-7-8-39 reduced colonization and AUDPC values ofP. aphanidermatum by 57% and 42%, respectively.Pseudomonas corrugata 13,Ps. fluorescens 15 and JZ12, and three additional strains ofC. acidovorans were weakly or nonsuppressive againstP. aphanidermatum. Strains that reduced AUDPC values forP. aphanidermatum orP. dissotocum when applied at 104 CFU ml−1 were 11%–39% less effective at 103 CFU ml−1. Four tested strains (Ps. chlororaphis 63-28,Ps. chlororaphis Tx-1,B. cereus HY06, andB. gladioli C-7-24) in most instances suppressed root colonization and lowered AUDPC values ofP. aphanidermatum when applied at 14, 7 or 0 days before inoculation, but reduction of the respective variables was generally greater when the strains were applied at 14 days (63%–87% and 75%–78%) or 7 days (44%–47% and 31%–88%) than at 0 days (14%–31% and 23%–62%) before inoculation.Ps. chlororaphis Tx-1,Ps. chlororaphis 63-28 andB. cereus HY06 significantly suppressedP. aphanidermatum whether the temperature of the nutrient solution was high (32°C) or moderate (24°C). Taken together, the observations suggest thatPs. chlororaphis 63-28,B. cereus HY06,Ps. chlororaphis Tx-1,B. gladioli C-2-74 andC. acidovorans OCR-7-8-38 have the potential for controlling Pythium root rot in hydroponic chrysanthemums. http://www.phytoparasitica.org posting Jan. 24, 2007.  相似文献   

9.
Rust fungi like Puccinia graminis f. sp. tritici are known to change their cell wall properties upon entering the plant tissue. Immunohistochemistry revealed the cellular localization of two class III chitin synthase isoforms in rust mycelia developing on and in the host plant. Isoform IIIa is restricted to fungal infection structures growing on the surface of the plant, such as germ tubes and, predominantly, appressoria. Isoform IIIb is found exclusively in haustoria developed inside the plant. Thus, the rust fungus uses at least two chitin synthase isoforms with specialized functions in the differentiation of infection structures during the biotrophic plant-pathogen-interaction.  相似文献   

10.
Cochliobolus miyabeanus forms a specialized infection structure, an appressorium, to infect rice. Contacting a hard surface induces appressorium formation in C. miyabeanus, while the hydrophobicity of the substratum does not affect this morphogenic infection event. To determine whether the calcium/calmodulin-dependent signaling system is involved in prepenetration morphogenesis in C. miyabeanus, the effects of a calcium chelator (ethylene glycol tetraacetic acid; EGTA), phospholipase C inhibitor (neomycin), intracellular calcium channel blocker (TMB-8), calmodulin antagonists (chlorpromazine, phenoxybenzamine, and W-7), and calcineurin inhibitor (cyclosporin A) on morphogenesis and infection were examined. Addition of Ca2+ and the calcium ionophore A23187 did not affect conidial germination, while the number of appressoria decreased with higher concentrations. EGTA inhibited conidial germination and appressorium formation. The calcium channel blocker did not affect appressorium formation at any concentration; however, calmodulin antagonists and the calcineurin inhibitor specifically reduced appressorium formation at the micromolar level. One of the calmodulin antagonists, W-7, also inhibited accumulation of mRNA of the calmodulin gene within germinating conidia and/or appressorium-forming germ tubes. Thus, biochemical processes controlled by the calcium/calmodulin signaling system seem to be involved in the induction of prepenetration morphogenesis on rice.  相似文献   

11.
The formation of lesions on ray florets of gerbera flowers caused by single conidia ofBotrytis cinerea was studied in two cultivars infected by two isolates of the pathogen. No differences in reaction after inoculation with conidia of either isolate were seen on either cultivar. The conidia produced usually one germ tube not longer than 10 m, but conidia with five germ tubes were also seen. Direct penetration of germ tubes through the upper cuticle of ray florets was observed. No appressoria or other specialised structures were observed before penetration, and degradation of the cuticle did not occur. Germination of conidia and subsequent flower infection was dependent on the availability of free water, but not on the addition of external nutrients.Between 18 to 25°C, fungal development usually stopped after cuticle penetration, two to four cells around the site of penetration becoming necrotic. This number did not increase when inoculated flowers were subsequently placed at 4°C, conditions conductive for the formation of spreading lesions. When flowers were incubated constantly at 4°C, lesions became visible 3 days after inoculation as a group of 10 to 14 cells. Initially from a vesicle-like structure, mycelium spread subcuticularly or in the lumen of epidermal cells resulting in the death of 40 to 50 cells at 18 days after inoculation. Ungerminated conidia and conidial germlings which has not yet penetrated the cuticle did not cause any visible symptoms in underlying epidermal cells.  相似文献   

12.
Germination and appressorium formation of wheat leaf rust urediospores were studied in two experiments. No consistent differences could be detected between 11 genotypes of wheat (Triticum aestivum), two of barley, one ofTriticum dicoccum, one ofT. dicoccoides, one ofT. boeoticum and one ofAegilops squarrosa. Host genotypes and non-hosts gave similar results, suggesting that the phases before penetration of the host leaf are not affected by the resistance mechanisms operating in hosts and non-host genotypes.Samenvatting Kieming en de vorming van appressoria is bestudeerd in twee experimenten. Er zijn geen systematische verschillen waargenomen tussen 11 genotypen van tarwe, twee van gerst, een vanTriticum dicoccum, een vanT. dicoccoides, een vanT. boeoticum en een vanAegilops squarrosa. Waard en niet-waard genotypen gaven overeenkomstige resultaten, dit suggereert dat de fasen voor penetratie van het gastheerblad niet beïnvloed worden door de resistentiemechanismen werkzaam in waard en niet-waard.  相似文献   

13.
Sixty isolates of saprophytic microorganisms were screened for their ability to reduce the severity of grey mould (Botrytis cinerea) infection and sporulation. Isolates of the bacteriaXanthomonas maltophilia, Bacillus pumilus, Lactobacillus sp., andPseudomonas sp. and the fungusGliocladium catenulatum reduced germination of conidia of the pathogen and controlled disease on bean and tomato plants. Their activity under growth room conditions was good, consistent, and similar to the activity of the known biocontrol agent,Trichoderma harzianum T39 (non-formulated). Although the tested isolates may for nutrients with the germinating conidia ofB. cinerea, resistance induced in the host by live or dead cells were also found to be involved. Inhibitory compounds were not detected on treated leaves. Sporulation ofB. cinerea after its establishment on leaves was also reduced by the above mentioned isolates and byPenicillium sp.,Arthrinium montagnei, Ar. phaeospermum, Sesquicillium candelabrum, Chaetomium globosum, Alternaria alternata, Ulocladium atrum, andT. viride. These sporulation-inhibiting fungi did not reduce the infection of leaves byB. cinerea. Most of these selected fungi and bacteria were capable of reducing lesion expansion.  相似文献   

14.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

15.
In carnations grown on rockwool disease incidence of fusarium wilt caused byFusarium oxysporum f.sp.dianthi (Fod) was reduced when Fe-EDDHA instead of Fe-DTPA was used as iron source in the nutrient solution. Addition ofPseudomonas sp. strain WSC417r intensified this reduction in the cultivar Pallas, moderately resistant to Fusarium, but not in the susceptible cultivar Lena. Treatment of plants with Fe-EDDHA instead of Fe-DTPA as iron source resulted in higher numbers and percentages on the roots, ofin vitro antagonistic fluorescent pseudomonads. However, differences were only significant at 56 days after planting for cv. Lena and at 14 and 28 days after planting for cv. Palas. Both chelators, at different concentrations, had no effect on root colonization by eitherPseudomonas sp. strain WCS417r orFod strain WCS816. However, when coinoculated, reduced numbers of propagules ofFusarium were found at concentrations of Fe-EDDHA lower than 10–5 M.Higher concentrations of the siderophore fusarine produced byFod strain WCS816 were demonstrated when Fe-EDDHA instead of Fe-DTPA was used as iron source in culture media. At equal concentrations, no such differences were found in the amount of siderophore produced by WCS417r. Germ tube length ofFod was less with Fe-EDDHA than with Fe-DTPA. The reduction of germ tube length was stronger when the purified siderophore of WCS417r was added in excess to the culture media with Fe-EDDHA than those with Fe-DTPA. Therefore, the observed reduction of germ tube growth can not completely be explained by iron deprivation. It appeared that EDDHA exhibited a toxic effect for conidia ofFod strain WCS816 as well.we conclude that the observed disease reduction by Fe-EDDHA is a consequence of a limitation of iron availability forFod. This limitation is possibly intensified by the increase in number or percentage of antagonistic fluorescent pseudomonads that strongly compete for iron. The additional effect after bacterization withPseudomonas strain WCS417r in Fe-EDDHA treated carnations of cv. Pallas is likely to be due, at least partly, to a direct competition for iron between the siderophores ofFod strain WCS816 and ofPesudomonas sp. strain WCS417r.Samenvatting Verwelkingsziekte in anjers op steenwol, veroorzaakt doorFusarium oxysporum f. sp.dianthi (Fod), werd gereduceerd indien het ijzer-chelaat Fe-EDDHA in plaats van Fe-DTPA werd toegevoegd aan de nutriëntenvloeistof. Bacterisatie metPseudomonas sp. stam WCS417r had een additioneel effect bij de matig resistence cultivar Pallas maar niet bij de vatbare cultivar Lena. Toevoeging van Fe-EDDHA in plaats van Fe-DTPA aan planten als ijzerbron resulteerde op de wortels in hogere aantallen en percentages fluorescerende pseudomonaden, diein vitro antagonistisch waren ten opzichte vanFod. De verschillen waren echter alleen significant 56 dagen na planten voor de cultivar Lena en 14 en 28 dagen na planten voor de cultivar Pallas. Beide chelaten vertoonden bij verschillende concentraties geen effect op de kolonisatie van de wortel door beide microorganismen. Echter, wanneer beide micro-organismen gezamelijk werden toegevoegd nam de wortelkolonisatie doorFod stam WCS816 af bij concentraties lager dan 10–5 M Fe-EDDHA. Er werd meer van het siderofoor fusarine doorFod stam WCS816 geproduceerd bij concentraties lager dan 10–4 M Fe indien Fe-EDDHA in plaats van Fe-DTPA als ijzerbron aan het cultuurmedium was toegevoegd. Er werd geen effect van beide chelaten gevonden op de siderofoorproduktie door WCS417r. Indien een overmaat van het gezuiverde siderofoor van WCS417r werd toegevoegd aan Fe-EDDHA werden een sterkere afname van de kiembuislengte gevonden dan toevoeging aan Fe-DTPA. De reductie van de kiembuislengte bleek niet volledig verklaard te kunnen worden door een afname van de ijzerbeschikbaarheid. Het chelaat EDDHA heeft ook een toxisch effect op conidiën van fusarium.Wij concluderen, dat de waargenomen reductie van de verwelkingziekte door Fe-EDDHA een gevolg is van de afname van de ijzerbeschikbaarheid voorFod. Dit wordt waarschijnlijk versterkt door de ontwikkeling van een antagonistische, fluorescerendePseudomonas-populatie die sterk concurreren om ijzer. Het additioneel effect dat door bacterisatie metPseudomonas sp. WCS417r van de met Fe-EDDHA behandelde matig resistante anjers (Pallas) werd verkregen is voor een deel het gevolg van een directe concurrentie om ijzer tussen de sideroforen vanFod stam WCS816 en vanPseudomonas sp. stam WCS417r.  相似文献   

16.
This study investigates the infection process of Phoma koolunga on field pea (Pisum sativum) stems and leaves using different susceptible and resistant pea genotypes for each tissue, viz. 05P778‐BSR‐701 (resistant) and 06P830‐(F5)‐BSR‐5 (susceptible) for stems and ATC 866 (resistant) and ATC 5347 (susceptible) for leaves. On both resistant and susceptible genotypes, light and scanning electron microscopy showed P. koolunga conidia infect stem and leaf tissues directly via appressoria or stomatal penetration, but with more infections involving formation of appressoria on stems than on leaves. On leaves of the resistant genotype, at 72 h post‐inoculation, P. koolunga penetrated more frequently via stomata (5.2 conidia per 36 893 μm2) than by formation of appressoria (1.8 conidia); yet no such difference was observed on stems of the resistant genotype. In contrast, at the same time point, the number of conidia infecting the susceptible genotype by formation of appressoria on either stems (135 conidia) or leaves (11.3 conidia) was significantly greater than via stomata (8 and 7.3 conidia, stems and leaves, respectively). Mean germ tube length of germinating P. koolunga conidia on both stems (29.8 μm) and leaves (32.9 μm) of the resistant genotype was less than on the susceptible genotype (40.5 and 63.7 μm, stem and leaves, respectively). In addition, there were differences in the number of germ tubes emerging from conidia on resistant and susceptible genotypes. These are the first insights into the nature of leaf and stem resistance mechanisms operating in field pea against P. koolunga.  相似文献   

17.
 在凹玻片上测定了不同浓度的葡萄糖溶液对柿树炭疽菌(Colletotrichum gloeosporioides)的分生孢子萌发和附着胞形成率的影响,结果表明:分生孢子萌发率随葡萄糖浓度升高而增加,但附着胞形成率下降,芽管长度增加,附着胞的直径几乎没有变化;随着时间的延长,孢子萌发率和附着胞形成率都有所增加。不同pH对分生孢子萌发和附着胞形成率的影响结果显示,分生孢子在pH 2.0~9.0的溶液中可以萌发,并产生附着胞;最适分生孢子萌发和附着胞形成的pH是在5.0~6.0。不同pH处理的致病试验结果说明。在23℃时病斑在pH 4.0~8.0条件下都可产生;致病试验结果也发现,17℃时,pH6.0处理能发病,但不形成分生孢子团,pH 5.0处理不发病;15℃时,pH 5.0和pH 6.0的处理都不能发病。温度对菌丝生长的影响显示,菌落生长最适温度是25℃左右,高温抑制菌落生长。寄主表面侵染结构扫描电镜观察结果表明,芽管长度变化很大,芽管可以纵向沿着脊或沟延伸,也可横向通过脊沟;附着胞均在沟底或近底部形成。  相似文献   

18.
Steiner U  Oerke EC 《Phytopathology》2007,97(10):1222-1230
ABSTRACT During formation of appressoria produced from conidia and ascospores of Venturia inaequalis, a dark brown ring structure was detected at the base of appressoria. This melanized appressorial ring structure (MARS) was attached to the leaf surface like a sealing ring and formed the fungus-plant interface; it is believed to be required for pathogen penetration of the cuticle. Neither germ tubes nor infection structures beneath the cuticle were found to be visibly melanized. MARS were formed not only on apple leaves but also on leaves of nonhost plants and artificial surfaces differing in hydrophobicity; the formation of appressoria and MARS was confined to hard surfaces. The melanin nature of the ring was confirmed by using melanin biosynthesis inhibitors. Applications prior to inoculation largely inhibited the melanization and reduced infection rate by 45 to 80%; curative applications were not effective. Transmission electron microscopy verified a localized melanization of the cell wall around the penetration pore, and melanin was incorporated into all layers of the fungal cell wall. Appressoria without MARS were not able to infect the plant, suggesting that this structure can be considered to be a pathogenicity factor in V. inaequalis.  相似文献   

19.
The conidia of Blumeria graminis f. sp. hordei (Bgh), following contact with a host surface, first form a short germ tube, called the primary germ tube (PGT), and then an elongating germ tube emerges. It differentiates into an appressorial germ tube (AGT), and then the AGT elongates and swells. It forms a hooked, appressorial lobe that penetrates the epidermal cell wall of the host. In a series of infections, the positive role of PGT in the morphogenesis of the fungus is unclear except for the possibility reported by Carver and Ingerson that the growth of a long germ tube, with the potential to differentiate into an appressorium, seems to be dependent on the perception of a suitable host surface through contact with the PGT. Therefore, the aim of the present study is to further clarify the role of PGT in the morphogenesis of the fungus. When the conidia of Bgh were inoculated onto the coleoptile surface whose cuticle was removed with cellulose acetate, the emergence of the AGT was delayed. This delay was related to the length of the PGT. That is, on the cuticleless coleoptile surface the PGT tended to continue elongating without stopping. If there were gaps on the coleoptile surface such as a cell border on the more hydrophilic substratum like cuticleless coleoptile surface, the PGT stopped elongating there and after that the AGT emerged. Moreover, the length of PGT in the beginning of AGT emergence was same as that of the PGT after appressorium formation. This means that PGT elongation had stopped when AGT began to emerge. Therefore, it is necessary to stop the PGT elongation for the triggering of AGT emergence.  相似文献   

20.
In growth cabinet experiments, the common phyllosphere yeastsSporobolomyces roseus andCryptococcus laurentii var.flavescens were sprayed as a mixture (11) onto the fourth leaves of maize plants (Zea mays) two-three days prior to inoculation withColletotrichum graminicola. In four experiments the average yeast population of the treated leaves at the time of pathogen inoculation varied between 5× 104 and 8× 105 cells cm–2 leaf, whereas on the untreated leaves the yeast population varied from <103 to 104 cells cm–2 leaf. The yeasts reduced lesion density and necrosis fromC. graminicola infection by approximately 50%. Contrary to findings with other necrotrophic pathogens, conidial germination, superficial mycelial growth and appressorium formation were not affected. Instead, the reduction of infection could only be explained by a reduced number of penetrations from the normally formed appressoria, a site of interaction not previously recorded.Samenvatting In klimaatkastexperimenten werden maisbladeren (4e blad) twee-drie dagen voor inoculatie metColletotrichum graminicola bespoten met een mengsel (11) van de algemeen voorkomende fyllosfeergistenSporobolomyces roseus enCryptococcus laurentii var.flavescens. In vier experimenten varieerde de gemiddelde gistpopulatie op de behandelde bladeren, op het moment van inoculatie met het pathogen, van 5× 104 tot 8× 105 cellen cm–2 blad, op de onbehandelde bladeren van <103 tot 104 cellen cm–2 blad. De gisten reduceerden de lesiedichtheid en het necrotisch bladoppervlak tengevolge van deC. graminicola infectie voor ongeveer 50%. De stadia in de ontwikkeling van andere necrotrofe pathogenen, die gewoonlijk gevoelig zijn voor antagonisme door gisten, zoals sporekieming, oppervlakkige myceliumgroei en vorming van appressoria, werden bijC. graminicola niet beïnvloed. De waargenomen reductie van infectie kon alleen verklaard worden door een remming van de penetratie vanuit normaal gevormde appressoria. Interactie in dit stadium van het infectieproces is nog niet eerder waargenomen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号