首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Equine mesenchymal stem cells (MSC) are of particular interest both for basic research and for the therapeutic approach to musculoskeletal diseases in the horse. Their multilineage differentiation potential gives them the capability to contribute to the repair of tendon, ligament and bone damage. MSCs are also considered a promising therapeutic aid in allogeneic cell transplantation, since they show low immunogenicity and immunomodulating functions.Adipose tissue-derived adult equine stem cells (AdMSC) can be isolated, expanded in vitro and then inoculated into the damaged tissue, eventually in the presence of a biological scaffold. Here we report our preliminary experience with adipose-derived mesenchymal stem cells in allogeneic cell-therapy of tendonitis in the horse. MSCs, derived from visceral adipose tissue, were grown in the presence of autologous platelet lysate and characterized for their differentiation and growth potential. Expanded AdMSC were inoculated into the damaged tendon after their dispersion in activated platelet-rich plasma (PRP), a biological scaffold that plays an important role in maintaining cells in defect sites and contributes to tissue healing. Fourteen out of sixteen treated horses showed a functional recovery and were able to return to their normal activity.  相似文献   

2.
Del Bue  M.  Ricc&#;  S.  Ramoni  R.  Conti  V.  Gnudi  G.  Grolli  S. 《Veterinary research communications》2008,32(1):51-55
Equine mesenchymal stem cells (MSC) are of particular interest both for basic research and for the therapeutic approach to musculoskeletal diseases in the horse. Their multilineage differentiation potential gives them the capability to contribute to the repair of tendon, ligament and bone damage. MSCs are also considered a promising therapeutic aid in allogeneic cell transplantation, since they show low immunogenicity and immunomodulating functions.Adipose tissue-derived adult equine stem cells (AdMSC) can be isolated, expanded in vitro and then inoculated into the damaged tissue, eventually in the presence of a biological scaffold. Here we report our preliminary experience with adipose-derived mesenchymal stem cells in allogeneic cell-therapy of tendonitis in the horse. MSCs, derived from visceral adipose tissue, were grown in the presence of autologous platelet lysate and characterized for their differentiation and growth potential. Expanded AdMSC were inoculated into the damaged tendon after their dispersion in activated platelet-rich plasma (PRP), a biological scaffold that plays an important role in maintaining cells in defect sites and contributes to tissue healing. Fourteen out of sixteen treated horses showed a functional recovery and were able to return to their normal activity.  相似文献   

3.
OBJECTIVE: To isolate and characterize bone marrow-derived equine mesenchymal stem cells (MSCs) for possible future therapeutic applications in horses. SAMPLE POPULATION: Equine MSCs were isolated from bone marrow aspirates obtained from the sternum of 30 donor horses. PROCEDURES: Cells were cultured in medium (alpha-minimum essential medium) with a fetal calf serum content of 20%. Equine MSC features were analyzed to determine selfrenewing and differentiation capacity. For potential therapeutic applications, the migratory potential of equine MSCs was determined. An adenoviral vector was used to determine the transduction rate of equine MSCs. RESULTS: Equine MSCs can be culture-expanded. Equine MSCs undergo cryopreservation in liquid nitrogen without altering morphologic characteristics. Furthermore, equine MSCs maintain their ability to proliferate and differentiate after thawing. Immunocytochemically, the expression of the stem cell marker CD90 can be detected on equine MSCs. The multilineage differentiation potential of equine MSCs was revealed by their ability to undergo adipogenic, osteogenic, and chondrogenic differentiation. CONCLUSIONS AND CLINICAL RELEVANCE: Our data indicate that bone marrow-derived stromal cells of horses can be characterized as MSCs. Equine MSCs have a high transduction rate and migratory potential and adapt to scaffold material in culture. As an autologous cell population, equine MSCs can be regarded as a promising cell population for tissue engineering in lesions of the musculoskeletal system in horses.  相似文献   

4.
Autologous mesenchymal progenitor cells (MPCs) purified from bone marrow aspirates are being used in the treatment of superficial digital flexor tendon (SDFT) injuries in the horse with promising results. In this study the fate of autologous and allogeneic MPCs following injection into the SDFT was monitored by stable transfection of MPCs with green fluorescent protein (GFP). Small lesions were created manually in one forelimb SDFT of 2 horses and injected with autologous MPCs, allogeneic MPCs or bone marrow supernatant alone. Post mortem examinations performed after 10 or 34 days revealed GFP labelled cells located mainly within injected lesions, but with a small proportion integrated into the crimp pattern of adjacent healthy areas of tendon. Furthermore, there was no visible cell mediated immune response to allogeneic MPCs in either of the host horses.  相似文献   

5.
Adult mammalian tissue contains a population of cells known as mesenchymal stem cells (MSC), that possess the capability to secrete regenerative cytokines and to differentiate into specialised cell types. When transplanted to a site of injury MSC embed in damaged tissue and repair and regenerate the tissue by secreting cytokines. The immuno-privileged and immuno-regulatory capabilities of MSC enhance their therapeutic potential not only in autologous but also allogeneic recipients. Studies have demonstrated the beneficial effects of MSC in the treatment of a variety of clinical conditions including osteoarthritis, tendon injuries, and atopic dermatitis in domestic animals. Studies using animal models have shown promising results following MSC or MSC secretion therapy for induced injury in musculoskeletal and nervous systems and some organ diseases. This review describes the stem cell types relevant to regenerative medicine and the procedures used for isolation, identification, expansion, enrichment and differentiation of these cells. We also review the use of MSC in animal models of disease as well as diseases in the clinical veterinary setting.  相似文献   

6.
Equine recurrent uveitis (ERU) is an immune‐mediated disease causing repeated or persistent inflammatory episodes which can lead to blindness. Currently, there is no cure for horses with this disease. Mesenchymal stem cells (MSCs) are effective at reducing immune cell activation in vitro in many species, making them a potential therapeutic option for ERU. The objectives of this study were to define the lymphocyte phenotype of horses with ERU and to determine how MSCs alter T‐cell phenotype in vitro. Whole blood was taken from 7 horses with ERU and 10 healthy horses and peripheral blood mononuclear cells were isolated. The markers CD21, CD3, CD4, and CD8 were used to identify lymphocyte subsets while CD25, CD62L, Foxp3, IFNγ, and IL10 were used to identify T‐cell phenotype. Adipose‐derived MSCs were expanded, irradiated (to control proliferation), and incubated with CD4+ T‐cells from healthy horses, after which lymphocytes were collected and analyzed via flow cytometry. The percentages of T‐cells and B‐cells in horses with ERU were similar to normal horses. However, CD4+ T‐cells from horses with ERU expressed higher amounts of IFNγ indicating a pro‐inflammatory Th1 phenotype. When co‐incubated with MSCs, activated CD4+ T‐cells reduced expression of CD25, CD62L, Foxp3, and IFNγ. MSCs had a lesser ability to decrease activation when cell‐cell contact or prostaglandin signaling was blocked. MSCs continue to show promise as a treatment for ERU as they decreased the CD4+ T‐cell activation phenotype through a combination of cell‐cell contact and prostaglandin signaling.  相似文献   

7.

Background

Recent studies have assessed the therapeutic potential and drawbacks of mesenchymal stem cells (MSCs). The adverse reactions of intravenous transplantation of bone marrow (BM)-derived MSCs were examined at varying doses and frequencies of administration.Nine healthy beagle dogs were purchased from a commercial laboratory. The dogs were distributed equally (n = 3 per group) and randomly into three groups. All dogs received allogeneic BM-derived MSCs: 2 × 106 once (group A), 2 × 107 once (group B), and 2 × 106 for three consecutive days (group C). Various laboratory examinations, multi-detector computed tomography features and histopathology were evaluated to clarify the clinical and diagnostic features of adverse reactions of MSCs administration, prior to receiving MSCs (pre procedure) and on days 1, 3, and 7 post transplantation.

Results

Only one dog had clinical signs during and after MSCs transplantation. Dogs receiving 2 × 106 MSCs showed increased numbers of lymphocytes but the total white blood cell counts were not elevated (P < 0.01). Multi-detector computed tomography (MDCT) revealed pulmonary parenchymal changes in one dog and histopathologic examination revealed pulmonary parenchymal edema and hemorrhage in four dogs. The presence of pulmonary thromboembolism was not detected in either examination.

Conclusions

We considered the presence of pulmonary edema and hemorrhage as possible adverse reactions after intravenous MSCs transplantation; however these results should be cautiously interpreted.  相似文献   

8.
9.
Induced pluripotent stem cells (iPSCs) are thought to be highly beneficial in the field of regenerative medicine and are believed to overcome immunogenic barriers to cell transplantation. However, issues remain regarding their safety and efficiency for medical use. Furthermore, some recent reports have suggested that iPSCs could be targeted by the autologous immune system. To promote practical applications of iPSCs, in depth research using appropriate animal models is needed and porcine species appear to provide an ideal model. Recent studies have focused on the generation of porcine iPSC cells, but no investigations of their immunological properties have been conducted to date. In the present study, we generated putative iPSCs from porcine somatic cells and measured major histocompatibility complex (MHC) expression on the iPSCs and their derivatives. Compact colonies that expressed pluripotent markers appeared 11 days after viral infection. Embryonic bodies (EB) were produced and differentiated into three germ layers in vitro. Karyotyping and swine leukocyte antigen (SLA) typing showed that the iPSCs were identical to parental somatic cells. Porcine iPSCs expressed only low levels of MHC class I and moderately increased levels on their differentiated derivatives, whereas MHC class II was rarely expressed. In the presence of interferon-gamma (IFN-γ), the expression of MHC class I was elevated on differentiated iPSCs, and gradually decreased after withdrawal of the cytokine. Our data suggest that porcine iPSCs could be useful for preclinical studies of the efficiency and viability of iPSCs, and for devising strategies to rescue transplanted cells from the autologous immune system.  相似文献   

10.
One of the approaches to preserve the properties of mesenchymal stem cells (MSCs) during in vitro expansion is to use cell culture substrates. MSCs are known to generate the extracellular matrix (ECM) proper to preserve their proliferative capacity in vitro, but extensive expansion is considered to deprive MSCs of the capacity to prepare such ECM. In order to examine the features of ECM proper that is required to preserve the proliferative capacity of MSCs, we analyzed the changes in the composition of ECM accumulated by MSCs during in vitro expansion. Biochemical and immunological analysis showed that collagen and laminin content decreased during expansion. Immunofluorescence and ultrastructural analyses showed that the ECM structure changed from a dynamic fibrous, porous and steric structure to a static, crammed, and planar one. The results of Western blotting analysis suggested loose intermolecular association in ECM molecules accumulated by extensively proliferated MSCs. The ECM prepared by extensively proliferated MSCs was less effective to recover their proliferative capacity than that prepared by less proliferated cells. Our results suggest that a cell culture substrate to expand MSCs requires abundance in collagen and basement membrane components, and steric, porous and fibrous structure in which ECM molecules are tightly associated.  相似文献   

11.
OBJECTIVE: To evaluate cell surface markers of bone marrow-derived canine mesenchymal stem cells (MSCs) by use of flow cytometric analysis and determine whether canine MSCs express proteins specific to neuronal and glial cells. SAMPLE POPULATION: Bone marrow aspirates collected from iliac crests of 5 cadavers of young adult dogs. PROCEDURES: Flow cytometric analysis was performed to evaluate cell surface markers and homogeneity of third-passage MSCs. Neural differentiation of canine MSCs was induced by use of dibutyryl cAMP and methyl-isobutylxanthine. Expressions of neuronal (beta III-tubulin) and glial (glial fibrillary acidic protein [GFAP] and myelin basic protein) proteins were evaluated by use of immunocytochemical and western blot analyses before and after neural differentiation. RESULTS: Third-passage canine MSCs appeared morphologically homogeneous and shared phenotypic characteristics with human and rodent MSCs. Immunocytochemical and western blot analyses revealed that canine MSCs constitutively expressed beta III-tubulin and GFAP. After induction of neural differentiation, increased expression of GFAP was found in all samples, whereas such change was inconsistent in beta III-tubulin expression. Myelin basic protein remained undetectable on canine MSCs for these culture conditions. CONCLUSIONS AND CLINICAL RELEVANCE: Canine bone marrow-derived mononuclear cells yielded an apparently homogeneous population of MSCs after expansion in culture. Expanded canine MSCs constitutively expressed neuron or astrocyte specific proteins. Furthermore, increases of intracellular cAMP concentrations induced increased expression of GFAP on canine MSCs, which suggests that these cells may have the capacity to respond to external signals. Canine MSCs may hold therapeutic potential for treatment of dogs with neurologic disorders.  相似文献   

12.
The safety and efficacy of 2% moxidectin/12.5% praziquantel oral gel administered at a rate of 0.4 mg moxidectin and 2.5 mg praziquantel/kg was studied in client-owned horses under field use conditions. Four hundred horses (300 treated with moxidectin/praziquantel oral gel and 100 treated with vehicle) were enrolled, feces were collected, and eggs were counted. Investigators as well as horse owners were masked to treatment assignment. No adverse reactions to treatment were observed in any horses. Moxidectin/praziquantel gel reduced Anoplocephala spp by more than 99% and provided a significant (P <.05) reduction (> 98%) in the strongyle egg count of treated horses.  相似文献   

13.
OBJECTIVE: To determine whether expansion of equine mesenchymal stem cells (MSCs) by use of fibroblast growth factor-2 (FGF-2) prior to supplementation with dexamethasone during the chondrogenic pellet culture phase would increase chondrocytic matrix markers without stimulating a hypertrophic chondrocytic phenotype. SAMPLE POPULATION: MSCs obtained from 5 young horses. PROCEDURES: First-passage equine monolayer MSCs were supplemented with medium containing FGF-2 (0 or 100 ng/mL). Confluent MSCs were transferred to pellet cultures and maintained in chondrogenic medium containing 0 or 10(7)M dexamethasone. Pellets were collected after 1, 7, and 14 days and analyzed for collagen type II protein content; total glycosaminoglycan content; total DNA content; alkaline phosphatase (ALP) activity; and mRNA of aggrecan, collagen type II, ALP, and elongation factor-1alpha. RESULTS: Treatment with FGF-2, dexamethasone, or both increased pellet collagen type II content, total glycosaminoglycan content, and mRNA expression of aggrecan. The DNA content of the MSC control pellets decreased over time. Treatment with FGF-2, dexamethasone, or both prevented the loss in pellet DNA content over time. Pellet ALP activity and mRNA were increased in MSCs treated with dexamethasone and FGF-2-dexamethasone. After pellet protein data were standardized on the basis of DNA content, only ALP activity of MSCs treated with FGF-2-dexamethasone remained significantly increased. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone and FGF-2 enhanced chondrogenic differentiation of MSCs, primarily through an increase in MSC numbers. Treatment with dexamethasone stimulated ALP activity and ALP mRNA, consistent with the progression of cartilage toward bone. This may be important for MSC-based repair of articular cartilage.  相似文献   

14.
Reasons for performing study: Injury to the superficial digital flexor tendon (SDFT) is common in racing and sport horses and poor tendon regeneration leads to high reinjury rates. Autologous mesenchymal stromal cells (MSCs) are being used clinically to improve tendon regeneration but they have some practical limitations. Embryonic stem cells (ESCs) may overcome these limitations but their fate following injection into the damaged SDFT is unknown. Objective: To inject MSCs and ESCs into distinct areas of damage in the SDFT and monitor their survival over a 3 month period. Methods: MSCs and ESCs expressing different reporter genes were injected into separate sites of mechanically induced damage in SDFTs. Cell survival and distribution were examined post mortem after 10, 30, 60 and 90 days and host immune responses determined. Results: Neither MSCs nor ESCs produced signs of cell‐mediated immune response or tumour formation. ESC survival was high and numbers were maintained at a constant level over 90 days. ESCs were present at all sites of damage. In contrast, MSCs showed <5% survival at 10 days and numbers declined over the course of the experiment. MSCs were detected only at the site into which they were injected. Conclusions: ESCs survived in greater numbers than MSCs in the damaged tendon and did not induce an immune response, or form tumours at the injection sites in the 90 day time period studied. ESCs also demonstrated an ability to migrate to other areas of damage within the same tendon, whereas MSCs did not. Potential relevance: ESCs can be used allogeneically, therefore providing a possible ‘off the shelf’ source of cells for therapeutic use which overcomes the practical limitations of autologous MSCs. Furthermore, MSCs and ESCs have different survival rates and migration patterns in the damaged tendon, suggesting that they may produce different functional effects. This may have clinical relevance to treating tendon injuries in the horse.  相似文献   

15.
16.
Reasons for performing study: Autologous cellular therapy products including adipose‐derived stromal vascular fraction (SVF), bone marrow mononuclear cells (BMMNs), cord blood mononuclear cells (CBMNs) and platelet rich plasma are options for treatment of acute orthopaedic lesions while mesenchymal stem cells (MSCs) are culture expanded. These products may contribute to healing by secreting matrix proteins or growth factors, but they may also act on endogenous MSCs to facilitate healing. Objectives: To determine the effects of cell therapy products on MSCs function in vitro. The hypothesis was that cell therapy products promote MSCs functions including proliferation, migration and mediator release. Methods: Fat, bone marrow (BM), cord blood and platelets were obtained from 6 Quarter Horses. The BM‐MSCs and their autologous cell therapy products were co‐incubated in transwells. Mesenchymal stem cells proliferation, migration, gene expression and cytokine concentrations were determined. Results: All cell therapy products increased MSCs proliferation, but SVF induced significantly more proliferation than any other product. Also SVF elicited more MSCs chemotaxis and, along with BMMNs, significantly more MSCs chemoinvasion. Cord blood mononuclear cells stimulated MSCs to produce high concentrations of interleukin‐6 (IL‐6), transforming growth factor‐β1 (TGF‐β1), and prostaglandin E2 (PGE2). Stromal vascular fraction and platelet lysate did not stimulate MSCs but SVF and platelet lysate themselves contained high concentrations of PGE2 and IL‐6 (SVF) and TGF‐β1 (platelet lysate). Conclusions: Autologous cell products variably stimulate MSCs functions with 2 primary patterns apparent. Products either contained preformed mediators that may have intrinsic healing function, or products stimulated MSCs to secrete mediators. Potential relevance: The specific clinical indications for these products may differ to include administration as a sole treatment modality prior to MSCs injection for intrinsic cell and cytokine activity (i.e. SVF) or administration concurrently with MSCs to activate MSCs for treatment of chronic lesions (i.e. CBMNs).  相似文献   

17.
OBJECTIVE: To evaluate horseshoe characteristics and high-speed exercise history as risk factors for catastrophic musculoskeletal injury in Thoroughbred racehorses. ANIMALS: 377 horses (37,529 race starts). PROCEDURES: Shoe characteristics included material, toe grab height, heel traction device, pads, and rim shoes. Racing variables were obtained from a computerized database. Forty-three horses that had a musculoskeletal injury and then failed to race or train for 6 months (cases) and 334 noninjured horses from the same race in which a horse was injured (controls) were compared regarding risk factors. RESULTS: Overall, 98% of race starts were associated with aluminum shoes, 85% with toe grabs, 32% with pads, and 12% with rims on forelimb horseshoes. Among 43 horses with musculoskeletal injury, sex (geldings), an extended interval since last race, and reduced exercise during the 30 or 60 days preceding injury were risk factors for catastrophic injury. Odds of injury in racehorses with toe grabs on front shoes were 1.5 times the odds of injury in horses without toe grabs, but this association was not significant (95% confidence interval, 0.5 to 4.1). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that horses that return to racing after an extended period of reduced exercise are at high risk of catastrophic musculoskeletal injury. Results regarding the use of toe grabs as a possible risk factor for catastrophic injury were inconclusive because the probability of declaring (in error) that use of toe grabs was associated with an increased risk of musculoskeletal injury (eg, odds ratio > 1.0) was 38%.  相似文献   

18.
The pathogenesis of equine urticaria is not well understood. In man, urticaria has been associated with immunological and nonimmunological mechanisms leading to the release of various mediators by mast cells. Skin biopsies of 32 horses with a history of urticaria were stained with toluidine blue, a double-labelling method for chymase and tryptase, and immunohistochemistry for immunoglobulin (Ig)E. These horses were compared with horses with pemphigus foliaceus, insect bite hypersensitivity and control horses with healthy skin. Neither formalin fixation time nor biopsy site influenced the staining methods. No chymase-positive cells were found. In all groups of horses, cells staining with toluidine blue and for tryptase and IgE were found in the epidermis and hair follicle papilla and significantly more positively staining cells were observed in the subepidermal dermis compared with the deep dermis. Horses with urticaria had significantly more IgE-bearing cells in the subepidermal dermis than control horses. However, horses with urticaria had significantly fewer toluidine-blue-stained mast cells in both subepidermal and deep dermis compared with the insect bite hypersensitivity and pemphigus foliaceus groups. This study suggests that IgE-mediated reactions play a role in the pathogenesis of urticaria.  相似文献   

19.
Cell-mediated immunity in horses with sarcoid tumor against sarcoid antigens was studied in vitro by means of mixed lymphocyte tumor cell culture assay and lymphocyte-mediated cytotoxicity of 52Cr-labeled target cells. When Mc-1 sarcoid cells were used as stimulatory cells for peripheral blood lymphocytes in the mixed lymphocyte tumor cell assay, a clear difference in the kinetics of the generated lymphocytic proliferative response could be detected between sarcoid and control horses. With sarcoid horses, their proliferative maximum was reached 3 days earlier than that of the control horses, and at this time their proliferative activity was significantly increased over that of control horses. When normal allogeneic fibroblasts were used as stimulatory cells, no such difference between sarcoid and control horses could be seen. The cellular cytotoxicity of peripheral blood lymphocytes from sarcoid and control horses against Mc-1 cells or normal allogeneic fibroblast targets was very low. However, the mean cytotoxicity against Mc-1 was slightly increased for sarcoid horses as compared with that of control horses. In contrast, the cytotoxicity against allogeneic fibroblasts was slightly lower for sarcoid than for control horses. In contrast, the cytotoxicity against allogeneic fibroblasts was slightly lower for sarcoid than for control horses. Furthermore, it was shown that sarcoid horses, but not control horses, had a slightly but consistently increased cytotoxicity against Mc-1 cells as compared with that against normal allogeneic fibroblasts.  相似文献   

20.
The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号