首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
Soybean is usually grown under rain-fed conditions, and long-term drought stress often occurs with short-term heat stress. This study aimed to investigate changes in the photosynthetic characteristics of subtending leaves and their relationships with pod development under short-term heat, long-term drought and their combined stresses. Short-term heat stress lasted for 5 days began at R5 stage, and long-term drought stress lasted from R5 stage until maturity, respectively. No significant effect was observed on pod development under short-term heat stress alone due to unaffected net photosynthetic rate after treatment and PSII recovery after the heat stress release. Except that the reduction of sucrose content had been brought forward from 12 to 5 days after treatment under combined stresses, application of combined stresses caused similar responses to long-term drought stress alone on the photosynthetic characteristics of subtending leaves and pod development, but more pronounced under combined stresses. Reduced pod weight and seed weight per pod under long-term drought stress alone or combined stress due to a decrease in the net photosynthetic rate and production of sucrose and starch, especially after 19 days of treatment. Findings from this study demonstrate that under combined stress, long-term drought stress had a dominant effect on the photosynthetic performance of subtending leaves and pod development over short-term heat stress; moreover, even short-term heat stress also exacerbates the negative effects of long-term drought stress.  相似文献   

2.
R. Wang    V. L. Ripley    G. Rakow 《Plant Breeding》2007,126(6):588-595
Pod shatter susceptibility was investigated in Brassica napus germplasm and shatter resistant species of B. juncea and Sinapis alba. The comparisons were made by measuring seed yield in field plots, detached pod rupture energy (RE) and the half‐life of pod‐opening. Pod shatter resistance was significantly greater in B. napus lines derived from interspecific hybridizations of B. napus with B. rapa, B. carinata and B. juncea, than common B. napus cultivars. While these lines exhibited no significant difference in resistance to pod shatter than B. juncea, an entry of S. alba had no yield loss caused by pod shatter. Resistance to pod shatter was characterized in the field as little or no yield loss after full maturity, delayed shattering in time, and stable yield performance under variable climatic conditions during pod maturity. Yield loss caused by pod shatter ranged from a low of 4% for the B. juncea cv. ‘AC Vulcan’ to a high of 61% for the black seeded B. napus line DH12075 in 2‐year field trials after 1 month maturity. Pod shatter resistance was not significantly associated with specific plant and pod morphological traits, except pod length (P = 0.005) in tested materials. Field visual scores of pod shatter through inspections of average pod shatter per plant within plots were highly correlated with plot yield loss. Indoor quantitative evaluations of pod strength using a pendulum machine to measure pod RE and random impact test to measure half‐life of pod‐opening resistance were highly correlated with field yield loss. Multiple evaluations of pod shatter in method and in time after pod maturity are recommended for reliable evaluation of pod shatter resistance.  相似文献   

3.
Elevated temperatures associated with climate change result in crops being exposed to frequent spells of heat stress. Heat stress results in reduced yield in field pea (Pisum sativum L.); it is therefore important to identify cultivars with improved pod and seed retention under heat to mitigate this loss. Objectives were to investigate the effect of heat stress on phenology, yield and pod-based yield components. Sixteen pea cultivars were evaluated at normal and late (hot) seeding dates in the field in Arizona 2012 and in growth chambers with two temperature regimes (24/18°C and 35/18°C day/night temperature for 7 days) during reproductive development. We measured variation in the pattern of pod retention at four-node positions on plants, seed retention by ovule position (stylar, medial and basal) within pods and screened cultivars for pod retention, seed retention and yield. Heat stress reduced seed yield by accelerating the crop lifecycle and reducing pod number and seed size. Heat stress had the most damaging effect on younger reproductive growth (flowers and pods developed later), resulting in ovary abortion from developing flowers. Heat also accelerated seed abortion in all ovule positions within pods. Two high-yielding cultivars under control temperature, “Naparnyk” and “CDC Meadow”, maintained high yield in heat, and “MFR043” had the lowest yield. Cultivars “40-10” and “Naparnyk” retained the most ovules and seeds per pod, and “MFR043” aborted seeds when exposed to heat. In half of the cultivars, ovules at the basal peduncle end of pods were likely to abort while ovules at the medial and stylar end positions developed into seeds. For seven of the field cultivars, ovules at the medial pod position also produced mature seeds. Cultivars “40-10”, “Naparnyk” and “CDC Meadow” had greater pod and ovule retention or maintained high yield under heat stress, and were identified as heat-tolerant cultivars. Our results allow for a better understanding of pod-based yield components in field pea under heat stress and developing heat-tolerant cultivars.  相似文献   

4.
Flowering, Pod Set and Reproductive Success in Soya Bean   总被引:2,自引:0,他引:2  
Much of the variation in yield of soya bean [Glycine max (L.) Merrill] and other grain crops is associated with changes in the number of pods and seeds per unit area. Photosynthesis and seed characteristics are the primary determinants of pod and seed number, but recent research suggests that the temporal distribution of flower production may also play an important role. Soya bean has a long flowering period (up to 40 days or more), but most of the flowers are produced in a much shorter time. The length of the period varies among cultivars, growth habits (indeterminate and determinate) and environments. The reproductive success of flowers produced early in the period is usually greater than those produced later. Little is known, however, of the regulation of the temporal distribution of flower production or its potential role in determining pod and seed number at maturity. Research is needed to determine first, if the temporal distribution can be manipulated to increase pod and seed set and secondly, if such increases would result in higher yields.  相似文献   

5.
Two experiments were conducted under field conditions to evaluate reproductive abscission, seed yield and yield components of three cowpea [Vigna unguiculata (L.) Walp.] genotypes. In the first experiment, level of abscission and yield of two cultivars, California Blackeye Pea No. 5 (CA-5) and Speckle Purple Hull (SPH), and one experimental line (AZ-54) were studied. In the second experiment, effect of drought stress on abscission at three nodal positions, seed yield, and yield components of CA-5 were studied. Abscission in both experiments was determined by counting scars left by dropprd reproductive structures including floral buds, open flowers, and immature pods. Abscission of CA-5 and AZ-54 in the first experiment ranged between 68 and 76 % while that of SPH ranged between 86 and 89 %. CA-5 and AZ-54 retained two to three pods per peduncle, and SPH retained only one mature pod per peduncle. Average seed yields of SPH and AZ-54, respectively, were 45 and 50 % of CA-5. Drought stress in the second experiment did not affect production of floral buds Peduncle?1 (average of 10) but significantly increased percent reproductive abscission and decreased pod retention of CA-5. Abscission in the bottom two-third nodes increased from 82 % in well-irrigated plants to 93 % in non-irrigated plants. This increase in abscission corresponded to nearly 60 % reduction in pod retention. The number of pods per peduncle in the bottom two-third nodes decreased from 1.9 in well-irrigated plants to only. 77 in non-irrigated plants. The increase in abscission and decrease in pod retention with increasing intensity of drought was greatest in the bottom one-third nodes. Drought stress did not affect abscission and pod retention in the top one-third nodes. Stress also decreased peduncles plant?1, seeds pod?1, and dry matter and seed yield plant?1 but did not affect seed weight and harvest index. The decrease in seed yield was largely due to reductions in pods plant?1 and seeds pod?1. The reduction in the number of pods and, therefore, seed yield due to stress was because of reductions in the number of peduncles plant?1 and increases in reproductive abscission. It is concluded external conditions that increase abscission beyond that of normal occurrence affect seed yield adversely.  相似文献   

6.
With the expected increase of abiotic stress under global climate change, significant research has been devoted to how abiotic stress will affect crop production. To date, there has been little research on the stage sensitivity of short‐term heat stress to crop lodging and yield determination in canola. This research was conducted in a controlled growth facility and aimed to examine root morphology, pod fertility, seed yield and crop lodging of two contrasting canola genotypes subjected to a short‐term heat stress (27.0/24.3°C, light/dark), imposed respectively at three growth stages, rosette vegetative stage (RVHT), early flowering stage (EFHT) and late flowering stage (LFHT), in comparison with non‐stressed control (CK) (23/17°C). The results demonstrate that heat stress imposed at RVHT and LFHT was less detrimental to seed yield and lodging resistance. However, EFHT showed significant adverse effects on both, which was further confirmed by redundancy analysis (RDA) and structural equation modelling (SEM). Compared with the CK, EFHT resulted in a yield loss of 43%, which was mainly due to poor pod fertility, less number of filled pods (?28%), decreased pollen viability (?38%) and a lower success ratio of filled pods (?29%). The taproot was found to be relatively tolerant to heat stress, but lateral roots were sensitive to heat stress at EFHT and LFHT. Root capacitance could be used as a non‐destructive method for evaluating lateral root morphology. Compared with the CK, EFHT displayed a high risk of stem lodging, as indicated by a 27% lower safety factor. This was mainly attributed to the reduced stem bending strength that was caused by the deterioration of stem mechanical properties under EFHT, as illustrated by SEM. Root lodging resistance was not altered by any stages of short‐term heat stress, as the taproot remained stable.  相似文献   

7.
通过对24个菜用大豆品种花荚及籽粒形成的比较,认为不同熟期类型品种间发育规律存在差异。早熟品种较晚熟品种花、荚形成发育快,时间短,脱落也快。籽粒形成主要集中在三个时期:籽粒重在中后期,荚皮重在中前期,荚重在中期。中期的生殖生长是籽粒形成的基础,也是影响产量的关键。因此在江苏徐淮地区的生态条件下,鼓粒前的花荚期长短是选择菜用大豆品种生育指标的重要因素。菜用大豆鼓粒前的花荚期以20d左右为宜。  相似文献   

8.
Major advancement in canola breeding depends on heterotic hybrids that require high general combining ability (GCA) and specific combining ability (SCA) inbred lines. In order to estimate heritability, gene action type, GCA, SCA and heterosis and to identify superior hybrids with wider adaptation to cold, one hundred canola hybrids were produced by crossing 10 lines and 10 testers in a Line?×?Tester mating design. The F1 and F2 generations were sown in α-lattice design in 2012 and 2013 growing seasons under optimum (early October) and late sowing (early November) conditions to be evaluated for days to flowering, days to physiological maturity, number of pods per plant, number of seeds per pod, thousand seed weight, seed yield and leaf electrical conductivity. The combined analysis indicated sufficient genetic diversity in the population and significant difference between two sowing date. The Line?×?Tester analysis presented significant GCA and SCA effects for all studied traits across optimum and late sowing conditions. The main gene action type was found to be non-additive, especially incomplete dominance and over-dominance in both conditions. Narrow-sense heritability ranged from low to moderate whereas broad-sense heritability was recorded more than 60% for all of the studied traits in both generations and conditions. The average heterosis in F2 population for all studied traits was lower than that in F1 representing this fact that heterosis is generally related to the heterozygosity at the population level and poorly correlated with heterozygosity at the individual level.  相似文献   

9.
The effect of terminal drought on the dry matter production, seed yield and its components including pod production and pod abortion was investigated in chickpea (Cicer arietinum L.). Two desi (with small, angular and dark brown seeds) and two kabuli (with large, rounded and light coloured seeds) chickpea cultivars differing in seed size were grown in a controlled-temperature greenhouse, and water stress was applied by withholding irrigation 1 (early podding water stress, ES), 2 (mid-podding water stress, MS) or 3 (late-podding water stress, LS) weeks after the commencement of pod set. In addition, the pod and seed growth of well-watered plants was followed for the first 19 days after pod set. Growth of the pod wall followed a sigmoid pattern and was faster in the desi than in the kabuli cultivars, while no difference was found in early seed growth among genotypes. Time of pod set affected the yield components in all treatments with the late-initiated pods being smaller, having fewer seeds per pod and smaller seeds, but no significant difference between pods initiated on the same day on the primary and secondary branches was observed. Early stress affected biomass and seed yield more severely than the later stresses, and in all stress treatments secondary branches were more affected than primary ones. Pod production was more affected by early stress than by late stress, regardless of cultivar. Pod abortion was more severe in the kabuli than in the desi cultivars, but final seed size per se did not appear to be a determinant of pod abortion under terminal drought conditions. The data indicated that the production and viability of pods was affected as soon as water deficits began to develop. The results show that pod abortion is one of the key traits impacting on seed yield in chickpeas exposed to terminal drought and that irrespective of differences in phenology, kabuli types have greater pod abortion than desi types when water deficits develop shortly after first pod set.  相似文献   

10.
大豆重组自交系群体荚粒性状的QTL分析   总被引:16,自引:1,他引:16  
利用大豆重组自交系soy01群体中的255个家系进行2年田间试验,采用两种作图方法,寻找一粒荚、四粒荚、每荚粒数等5个荚粒性状稳定的QTL。结果表明,利用区间作图法,2年共找到24个荚粒性状QTL,解释的遗传变异为5%~80%;利用复合区间作图法,2年共找到27个荚粒性状QTL,解释的遗传变异为4%~73%。利用复合区间作图法,2年找到2个重复出现、稳定的四粒荚QTL和2个每荚粒数QTL,为大豆荚粒性状QTL的精细定位和分子标记辅助育种提供了基础和依据。  相似文献   

11.
Heritability and Interrelationships of Pod Length and Seed Weight in Guar   总被引:1,自引:0,他引:1  
This study was undertaken to estimate heritability of pod length and seed weight in guar, Cyamopsis tetragonoloba (L.) Taub., and to determine genetic relationships between the two traits. Narrow-sense heritability (h2) estimates ranged from 0.63 to 0.68 for pod length and from 0.54 to 0.57 for seed weight. An additive-dominance model was adequate to explain gene action involved in the inheritance of both traits. Estimates indicate a minimum of 5 loci or chromosome segments control pod length and 2 control seed weight. Phenotypic correlations between pod length and seed weight were highly significant and positive. Genotypic correlations between the two traits were low and positive. Moderate to high heritability values for the two traits indicate that selection for improvement in either trait should be fairly rapid. Low genotypic correlations between the traits should not pose a significant barrier in developing large seed, grain-type cultivars.  相似文献   

12.
Summary All current commercial cultivars of leeks are open-pollinated and one of the major problems with the crop is poor uniformity with much of the variation being genetic in origin. Inbred lines and single cross hybrids were produced to try to reduce the genetic variation. Inbreds were generated by single seed descent from 5400 plants taken from six commercial cultivars and performance data for uniformity, yield and quality are presented for the S1-S3 generations. A few relatively vigorous inbred lines were obtained but overall, inbreeding depression was very severe with no compensating increase in uniformity as measured by coefficients of variation. In contrast, the experimental hybrids gave significant uniformity, yield and quality benefits compared to open-pollinated commercial cultivars and can be used as the basis for developing a range of commercial hybrid cultivars.Abbreviations SSD Single Seed Descent - HRI Horticulture Research International  相似文献   

13.
Effect of Water Stress on Yield Components in Guar   总被引:1,自引:0,他引:1  
This study was undertaken to measure the effect of water stress on yield and yield components in guar (Cyamopsis tetragonoloba [L.] Taub.) grown under water-stressed and water-optimal field conditions. Fifteen guar germplasms were grown in irrigated and dryland tests at Lubbock, TX on an Amarillo loam (fine-loamy, mixed thermic Aridic Paleustoll). Plants in each germplasm were hand harvested at maturity and data recorded for number of racemes/plant, pods/plant, seeds/pod, weight/100 seeds and g/seed/plant. We found differences among germplasms for yield components under both dryland and irrigated conditions. Germ-plasms responded statistically the same in both moisture levels. Among three pre-selected cultivars, water use efficiency did not differ statistically. Our analyses indicated that the component of yield most affected by water stress was number of pods/plant. Seed weight, seeds/pod, and racemes/plant each had progressively smaller effects on seed yield.  相似文献   

14.
Chickpea (Cicer arietinum L.) is a dry season food legume largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage if sowing is delayed. The breeding approaches for improving adaptation to these stresses include the development of varieties with early maturity and enhanced abiotic stress tolerance. Several varieties with improved drought tolerance have been developed by selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop subjected to heat stress during reproductive stage has helped in the development of heat‐tolerant varieties. A genomic region, called QTL‐hotspot, controlling several drought tolerance‐related traits has been introgressed into several popular cultivars using marker‐assisted backcrossing (MABC), and introgression lines giving significantly higher yield than the popular cultivars have been identified. Multiparent advanced generation intercross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses.  相似文献   

15.
Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: ‘Imam’, which possessed the Glu-D1d allele responsible for the suitable bread-making; ‘Bohaine’, which displayed high expression level of SSPs; and ‘Condor’, which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.  相似文献   

16.
Retrospective analyses may provide an understanding of unexploited genetic potential and indicate possible pathways for future yield improvement. The objectives of this study were to present maize(Zea mays L.)yield trends and plant traits changes for maize cultivars from the 1950s to the 2000s in China. Trials were conducted at three locations in 2007 and 2008, and at four locations in 2009. Twenty-seven single hybrids, four double-cross hybrids, and four open-pollinated varieties, were grown at three densities at each location each year. 56% of total yield gain was contributed to breeding from 1950 to 2000. New hybrids had more resistance to compound stress. Levels of response of all hybrids to higher-yielding environments were similar, and greater than that of OPVs. All maize cultivars showed morphological changes for all characteristics tested in a volatile manner from 1950 to 2000, except for relatively stable leaf number. ASI decreased and tolerance to root lodging improved, which were enhanced at higher plant densities. There were no trends for other characteristics at higher densities. Shorter maturity, smaller plant size and more tolerance to root and stalk lodging will be required for further yield improvement. Chinese maize yield improvement can benefit from agronomic strategies at higher plant densities.  相似文献   

17.
Five sunflower hybrids and one open-pollinated variety were sown at two locations in West Germany and at two-sowings at Giza, Egypt (summer and winter seasons). Cultivars showed different response concerning oil and protein contents as well as fatty acid composition. Highest protein content was observed from Giza in winter season. Cultivars differed significantly with this respect under different environments. However, oil content was not significantly affected by environments X cultivars interaction.
Regarding fatty acid composition, palmitic and stearic acids were insignificantly affected. However, highest oleic acid percentage (57.5%) was observed at Giza in summer sowing by Nhy , hybrid, while at Giza in winter sowing the highest value (25.7%) was produced by Semu 209 hybrid. The differences between the two Germany locations were relatively low in range from 14.6–17.6%. Concerning linoleic acid, it showed an opposite trend.
Environments X cultivars interaction showed significant influence on total tocopherol content.  相似文献   

18.
The distribution of flower and pod production during flowering may be an important determinant of pod and seed number in grain crops. We characterized the dynamics of small pod production and survival to maturity on indeterminate and determinate soybean [Glycine max (L.) Merrill)] cultivars growing in the field or greenhouse. Two soybean cultivars (maturity group IV, indeterminate and determinate) were grown in the field near Lexington, KY (38°N latitude) in 2001 and 2002 in 0.76 cm rows using late May and late June (2002 only) planting dates, and normal (24 plants m−2) and low (9 plants m−2, 2002 only) plant populations. Cultivar Elgin 87 (indeterminate, maturity group II) was grown in a greenhouse in 3.0 L pots with one plant per pot. All unmarked pods that were ≥10 mm long were marked with acrylic paint at the base of the pod at 3-day intervals. Paint color was changed at each marking to provide a temporal profile of pod production and pod survival. The pod production (marked pods) period was longer in the indeterminate cultivar (nearly 50 days after R1) than the determinate cultivar (≤40 days after R1). Delayed planting shortened the pod-production period, but a two- to three-fold difference in pods per plant, created by changing plant population, did not affect it. The temporal distribution of small pods that survived to maturity (full sized pods with at least one normal seed) closely followed the distribution of pod production in all experiments. Some surviving pods initiated growth after the beginning of seed filling (i.e., between growth stage R5 and R6), but most of the pods were initiated in a much shorter interval (up to 84% were initiated in <40% of the period) before R5. Abortion of pods >10 mm long was relatively low (20–30%), so production of a pod ≥10 mm long seems to be a key event in the pod set process. The average length of the pod set period at individual nodes on the main stem was larger for the determinate cultivar (14 days) than for the indeterminate (9 days), so the longer total period in the indeterminate cultivar resulted from the delay in initating pod production at the upper nodes on the main stem. Temporal profiles of pod production and pod set seem to be more sensitive to changes in flower and main stem node production than to changes in photosynthesis per plant (created by varying plant population). These results provide some of the information needed to integrate time into models predicting pod and seed number.  相似文献   

19.
Experiments were undertaken to determine the inheritance of pod length in a cross with spring rapesecd, Brassica napus, and to assess the value of pod length as a criterion of selection for high seed yield. Analyses of patterns of variation in F2; and backcross populations derived from a cross between a short-pod line TB42 and long-pod line CA553 indicated that much of the variation in pod length could be attributed to two major genes interacting in a complementary manner. Short-pods were produced when cither one or both genes were homozygous for the recessive allele. Analyses of F3 progenies of selected F2 and inbred-backcross lines derived from the same cross supported the two-gene hypothesis but also indicated that the effects of the major genes on pod length were possibly modified by genes of minor effect. Field testing of families derived from random intermating between F2, plants of the TB42 × CA553 cross showed that number of pods per plant varied independently of pod length, but seed weight per pod tended to increase with increasing pod length. As a result, families with the longest pods generally had significantly higher yields than those with short pods. It was concluded that yield improvement in B. napus could be achieved through introgression of long-pod genes into cultivars with an appropriate genetic background to ensure that selection for the long-pod character would be accompanied by an increase in seed weight per pod with little or no reduction in number of pods per plant.  相似文献   

20.
Nine short-duration pigeonpea genotypes were given adequate soil moisture throughout growth or subjected to water stress during the late vegetative and flowering (stress 1), flowering and early pod development (stress 2), or podfill (stress 3) growth stages under field conditions. The stress 1 treatment had no significant effect on the time to flowering. No stress treatment affected maturity or inter-plant flowering synchronization. The interval from a newly opened flower to a mature pod was about 30 days for all genotypes, and was unchanged in plants that were recovenng from stress 1 or undergoing stress 2. Seed yield was reduced to the greatest extent by stress 2 (by 37 %) and not significantly affected by stress 3 for all genotypes. No consistent differences were found between determinate and indeterminate genotypes in the ability to maintain seed yield under both stress 1 and stress 2. The harvest index was significantly reduced (22 %) by stress 2 but not by stress 1. However, under each soil moisture treatment, genotypic differences for seed yield were associated largely with differences in total dry matter production (TDM). For all genotypes, the number of pods m-2 was the only yield component significantly affected by the water stress treatments. The stability of other yield components should be fully exploited to improve the stability of seed yield under drought conditions (drought resistance). Possible characteristics which may improve the drought resistance of short-duration pigeonpea include the ability to maintain TDM, low flowering synchronization, small pod size with few seeds pod-1, and large 100-seed mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号