首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to use the natural dietary markers (stable isotopes and fatty acids) during grow‐out in a biofloc system and for the egg production of Farfantepenaeus brasiliensis shrimp. Egg production was compared for two broodstock origins: biofloc and a wild origin. To delineate the relative contribution to shrimp muscle and eggs, IsoSource software was used. The most important source that contributed to grow‐out shrimp was biofloc ≥250 μm. According to the principal component analysis (PCA) applied to the fatty acid profile of food sources, the first component explains 84.4% of the variability, and the most important source of fatty acids for this component was biofloc ≥250 μm. The most important fresh food sources that contributed to egg production were Artemia biomass, polychaetes and semi‐moist feed for both broodstock origins. According to a PCA analysis of the fatty acid profiles, the most important fresh foods were polychaetes and semi‐moist feed. In conclusion, both isotopic signature and fatty acid profile of the food sources can be used successfully to determine the integration of carbon in the diets of shrimp.  相似文献   

2.
The aim of this study was to evaluate the effect of the addition of Navicula spp. and Brachionus plicatilis on water quality and growth of postlarvae shrimp Litopenaeus vannamei reared in a biofloc system. Four treatments were considered: a control (biofloc system – BFT); BFT with the addition of Navicula spp. (BFT‐N); BFT with the addition of Brachionus plicatilis (BFT‐B) and BFT with the addition of Navicula spp. and Brachionus plicatilis (BFT‐NB), each in triplicate. Shrimp (16.2 ± 0.03 mg) were stocked at a density of 2500 shrimp m?3 and plankton were added on days 1, 5, 10, 15, 20, 25 and 30 at a density of 5 × 104 cells mL?1 (Navicula spp.) and 30 organisms L?1 (Brachionus plicatilis). The shrimp were fed a formulated feed in four daily rations composed of 40% crude protein and 8% lipids. Significant differences between treatments were observed for final weight, yield, feed conversion ratio, specific growth rate, protein efficiency ratio and protein content of the shrimp. The combined plankton addition of Navicula spp. and B. plicatilis had better performance parameters, indicating their benefit as natural food sources for postlarvae L. vannamei in biofloc systems.  相似文献   

3.
Soybean molasses was evaluated as a partial replacement for sugarcane molasses as a carbon source for biofloc development in the superintensive culture of Pacific white shrimp (Litopenaeus vannamei). A 50‐day study was conducted with juvenile (3.2 g) shrimp stocked in 16 800 L tanks at a stocking density of 250 shrimp m?3. Control of total ammonia concentration was performed by the addition of combined mixtures of soybean and sugarcane molasses to the culture water. Three different molasses treatments were evaluated using different soybean‐to‐sugarcane molasses ratios: 15–85%, 38–62% and 60–40% respectively. The control group was treated only with sugarcane molasses. Water quality, chlorophyll a concentration, heterotrophic bacterial load, Vibrio spp. concentration and zootechnical indexes were all evaluated. Total ammonia concentration was controlled by heterotrophic and chemotrophic pathways. Biofloc formation, as quantified by measuring the total suspended solids, was not altered. The Vibrio spp. concentration showed a significant reduction in treatments with soybean‐to‐sugarcane molasses ratios of 38–62% and 60–40%. All combined mixtures of soybean and sugarcane molasses could maintain water quality and productivity in the superintensive culture of L. vannamei using the biofloc system. Thus, the potential use of a residue from agroindustry as a carbon source in a biofloc culture is demonstrated.  相似文献   

4.
The use of the same water over multiple culture cycles in a biofloc technology system can be highly beneficial. This study evaluated the effect of different levels of biofloc‐rich water on selected water quality indicators and on the productive performance of Pacific white shrimp, Litopenaeus vannamei, juveniles (3.5 g) stocked at 312 juveniles/m3 and cultured under conditions of no water exchange. The study was performed over a 30‐d period in an 800‐L tank system. A total of four biofloc enrichment levels (25, 50, 75, and 100%) and control (0%) were tested with three replicates each. Significant differences in nitrogen compounds were found between the biofloc‐enriched water and the zero‐enrichment treatment. No statistically significant differences among the biofloc‐enriched treatments were found in survival, final weight (8.25 g), and feed conversion ratio (FCR) (1.08). The shrimp raised in clear seawater (i.e., a 0% biofloc enrichment) were significantly smaller (7.37 g vs. 8.25 g) and showed a higher FCR (1.52 vs. 1.08) than the shrimp cultured in the biofloc‐rich water. Nevertheless, no differences in yields were found between treatments. The results of this study suggest that culture in biofloc‐enriched water produces higher levels of water quality and shrimp performance than culture in natural seawater.  相似文献   

5.
The present study assessed the effects of different types of feeds and salinity levels on water quality, growth performance, survival rate and body composition of the Pacific white shrimp, Litopenaeus vannamei, juveniles in a biofloc system. Shrimp juveniles (2.56 ± 0.33 g) were cultured for 35 days in 300 L fibreglass tanks (water volume of 180 L) with a density of 1 g/L in six treatments. Three sources of feed (100% formulated feed, mixture of 66.6% formulated diet and 33.3% wet biofloc, and 100% wet biofloc) and two levels of salinity (10 and 32 ppt) were considered in two control groups and four biofloc treatments. Water quality parameters in the biofloc treatments were significantly better than control groups (p < .05). The highest increase in growth performance and survival rate were obtained in salinity of 32 ppt and mixed feed sources. Analysing the proximate composition of body shrimp indicates an increase in lipid and ash levels in biofloc treatments, which was more evident in the salinity of 32 ppt. In addition, the proximate analysis of shrimp body showed significant differences between biofloc treatments and control groups (p < .05). The highest FCR was found in the treatment with salinity level of 10 ppt and fed only with floc. Overall, it was found that the artificial diet supplemented with biofloc at the salinity of 32 showed better performance in the juvenile stage of Pacific white shrimp.  相似文献   

6.
Closed recirculating aquaculture systems (RAS) offer advantages over traditional culture methods including enhanced biosecurity, the possibility of indoor, inland culture of marine species year‐round and potential marketing opportunities for fresh, never‐frozen seafood. Questions still remain regarding what type of aquaculture system may be best suited for the closed‐system culture of marine shrimp. In this study, shrimp (Litopenaeus vannamei) were grown in clear‐water RAS and in biofloc‐based systems. Comparisons were made between the system types with respect to water quality, shrimp production and stable isotope dynamics used to determine the biofloc contribution to shrimp nutrition. Ammonia and nitrite concentrations were higher, and shrimp survival was lower in the biofloc systems. Although stable isotope levels indicated that biofloc material may have contributed 28% of the carbon and 59% of the nitrogen in shrimp tissues, this did not correspond with improved shrimp production. Overall, the water column microbial communities in biofloc systems may be more difficult to manage than clear‐water RAS which have external filters to control water quality. Biofloc does seem to offer some nutritional contributions, but exactly how to take advantage of that and ensure improved production remains unclear.  相似文献   

7.
Biofloc (consortium of diverse microorganisms associated to suspending substrates) was developed from waste of shrimp Litopenaeus vannamei postlarvae culture under low salinity (5 g L?1) to provide an additional nutritious biomass and reduce fishmeal inclusion in feeds in a 28‐day indoor shrimp nursery trial conducted in 15 experimental containers (250 L stocked at 600 org m?3). Four experimental diets (isoproteic and isocaloric) containing different percentage of fishmeal: 0%, 10%, 20% and 30% substituted by vegetable meal mix (corn, sorghum and wheat) were formulated and elaborated. A control treatment consisted of a commercial feed. The main water quality parameters were monitored, and no significant differences were found among treatments. The growth and survival were similar among treatments. In general, digestive enzymatic activities showed differences being greater in the biofloc system compared with clear water. It was concluded that low‐salinity shrimp nursery could be successfully developed with minimum inclusion of fishmeal in feeds, without significant effect on production response. The adjustment of C : N ratio allowed the increase of microbial biomass in the bioflocs, which contributed to maintain good water quality, provide live food and enhance digestive enzymatic activity of cultured organisms.  相似文献   

8.
This study aimed to evaluate the effects of dietary supplementation with sodium butyrate or polyhydroxybutyrate (PHB) on growth performance, as well as changes in intestinal microbiota and hemato‐immunological parameters, of Litopenaeus vannamei reared under a superintensive biofloc system. Twelve 800‐L tanks were each stocked with 250 shrimp/m3 (3.96 ± 0.04 g mean initial weight) and reared over a 6‐wk period. The basal diet and two test diets supplemented with 2% of each feed additive. At the conclusion of the growth trial shrimp fed with the butyrate‐supplemented diet, as compared with the control shrimp, showed higher survival and productivity and lower total bacterial and Thiosulfate‐citrate‐bile salts‐sucrose Agar (TCBS) counts in the intestine. However, no differences were observed in other performance parameters analyzed. Shrimp fed with both supplementation regimens also showed an increase in total and granular hemocytes, as well as an increase in serum agglutination titer. Shrimp offered diets supplemented with sodium butyrate had higher counts of hyaline cells. Thus, for L. vannamei reared in a superintensive biofloc system, it can be concluded that dietary supplementation of sodium butyrate, more so than PHB, acted as an immune system modulator by reducing the concentration of pathogenic bacteria in shrimp gut, thereby increasing survival and productivity.  相似文献   

9.
This study evaluated the zootechnical performance and enzymatic activity of Litopenaeus vannamei reared at different feeding frequencies during the nursery phase in biofloc system. The experiment consisted of four treatments, corresponding to the feeding frequencies of one, two, three and four times a day. Twelve‐day postlarvae (PL12) were stocked in 12 circular tanks at a density of 3,000/m2 for 35 days. These tanks were connected to a recirculation system supplied by a matrix tank where biofloc management was carried out. Water quality remained within acceptable limits for the species over the experiment. Food frequencies had no influence on survival (88.5–92.7%) and feed conversion ratio (1.5–1.7), but the final mean weight (0.43–0.56 g) was significantly higher in shrimp fed three times a day. This fact is probably associated with amylase (14.58 U/mg) and trypsin (23.84 U/mg) activities, as well as the significant increase of chymotrypsin (11.74 U/mg) and lipase (1.27 U/mg) in shrimp of this treatment at the end of culture period. Feeding three times a day provided the highest enzymatic activity and the best zootechnical performance of L. vannamei during the nursery phase in biofloc system.  相似文献   

10.
A 28-day indoor trial was conducted to evaluate the water quality, phytoplankton composition and growth of Litopenaeus vannamei in an integrated biofloc system with Gracilaria birdiae and Gracilaria domingensis. The experimental design was completely randomized with three treatments: control (shrimp monoculture); SB (shrimp and G. birdiae) and SD (shrimp and G. domingensis), all with three replicates. Random sampling was done (6 % of total population per experimental unit) to confirm white spot syndrome Virus (WSSV) infection using nested-PCR analysis due to suspicion of presence of the virus in the experiment (treatment and control groups). Shrimp L. vannamei (2.63 ± 0.10 g) were stocked in experimental tanks at a density of 425 shrimp m?3, and the Gracilaria was stocked at a biomass of 2.0 kg m?3. Shrimp mortality began in both the experimental and control groups at 10 days of culture. The integrated biofloc system (shrimp and seaweed) increased settleable solids (by 26–52 %); final weight (by 6–21 %); weekly growth (by 17–43 %); weight gain (by 17–43 %); specific growth rate (by 16–36 %); and yield (by 5–7 %) and decreased feed conversion ratio (by 21–28 %) and Cyanobacteria density about 16 % as compared to the control (shrimp monoculture). The use of red seaweed Gracilaria in an integrated biofloc system can enhance shrimp growth and reduce Cyanobacteria density in the presence of WSSV.  相似文献   

11.
The experiment was conducted with three biofloc treatments and one control in triplicate in 500 L capacity indoor tanks. Biofloc tanks, filled with 350 L of water, were fed with sugarcane molasses (BFTS), tapioca flour (BFTT), wheat flour (BFTW) and clean water as control without biofloc and allowed to stand for 30 days. The postlarvae of Litopenaeus vannamei (Boone, 1931) with an Average body weight of 0.15 ± 0.02 g were stocked at the rate of 130 PL m?2 and cultured for a period of 60 days fed with pelleted feed at the rate of 1.5% of biomass. The total suspended solids (TSS) level was maintained at around 500 mg L?1 in BFT tanks. The addition of carbohydrate significantly reduced the total ammonia‐N (TAN), nitrite‐N and nitrate‐N in water and it significantly increased the total heterotrophic bacteria (THB) population in the biofloc treatments. There was a significant difference in the final average body weight (8.49 ± 0.09 g) in the wheat flour treatment (BFTW) than those treatment and control group of the shrimp. Survival of the shrimps was not affected by the treatments and ranged between 82.02% and 90.3%. The proximate and chemical composition of biofloc and proximate composition of the shrimp was significantly different between the biofloc treatments and control. Tintinids, ciliates, copepods, cyanobacteria and nematodes were identified in all the biofloc treatments, nematodes being the most dominant group of organisms in the biofloc. It could be concluded that the use of wheat flour (BFTW) effectively enhanced the biofloc production and contributed towards better water quality which resulted in higher production of shrimp.  相似文献   

12.
The objective of this study was to evaluate the effect of the addition of Navicula sp. on the growth and fatty acids profile of Litopenaeus vannamei postlarvae in a biofloc system (BFT). Four treatments were used: BFT; BFT 2.5N (addition of 2.5 × 104 cells/ml of Navicula sp.); BFT 5N (addition of 5 × 104 cells/ml of Navicula sp.) and BFT 10N (addition of 10 × 104 cells/ml of Navicula sp.), all in triplicate. The shrimp (1 ± 0.01 mg) were stocked at a density of 3,000 postlarvae/m3 and fed with commercial feed. The diatom was added every 10 days, and at the end of 42 days, shrimp performance, water quality and proximal composition were evaluated. The BFT 5N and BFT 10N treatments had higher performance values, highlighting the values of productivity (2.30 and 2.42 kg/m3) and specific growth rate (15.92 and 16.08%/day), which were higher than the other treatments. In addition, the highest levels of fatty acids were observed in treatments with diatom (BFT 5N and BFT 10N), indicating the benefits of Navicula sp. on growth enhancement and fatty acid content of L. vannamei postlarvae grown in biofloc systems.  相似文献   

13.
Bioflocs were produced in pilot‐scale biological reactors using acetate, glycerine or sugar as a carbon supplement while treating fish‐effluent waters. Bioflocs were dried and evaluated for nutritional quality and ingredient suitability. It was discovered that all bioflocs had excess manganese levels (9,500 mg kg–1). Two trials were conducted as follows: (i) first feeding trial was a 6‐week experiment to determine the dietary toxicity of manganese to shrimp (Litopenaeus vannamei) in diets without bioflocs, and (ii) the second feeding trial (5 weeks) was conducted with the aforementioned bioflocs with elevated manganese content. In first feeding trial, experimental diets contained increasing concentrations of manganese: 260, 570, 1,100, 2,300, and 3,500 mg kg–1. Levels of manganese above 570 mg kg–1 significantly (p < .05) impacted shrimp growth. These results suggested that the maximum theoretical inclusion rate of these bioflocs into the diet was 100 g kg–1. In second feeding trial, experimental diets contained the different sources of bioflocs: acetate biofloc 100 g kg–1, glycerine biofloc 100 g kg–1, sucrose biofloc 100 g kg–1 replacing soybean meal and acetate biofloc 100 g kg–1–FM (replaced fishmeal). Compared to the control, the glycerine biofloc 100 g kg–1 and acetate biofloc 100 g kg–1–FM significantly (p < .05) suppressed shrimp growth. The findings in this article demonstrate that careful considerations are needed in regard to potential elevated levels of trace elements in biofloc.  相似文献   

14.
In a Biofloc Technology System (BFT), there is constant biofloc formation and suspended solids accumulation, leading to effects on water quality parameters that may affect the growth performance of cultured shrimp. This study aimed to analyse during biofloc formation the effect of different total suspended solids (TSS) levels on water quality and the growth performance of Litopenaeus vannamei shrimp in a BFT system. A 42‐day trial was conducted with treatments of three ranges of TSS: 100–300 mg L?1 as low (TL), 300–600 as medium (TM) and 600–1000 as high (TH). The initial concentrations of 100 (TL), 300 (TM) and 600 mg L?1 (TH) were achieved by fertilization before starting the experiment. Litopenaeus  vannamei juveniles with an average weight of 4.54 ± 1.19 g were stocked at a density of 372 shrimp m?3. Physical and chemical water parameters and shrimp growth performance were analysed. After 6 weeks, TSS mean concentrations were 306.37, 532.43 and 745.2 mg L?1 for, respectively, TL, TM and TH treatments. Significant differences (P < 0.05) were observed in TSS, settleable solids, pH, alkalinity and nitrite, especially between the TL and TH treatments. Similarly, differences (P < 0.05) were observed in the growth performance parameters, specifically final weight, survival, feed conversion and productivity. The water quality parameters at lower range of total suspended solids concentration (TL) treatment resulted in a better performance of L. vannamei in the BFT system. The maintenance at range of 100–300 mg L?1 TSS is thus important to the success of shrimp culture.  相似文献   

15.
The aim of this study was to evaluate the effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and the growth of Litopenaeus vannamei postlarvae reared in a biofloc system . Four treatments were used: BFT (biofloc system without feed and no addition of diatoms); BFT‐F (biofloc system with feed and no addition of diatoms); BFT‐D (biofloc system with the addition of diatoms and no feed); and BFT‐FD (biofloc system with the addition of feed and diatoms), all in triplicate. The shrimp (16 ± 0.02 mg) were stocked at 2500 postlarvae m?3 and fed a commercial feed. Diatoms were added on the 1st, 5th, 10th and 15th day at a density of 5 × 104 cells mL?1 for each species. No significant differences (> 0.05) between treatments were observed for gross primary production, net ecosystem production and water column respiration rate. However, significant differences (< 0.05) were observed for nitrite, orthophosphate, alkalinity, final weight, weight gain, yield, feed conversion ratio (FCR), phytoplankton and cyanobacteria composition. The BFT‐FD treatment had better performance parameters for final weight (270 mg), weight gain (254 mg), yield (0.67 Kg m?3) and FCR (0.61), indicating the benefits of the diatoms C. calcitrans, Navicula sp. and P. tricornutum for decreasing cyanobacteria and improving growth of L. vannamei postlarvae reared in biofloc systems.  相似文献   

16.
Superintensive shrimp culture in zero‐exchange, biofloc‐dominated production systems is more biosecure and sustainable than traditional shrimp farming practices. However, successful application of this technology depends upon optimizing dietary formulations, controlling Vibrio outbreaks, and managing accumulative changes in water quality and composition. A 49‐d study investigated the effect of two commercial feeds of differing protein content and an indoor limited‐exchange, biofloc‐dominated culture environment on Litopenaeus vannamei performance and tissue composition, water quality and ionic composition, and Vibrio dynamics. Juveniles (5.3 g) were stocked at 457/m3 into four 40 m3 shallow raceways containing biofloc‐dominated water and fed one of two commercial feeds with differing protein content, 35 or 40%. Shrimp performance, Vibrio populations, and changes in shrimp and culture water composition were monitored. There were no significant differences (P > 0.05) in shrimp performance (survival, weight, growth, specific growth rate, total biomass, yield, feed conversion ratio, and protein efficiency ratio) or proximate composition between feed types. The 40% protein feed resulted in higher culture water nitrate and phosphate concentrations, alkalinity consumption and bicarbonate use, and higher phytoplankton density. The presence of Vibrio, specifically Vibrio parahaemolyticus, reduced shrimp survival. This survival decrease corresponded with increased culture water Vibrio concentrations. Culture water K+ and Mg2+ increased significantly (P < 0.05), and Sr2+, Br?, and Cl? decreased significantly (P < 0.05) over time. While Cu2+ and Zn2+ did increase in shrimp tissue, no heavy metals accumulated to problematic levels in culture water or shrimp tissue. These results demonstrate the importance of monitoring Vibrio populations and ionic composition in limited‐exchange shrimp culture systems.  相似文献   

17.
Feeding restriction is a strategy in shrimp farming management that may promote compensatory growth after feeding is re‐established. This study aims to evaluate the effects of two feeding restriction regimens on the compensatory growth and digestive enzymes activity of Litopenaeus vannamei reared in biofloc system. Juvenile shrimp (0.46 ± 0.18 g) were stocked (320 individuals/m3) in 310 L tanks. The experiment comprised two phases: (a) Feeding Restriction (30 days) when shrimp were submitted to three feeding regimes, Control (fed daily), R1F1 (repetitively fasted one day and fed one day) and R2F1 (repetitively fasted 2 days and fed 1 day); and (b) Refeeding (28 days) when shrimp were fed daily. In the restriction phase, shrimp growth and digestive enzyme activities were reduced in R2F1 and R1F1. However, during the refeeding phase, enzyme activities and feed conversion improve significantly in R2F1 and R1F1. Control group attained higher final weight, but its final biomass was similar to R1F1. Litopenaeus vannamei exhibited partial compensatory growth, probably due to improved feed conversion efficiency driven by increased enzyme activity. It is possible to reduce feeding by 50% (R1F1) in biofloc systems for 28 days, without compromising the biomass produced at the end of a 30‐day refeeding period.  相似文献   

18.
Use of distillers dried grain with solubles from sorghum (sDDGS) was studied with respect to processing and physicochemical quality of shrimp feed, followed by growth trials with Litopenaeus vannamei (Pacific white shrimp). Shrimp diets with 0%, 10%, 20%, 30% and 40% sDDGS inclusion, as a replacement for soybean meal, were produced using extrusion and steam pelleting. Bulk density of extruded feed (0.53–0.58 g cm?3) was lower than that of pelleted feed (0.61–0.65 g cm?3), although sDDGS level did not have an impact. Finished diets were 100% sinking, with some exceptions in the case of extruded feed. Pellet durability index (89.4–96.3%) had an increasing trend up to 20% and 30% sDDGS for extruded and pelleted diets respectively. Extruded feed had higher degree of gelatinization than pelleted feed, although proportion of gelatinized starch generally decreased with sDDGS level. Water stability (76.2–91.6%) was higher for extruded feed as compared to pelleted feed, and remained unchanged or decreased with sDDGS level. The extruded and pelleted diets were evaluated in two growth trials with L. vannamei for duration of 9 and 6 weeks in 40 and 60 tanks (initial weight 0.36–0.38 g; 10 shrimps per tank) respectively. Significant differences were not observed in final mean weight and survival with respect to sDDGS level, indicating that up to 40% of this novel protein source can be used in feed formulations without affecting the performance of L. vannamei. Comparison of extruded feed with pelleted feed for impact on mean weight and feed conversion ratio did not yield conclusive results.  相似文献   

19.
A 7-week experimental study was performed to evaluate the effect of five concentrations of adult live Artemia (0, 1, 2, 3 and 4 L−1) as exogenous natural feed on the water quality and production parameters of juvenile (0.2 ± 0.01 g) shrimp (Litopenaeus vannamei) pre-grown intensively (125 organism m−2) under laboratory conditions (80 L plastic tanks). No significant differences were observed in the environmental variables among treatments. Total ammonium nitrogen, nitrates and phosphates recorded higher concentrations in all the treatments using artemia, as compared with the treatment without Artemia. In all the cases, the levels remained within or close to the ranges considered necessary for the farming of the species. The highest weight gain and biomass were obtained in the treatments with 3 and 4 Artemia L−1. The best feed conversion ratio were recorded using 2 Artemia L−1 and the highest with 0 Artemia L−1. No differences in survival were detected among treatments. The greatest concentrations of nitrogenous metabolites achieved at the highest densities of Artemia were lower than the LC50 for penaied shrimp and no negative effect was observed on the survival of the shrimp. These results clearly indicate that the use of adult live Artemia as exogenous natural feed significantly increased the production parameters of the Pacific white shrimp.  相似文献   

20.
A 35‐day feeding experiment was conducted to investigate the effects of different carbon sources addition on nutritional composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei juveniles (average 5.52 ± 0.21 g) in zero‐water exchange culture tanks. Molasses, corn flour and wheat bran were used as carbon sources and added into the tanks to promote the development of bioflocs during the experiment. During the entire experiment, good water quality and biofloc development were achieved under the addition of different carbon sources. At the end of the experiment, the proximate composition and extracellular enzymes activities of the collected bioflocs from seven biofloc groups were influenced by the addition of the different carbon sources. Meanwhile, the specific activities of protease, amylase, lipase and cellulase in the hepatopancreas, stomach and intestine of the shrimp showed differences among the seven biofloc groups, and most of them were significantly higher than those obtained in the control group (< 0.05). There were differences in the performance (growth and FCR) of the shrimp among the seven biofloc groups, and all of them were significantly better than those obtained in the control group (< 0.05). Based on the results of this study, 60% molasses + 20% corn flour + 20% wheat bran could be an appropriate formula of the addition of carbon sources for intensive culture of L. vannamei (mainly in terms of growth and FCR) in zero‐water exchange culture tanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号