首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To effectively control bovine mastitis, tilmicosin (TIL)‐ and florfenicol (FF)‐loaded solid lipid nanoparticles (SLN) with hydrogenated castor oil (HCO) were prepared by a hot homogenization and ultrasonication method. In vitro antibacterial activity, properties, and pharmacokinetics of the TIL‐FF‐SLN were studied. The results demonstrated that TIL and FF had a synergistic or additive antibacterial activity against Streptococcus dysgalactiae, Streptococcus uberis, and Streptococcus agalactiae. The size, polydispersity index, and zeta potential of nanoparticles were 289.1 ± 13.7 nm, 0.31 ± 0.05, and ?26.7 ± 1.3 mV, respectively. The encapsulation efficiencies for TIL and FF were 62.3 ± 5.9% and 85.1 ± 5.2%, and the loading capacities for TIL and FF were 8.2 ± 0.6% and 3.3 ± 0.2%, respectively. The TIL‐FF‐SLN showed no irritation in the injection site and sustained release in vitro. After medication, TIL and FF could maintain about 0.1 μg/mL for 122 and 6 h. Compared to the control solution, the SLN increased the area under the concentration–time curve (AUC0‐t), elimination half‐life (T½ke), and mean residence time (MRT) of TIL by 33.09‐, 23.29‐, and 37.53‐fold, and 1.69‐, 5.00‐, and 3.83‐fold for FF, respectively. These results of this exploratory study suggest that the HCO‐SLN could be a useful system for the delivery of TIL and FF for bovine mastitis therapy.  相似文献   

2.
Pasteurella multocida is the causative agent of fowl cholera, and florfenicol (FF) has potent antibacterial activity against P. multocida and is widely used in the poultry industry. In this study, we established a P. multocida infection model in ducks and studied the pharmacokinetics of FF in serum and lung tissues after oral administration of 30 mg/kg bodyweight. The maximum concentrations reached (Cmax) were lower in infected ducks (13.88 ± 2.70 μg/ml) vs. healthy control animals (17.86 ± 1.57 μg/ml). In contrast, the mean residence time (MRT: 2.35 ± 0.13 vs. 2.27 ± 0.18 hr) and elimination half‐life (T½β: 1.63 ± 0.08 vs. 1.57 ± 0.12 hr) were similar for healthy and diseased animals, respectively. As a result, the area under the concentration curve for 0–12 hr (AUC0–12 hr) for FF in healthy ducks was significantly greater than that in infected ducks (49.47 ± 5.31 vs. 34.52 ± 8.29 μg hr/ml). The pharmacokinetic differences of FF in lung tissues between the two groups correlated with the serum pharmacokinetic differences. The Cmax and AUC0–12 hr values of lung tissue in healthy ducks were higher than those in diseased ducks. The concentration of FF in lung tissues was approximately 1.2‐fold higher than that in serum both in infected and healthy ducks indicating that FF is effective in treating respiratory tract infections in ducks.  相似文献   

3.
The pharmacokinetic profiles of florfenicol (FF) or florfenicol amine (FFA) in crucian carp were compared at different water temperatures after single intramuscular administration of FF at 10 mg/kg bodyweight. The concentrations of FF and FFA were determined by a high‐performance liquid chromatography method, and then, the concentration versus time data were subjected to compartmental analysis using a one‐compartment open model. At the water temperatures of 10, 20, and 25°C, the peak concentrations (Cmaxs) of FF were 2.28, 2.29, and 2.34 μg/ml, respectively, while those of FFA were 0.42, 0.71, and 0.82 μg/ml, respectively. And the absorption half‐life (t1/2ka) of FF was 0.21, 0.19, and 0.21 hr, while the elimination half‐life (t1/2kel) was 31.66, 24.77, and 21.48 hr, respectively. For FFA, the formation half‐life (t1/2kf) was 3.85, 8.97, and 12.43 hr, while the t1/2kel was 58.34, 30.27, and 21.22 hr, respectively. The results presented here demonstrated that the water temperature had effects on the elimination of both FF and FFA and the formation of FFA. Based on the T > MIC values calculated here, to treat the infections of bacterial with MIC value ≤ 0.5 μg/ml, FF intramuscularly given at 10 mg/kg bodyweight with a 72‐hr interval is sufficient at the water temperature of 10°C, while the intervals of 60 and 48 hr were needed at 20 and 25°C, respectively. But to treat bacterial with higher MIC values, more FF or FF at 10 mg/kg BW but with shorter intervals should be intramuscularly given to the infected fish.  相似文献   

4.
The aim of this study was to evaluate the potential of chloramphenicol and florfenicol as second‐line antimicrobial agents for treatment of infections caused by methicillin‐resistant Staphyococcus pseudintermedius (MRSP) and extended‐spectrum β‐lactamase (ESBL)‐producing Escherichia coli in dogs, through a systematic in vitro assessment of the pharmacodynamic properties of the two drugs. Minimum inhibitory concentrations (MIC) and phenicol resistance genes were determined for 169 S. pseudintermedius and 167 E. coli isolates. Minimum bactericidal concentrations (MBC), time‐killing kinetics, and postantibiotic effect (PAE) of both agents against wild‐type isolates of each species were assessed. For S. pseudintermedius, the chloramphenicol MIC90 was 32 μg/mL. No florfenicol resistance was detected in this species (MIC90 = 4 μg/mL). The MIC90 of both agents against E. coli was 8 μg/mL. Resistance genes found were catpC221 in S. pseudintermedius and catA1 and/or floR in E. coli. The phenicols displayed a time‐dependent, mainly, bacteriostatic effect on both species. Prolonged PAEs were observed for S. pseudintermedius, and no PAEs were detected for E. coli. More research into determination of PK/PD targets of efficacy is needed to further assess the clinical use of chloramphenicol and florfenicol as second‐line agents in dogs, optimize dosage regimens, and set up species‐specific clinical break points.  相似文献   

5.
The nutritional alteration of amino acids (AAs) profile in physiological fluid was poorly characterized in livestock. After oestrus synchronization, 24 ewes were randomly assigned to two groups based on the nutrient requirement recommended for maintenance (M): the feed‐supplemented group (S, 1.5 × M, N = 12) and feed‐restricted group (R, 0.5 × M, N = 12) on days 6–12 of their oestrous cycle, which occurred shortly before ovulation. The concentration of 30 AAs in peripheral blood (PB) and follicular fluid (FF) was quantified to calculate the PB‐to‐FF concentration gap for each AA and determine its correlation with metabolites and hormones in PB and FF. Results showed that the feed restriction enlarged the oestrous cycle length, decreased the number of follicles 2.5–3.5 mm, increased the number of follicles >3.5 mm and augmented the volume of follicles >2.5 mm. Nineteen AAs from PB were significantly different between the groups. The phosphoethanolamine (PEtN) and ration of essential AAs to nonessential AAs (EAA/NEAA) in FF significantly (p < 0.05) increased and decreased in the R group, respectively. Most AAs, except aspartate (Asp) and carnosine (Car) in the R group and alanine (aAla) in both groups, were significantly lower within FF than those within PB. The correlation of AAs with FSH and progesterone (P4) was more significant than that of AAs with other endocrine milieu characteristics. In conclusion, our results revealed that the influence of short‐term nutritional manipulation during luteal phase on folliculogenesis might not be due to the variation of intrafollicular AAs profile but rather attribute to the peripheral blood AAs profile alteration.  相似文献   

6.
The pharmacokinetics, PK/PD ratios, and Monte Carlo modeling of enrofloxacin HCl‐2H2O (Enro‐C) and its reference preparation (Enro‐R) were determined in cows. Fifty‐four Jersey cows were randomly assigned to six groups receiving a single IM dose of 10, 15, or 20 mg/kg of Enro‐C (Enro‐C10, Enro‐C15, Enro‐C20) or Enro‐R. Serial serum samples were collected and enrofloxacin concentrations quantified. A composite set of minimum inhibitory concentrations (MIC) of Leptospira spp. was utilized to calculate PK/PD ratios: maximum serum concentration/MIC (Cmax/MIC90) and area under the serum vs. time concentration of enrofloxacin/MIC (AUC0‐24/MIC90). Monte Carlo simulations targeted Cmax/MIC = 10 and AUC0‐24/MIC = 125. Mean Cmax obtained were 6.17 and 2.46 μg/ml; 8.75 and 3.54 μg/ml; and 13.89 and 4.25 μg/ml, respectively for Enro‐C and Enro‐R. Cmax/MIC90 ratios were 6.17 and 2.46, 8.75 and 3.54, and 13.89 and 4.25 for Enro‐C and Enro‐R, respectively. Monte Carlo simulations based on Cmax/MIC90 = 10 indicate that only Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cows, predicting a success rate ≥95% when MIC50 = 0.5 μg/ml, and ≥80% when MIC90 = 1.0 μg/ml. Although Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cattle, clinical trials are necessary to confirm this proposal.  相似文献   

7.
Pharmacokinetic (PK)–pharmacodynamic (PD) integration of crystalline ceftiofur‐free acid (CCFA) was established in six healthy female goats administered subcutaneously (s.c.) on the left side of the neck at a dosage of 6.6 mg/kg body weight. Serum concentrations of ceftiofur and desfuroylceftiofur (DFC) were determined using high‐performance liquid chromatography. Mutant prevention concentration (MPC), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ceftiofur were determined for Pasteurella (P.) multocida. Mean terminal half‐life and mean residence time of ceftiofur + DFC were 48.6 h and 104 h, respectively. In vitro plasma protein binding of ceftiofur was 46.6% in goats. The MIC and MBC values of ceftiofur were similar in serum and MHB and a very small difference between these values confirmed bactericidal activity of drug against P. multocida. In vitro and ex vivo time–kill curves for P. multocida demonstrated a time‐dependent killing action of drug. Considering target serum concentration of 0.20 μg/mL, PK‐PD values for AUC24 h/MIC90 and T > MIC90, respectively, were 302 h and 192 h against P. multocida. A MPC/MIC ratio of 10–14 indicated that selective pressure for proliferation of resistant mutants of P. multocida is minimal after CCFA single‐dose administration. Based on MPC = 1.40 μg/mL for P. multocida, the PK‐PD indices, viz. T > MPC and AUC24/MPC, were 48 h and 43 h, respectively. The data suggested the use of single dose (6.6 mg/kg, s.c.) of CCFA in goats to obtain clinical and bacteriological cure of pneumonia due to P. multocida.  相似文献   

8.
A calf tissue cage model was used to study the pharmacokinetics (PK) and pharmacodynamics (PD) of oxytetracycline in serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids. After intramuscular administration, the PK was characterized by a long mean residence time of 28.3 hr. Based on minimum inhibitory concentrations (MICs) for six isolates each of Mannheimia haemolytica and Pasteurella multocida, measured in serum, integration of in vivo PK and in vitro PD data established area under serum concentration–time curve (AUC0–∞)/MIC ratios of 30.0 and 24.3 hr for M. haemolytica and P. multocida, respectively. Corresponding AUC0–∞/MIC ratios based on MICs in broth were 656 and 745 hr, respectively. PK‐PD modelling of in vitro bacterial time–kill curves for oxytetracycline in serum established mean AUC0–24 hr/MIC ratios for 3log10 decrease in bacterial count of 27.5 hr (M. haemolytica) and 60.9 hr (P. multocida). Monte Carlo simulations predicted target attainment rate (TAR) dosages. Based on the potency of oxytetracycline in serum, the predicted 50% TAR single doses required to achieve a bacteriostatic action covering 48‐hr periods were 197 mg/kg (M. haemolytica) and 314 mg/kg (P. multocida), respectively, against susceptible populations. Dosages based on the potency of oxytetracycline in broth were 25‐ and 27‐fold lower (7.8 and 11.5 mg/kg) for M. haemolytica and P. multocida, respectively.  相似文献   

9.
A two‐period cross‐over study was carried to investigate the pharmacokinetics (PK) and ex‐vivo pharmacodynamics (PD) of cefquinome when administrated intravenously (IV) and intramuscularly (IM) in seven healthy dogs at a dose of 2 mg/kg of body weight. Serum concentrations were determined by HPLC‐MS/MS assay and cefquinome concentration vs. time data after IV and IM were best fit to a two‐compartment open model. Cefquinome mean values of area under concentration–time curve (AUC) were 5.15 μg·h/mL for IV dose and 4.59 μg·h/mL for IM dose. Distribution half‐lives and elimination half‐lives after IV dose and IM dose were 0.27 and 0.44 h, 1.53 and 1.94 h, respectively. Values of total body clearance (ClB) and volume of distribution at steady‐state (Vss) were 0.49 L·kg/h and 0.81 L/kg, respectively. After IM dose, Cmax was 2.53 μg/mL and the bioavailability was 89.13%. For PD profile, the determined MIC and MBC values against K. pneumonia were 0.030 and 0.060 μg/mL in MHB and 0.032 and 0.064 μg/mL in serum. The ex vivo time‐kill curves also were established in serum. In conjunction with the data on MIC, MBC values and the ex vivo bactericidal activity in serum, the present results allowed prediction that a single cefquinome dosage of 2 mg/kg may be effective in dogs against K. pneumonia infection.  相似文献   

10.
The single‐dose disposition kinetics of the antibiotic marbofloxacin were determined in Chinese soft‐shelled turtles (n = 10) after oral and intramuscular (i.m.) dose of 10 mg/kg bodyweight. The in vitro and ex vivo activities of marbofloxacin in serum against a pathogenic strain of Aeromonas hydrophila were determined. A concentration‐dependent antimicrobial activity of marbofloxacin was confirmed for levels lower than 4 × MIC. For in vivo PK data, values of AUC: minimum inhibitory concentration (MIC) ratio for serum were 1166.6 and 782.4 h, respectively, after i.m. and oral dosing of marbofloxacin against a pathogenic strain of A. hydrophila (MIC = 0.05 μg/mL). The ex vivo growth inhibition data after oral dosing were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC required to produce bacteriostasis, bactericidal activity and elimination of bacteria. The respective values were 23.79, 36.35 and 126.46 h. It is proposed that these findings might be used with MIC50 or MIC90 data to provide a rational approach to the design of dosage schedules, which optimize efficacy in respect of bacteriological as well as clinical cures.  相似文献   

11.
Early embryonic mortality is one of the main sources of reproductive loss in domestic ruminants including sheep. Fibroblast growth factor‐2 (FGF‐2) is a member of FGFs family that mediates trophoblast activities and regulates embryonic development in various species. In this study, we have cloned, characterized sheep FGF2 cDNA (KU316368) and studied the expression in sheep embryos. Ovaries of non‐pregnant sheep were collected from local abattoir and matured in culture medium at 38.5ºC, 5% CO2, 95% humidity for 22–24 hr. The matured oocytes were inseminated with capacitated spermatozoa in Brackett and Oliphant medium and resulted embryos were cultured in CO2 incubator for 6–7 days to complete the developmental stages from two cells to blastocyst stage. Total RNA was extracted from immature oocytes (n = 100), mature oocytes (n = 100) and different stages of embryos such as 2 cell (n = 50), 4 cell (n = 25), 8 cell (n = 12), 16 cell (n = 6), morula (n = 5) and blastocyst (n = 3). The total RNA isolated from the oocytes and embryos was reverse transcribed and subjected to real‐time polymerase chain reaction using sequence‐specific primers and SYBR green as the DNA dye. On sequence analysis, the nucleotide sequence of sheep FGF2 exhibited highest sequence similarity with cattle (100%) and least with rat and mouse (69.2%). At the deduced amino acid level, a highest degree of similarity was noticed with cattle, buffalo, goat, pig, camel and horse (100%) and lowest degree of identity with rat, human and mouse (98.2%). The FGF2 mRNA expression was higher in immature and mature oocytes and gradually decreases from 2‐cell stage of embryo to the blastocyst stage. More over a significant differences in FGF2 mRNA expression (p < .05) were observed between immature oocytes and all pre‐implantation stages of embryo. It can be concluded that FGF‐2 plays a significant role in pre‐implantation and early development of embryos in sheep.  相似文献   

12.
Florfenicol was administered subcutaneously to 10 calves at a dose of 40 mg/kg. Pharmacokinetic–pharmacodynamic (PK‐PD) integration and modelling of the data were undertaken using a tissue cage model, which allowed comparison of microbial growth inhibition profiles in three fluids, serum, exudate and transudate. Terminal half‐lives were relatively long, so that florfenicol concentrations were well maintained in all three fluids. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined in vitro for six strains each of the calf pneumonia pathogens, Mannhemia haemolytica and Pasteurella multocida. An PK‐PD integration for three serum indices provided mean values for P. multocida and M. haemolytica, respectively, of 12.6 and 10.4 for Cmax/MIC, 183 and 152 h for AUC0–24 h/MIC and 78 and 76 h for T>MIC. Average florfenicol concentrations in serum exceeded 4 × MIC and 1.5 × MIC for the periods 0–24 and 48–72 h, respectively. Ex vivo growth inhibition curves for M. haemolytica and P. multocida demonstrated a rapid (with 8 h of exposure) and marked (6 log10 reduction in bacterial count or greater) killing response, suggesting a concentration‐dependent killing action. During 24‐h incubation periods, inhibition of growth to a bacteriostatic level or greater was maintained in serum samples collected up to 96 h and in transudate and exudate samples harvested up to 120 h. Based on the sigmoidal Emax relationship, PK‐PD modelling of the ex vivo time–kill data provided AUC0–24 h/MIC serum values for three levels of growth inhibition, bacteriostatic, bactericidal and 4 log10 decrease in bacterial count; mean values were, respectively, 8.2, 26.6 and 39.0 h for M. haemolytica and 7.6, 18.1 and 25.0 h for P. multocida. Similar values were obtained for transudate and exudate. Based on pharmacokinetic and PK‐PD modelled data obtained in this study and scientific literature values for MIC distributions, Monte Carlo simulations over 100 000 trials were undertaken to predict once daily dosages of florfenicol required to provide 50% and 90% target attainment rates for three levels of growth inhibition, namely, bacteriostasis, bactericidal action and 4 log10 reduction in bacterial count.  相似文献   

13.
The pharmacokinetic parameters of moxidectin (MXD) after intravenous and pour‐on (topical) administration were studied in sixteen pigs at a single dose of 1.25 and 2.5 mg/kg BW (body weight), respectively. Blood samples were collected at pretreatment time (0 hr) over 40 days. The plasma kinetics were analyzed by WinNonlin 6.3 software through a noncompartmental model. For intravenous administration (n = 8), the elimination half‐life (λZ), the apparent volume of distribution (Vz), and clearance (Cl) were 10.29 ± 1.90 days, 89.575 ± 29.856 L/kg, and 5.699 ± 2.374 L/kg, respectively. For pour‐on administration (n = 8), the maximum plasma drug concentration (Cmax), time to maximum plasma concentration (Tmax), and λZ were 7.49 ng/ml, 1.72, and 6.20 days, respectively. MXD had a considerably low absolute pour‐on bioavailability of 9.2%, but the mean residence time (MRT) for pour‐on administration 10.88 ± 1.75 days was longer than 8.99 ± 2.48 days for intravenous administration. These results showed that MXD was absorbed via skin rapidly and eliminated slowly. The obtained data might contribute to refine the dosage regime for topical MXD administration.  相似文献   

14.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

15.
The pharmacokinetics of florfenicol (FF) and its metabolite, florfenicol amine (FFA), were studied in rice field eel (Monopterus albus) after a single dose (20 mg/kg) by intramuscular (i.m.) or oral gavage (p.o.) dose at 25 °C. The elimination half‐lives (t1/2β), peak concentration of FF (Cmax), and time to reach FF peak concentration (Tmax) in plasma were estimated as 18.39 h, 10.83 μg/mL, and 7.00 h, respectively, after i.m. injection and 13.46 h, 8.37 μg/mL, and 5 h, respectively, after p.o. administration. The Tmax values of FF in tissues (i.e., kidney, muscle, and liver) were larger for i.m. injection compared with those for p.o. administration. The t1/2β had the following order kidney > muscle > liver for i.m. administrated and kidney > liver > muscle for p.o. administrated. The largest area under the concentration–time curve (AUC) was calculated to be 384.29 mg · h/kg after i.m. dosing, and the mean residence time (MRT) was 42.46 h by oral administration in kidney. FFA was also found in all tissues with a lower concentration than FF for both i.m. and p.o. administrations throughout the study. The elimination of FFA was slow with a t1/2β between 18.19 and 47.80 h in plasma and tissues. The mean metabolic rate of FFA for i.m. and p.o. administrations was >23.30%.  相似文献   

16.
Sulphur‐induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is frequently associated with the consumption of high‐sulphur (S) water and subsequent poor performance. Currently, there is no economical method for S removal from surface water sources, and alternative water sources are typically neither readily available nor cost‐effective. Determination of genes differentially expressed in response to high‐S water consumption may provide a better understanding of the physiology corresponding to high dietary S and ultimately lead to the development of treatment and prevention strategies. The objective of this study was to determine changes in gene expression in the liver, an organ important for S metabolism, of fibre‐fed steers consuming high‐S water. For this study, liver tissues were collected on the final day of a trial from yearling steers randomly assigned to low‐S water control (566 mg/kg SO4; n = 24), high‐S water (3651 mg/kg SO4; n = 24) or high‐S water plus clinoptilolite supplemented at either 2.5% (n = 24) or 5.0% (n = 24) of diet dry matter (DM). Microarray analyses on randomly selected healthy low‐S control (n = 4) and high‐S (n = 4; no clinoptilolite) steers using the Affymetrix GeneChip Bovine Genome Array revealed 488 genes upregulated (p < 0.05) and 154 genes downregulated (p < 0.05) in response to the high‐ vs. low‐S water consumption. Real‐time RT‐PCR confirmed the upregulation (p < 0.10) of seven genes involved in inflammatory response and immune functions. Changes in such genes suggest that ruminant animals administered high‐S water may be undergoing an inflammation or immune response, even if signs of sPEM or compromised health are not readily observed. Further study of these, and other affected genes, may deliver new insights into the physiology underlying the response to high dietary S, ultimately leading to the development of treatments for high S–affected ruminant livestock.  相似文献   

17.
Assessment of risk factors associated with milk production systems is central to ensuring quality and safety of milk and milk products. This study was aimed at identifying possible risk factors in milk contamination in urban and peri‐urban areas of the central high lands of Ethiopia. A total of 477 on‐farm pooled milk (n = 433) and combined bulk milk samples (n = 44) were collected and processed using standard microbiological techniques to isolate and characterize Staphylococcus aureus. In addition, 433 individual farm owners and 22 collection centre owners were interviewed using a structured and pre‐tested questionnaire. Multivariate logistic regression was used to determine risk factors. Of the total individual on‐farm pooled milk samples analysed (n = 433), it was found that 103 of the individual milk samples (24%) and 17 of the combined bulk milk (39%) were positive for S. aureus. This difference in prevalence was statistically significant. Even though there were a number of potential variables associated with the recovery of S. aureus in bovine milk, four variables including cleaning milk container with hot water and detergent [Adjusted OR: 0.342, 95% CI, (0.166, 0.701)], mastitis check [Adjusted OR: 3.019, 95% CI (1.542, 5.913)], travel time to collection centres [Adjusted OR: 4.932, 95% CI, (2.265, 10.739)] and amount of milk delivered by farmers to collection centres per day [Adjusted OR: 1.059 (1.032, 1.087 β = 0.057)] were found to be statistically significantly associated with isolation of S. aureus. We recommend a targeted educational intervention on defined risk factors to reduce the post‐harvest S. aureus contamination of raw milk in urban and peri‐urban milk shed areas of central Ethiopia.  相似文献   

18.
The aim of this work was developing effective treatments against Brucella suis biovar 2, responsible for swine brucellosis in Europe. MICs for antibiotics used classically in brucellosis and two new macrolides (tulathromycin and tildipirosin) were determined for 33 B. suis biovar 2 field and B. suis reference strains. MIC90 values ranged from 0.01 to 0.25 μg/mL. The best candidates, given alone or combined, were then evaluated in mice. Ten groups (n = 7) of BALB/c mice were inoculated (1 × 105 CFU/mouse) with a virulent B. suis biovar 2 field strain. All groups, excepting untreated control, were treated for 14 days with, respectively, doxycycline, dihydrostreptomycin, tulathromycin (one or two doses), or tildipirosin (one or two doses) given alone, and doxycycline combined with dihydrostreptomycin, tulathromycin, or tildipirosin. Combined tildipirosin treatment was the most effective, then selected for pig studies. Sixteen B. suis biovar 2 naturally infected sows were treated with oxytetracycline (20 mg/kg BW/daily) for 21 days. The half of these received also tildipirosin (4 mg/kg BW) in two doses with a 10‐day interval. An extensive bacteriological study conducted ten days after ceasing treatments proved the efficacy of this combined oxytetracycline/tildipirosin treatment.  相似文献   

19.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

20.
The aims of this study were to establish optimal doses of doxycycline (dox) against Haemophilus parasuis on the basis of pharmacokinetic–pharmacodynamic (PK‐PD) integration modeling. The infected model was established by intranasal inoculation of organism in pigs and confirmed by clinical signs, blood biochemistry, and microscopic examinations. The recommended dose (20 mg/kg b.w.) was administered in pigs through intramuscular routes for PK studies. The area under the concentration 0‐ to 24‐hr curve (AUC0–24), elimination half‐life (T½ke), and mean residence time (MRT) of dox in healthy and H. parasuis‐infected pigs were 55.51 ± 5.72 versus 57.10 ± 4.89 μg·hr/ml, 8.28 ± 0.91 versus 9.80 ± 2.38 hr, and 8.43 ± 0.27 versus 8.79 ± 0.18 hr, respectively. The minimal inhibitory concentration (MIC) of dox against 40 H. parasuis isolates was conducted through broth microdilution method, the corresponding MIC50 and MIC90 were 0.25 and 1 μg/ml, respectively. The Ex vivo growth inhibition data suggested that dox exhibited a concentration‐dependent killing mechanism. Based on the observed AUC24 hr/MIC values by modeling PK‐PD data in H. parasuis‐infected pigs, the doses predicted to obtain bacteriostatic, bactericidal, and elimination effects for H. parasuis over 24 hr were 5.25, 8.55, and 10.37 mg/kg for the 50% target attainment rate (TAR), and 7.26, 13.82, and 18.17 mg/kg for 90% TAR, respectively. This study provided a more optimized alternative for clinical use and demonstrated that the dosage 20 mg/kg of dox by intramuscular administration could have an effective bactericidal activity against H. parasuis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号