首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The national bovine herpesvirus 1 (BHV-1) seroprevalence (apparent prevalence) in the Belgian cattle population was determined by a serological survey that was conducted from December 1997 to March 1998. In a random sample of herds (N=556), all cattle (N=28 478) were tested for the presence of antibodies to glycoprotein B of BHV-1. No differentiation could be made between vaccinated and infected animals, because the exclusive use of marker vaccines was imposed by law only in 1997 by the Belgian Veterinary Authorities. Twenty-one percent of the farmers vaccinated continuously against BHV-1.

In the unvaccinated group, the overall herd, individual-animal and median within-herd seroprevalences were estimated to be 67% (95% confidence interval (CI)=62–72), 35.9% (95% CI=35.0–36.8) and 33% (quartiles=14–62), respectively.

Assuming a test sensitivity and specificity of 99 and 99.7%, respectively, the true herd, individual-animal and median within-herd prevalence for the unvaccinated group of herds were estimated to be 65, 36 and 34%, respectively. The true herd prevalence for dairy, mixed and beef herds were respectively, 84, 89 and 53%; the true individual-animal prevalence for those types of herds were, respectively, 35, 43 and 31%; whereas, the true median within-herd prevalences were 36, 29 and 38%.  相似文献   


2.

Background

Calf output is a key element in determining the profitability of a suckler beef enterprise. Infectious agents such as Bovine Virus Diarrhoea (BVD) virus, colostrum management and parasitic challenge can all affect calf output. Prior to the national BVD eradication programme, there was little published information on either the prevalence or effect of BVD in Irish beef herds. There is little published information on colostrum management practices in Irish commercial beef herds and there have also been few studies published on the prevalence of liver fluke or rumen fluke infection in Irish beef herds. Sixteen farms participating in the Teagasc/Farmers Journal BETTER farm beef programme were used in this study. Fourteen herds were screened for the presence of BVD virus in 2010 using RT-PCR. In 13 herds, blood samples were collected from calves (2–14 days of age) in November 2011 - April 2012 to determine their passive immune status using the zinc sulphate turbidity (ZST) test, while in 12 herds, blood and faecal samples were taken in order to determine the level of exposure to gastrointestinal and hepatic helminths.

Results

The overall prevalence of BVD virus-positive cattle was 0.98% (range 0 - 3% per herd, range 0.6 - 3.0% per positive herd). Eighteen of the 82 calves (22%) sampled had ZST values less than 20 units (herd mean range 17.0 – 38.5 units) indicating a failure of passive transfer. The overall animal-level (herd-level) prevalence of liver fluke and rumen fluke infection in these herds was 40.5% (100%) and 20.8% (75%), respectively.

Conclusions

The potential costs associated with the presence of animals persistently infected with BVD virus through the increased use of antibiotics; the rate of failure of passive transfer of colostral immunoglobulins and the high prevalence of liver fluke infection in these herds highlight that some Irish suckler beef farms may not be realizing their economic potential due to a range of herd health issues. The use of farm-specific herd health plans should be further encouraged on Irish suckler beef farms.  相似文献   

3.
Between 1 May 1998 and 22 February 1999, it was compulsory for Dutch cattle farmers to take measures against bovine herpesvirus 1 (BHV1). Cattle on farms that were not certified as infectious bovine rhinotracheitis (IBR)-free had to be vaccinated twice a year. During the vaccination programme, both farmers and veterinarians reported side-effects of the vaccine. These reports were collected by the Stichting IBR/BVD Schade (SIS; Foundation for IBR/BVD Damage) in order to draw up a damage report. In 1999 in total 6977 cattle farmers lodged complaints which they considered to be related to the vaccination against BHV1. On these farms, 15,150 herd vaccinations had been performed, 10,269 of which were associated with one or more symptoms. During the compulsory vaccination period, 13% of the herd vaccinations led to symptoms and complaints. In March 1999, a number of vaccine batches were found to be contaminated with bovine virus diarrhoea (BVD) virus. For the purposes of this analysis, a 'known contaminated' herd vaccination was defined as one in which at least one 'known contaminated' batch or lot of vaccine was used. In total, 987 of 1007 herds vaccinated with 'known contaminated' vaccines developed one or more symptoms compatible with acute BVD. There were no commonly seen combinations of symptoms. For this reason, and because the start and end dates were not reported for 55% of the symptoms, it was not possible to detect a symptom pattern. Therefore there were no 'suspect' batches of vaccine which, although not contaminated with BVD virus, gave rise to symptoms. The number of BVD symptoms was determined for those herds with vaccination-related symptoms. There was no difference in the distribution frequency between batch numbers or between 'known contaminated' batches and 'non-suspect' batches. The farmers' definition of chronic wasting was used in this investigation, with the inevitable large differences in definition. The symptom chronic 'wasting' was reported for 3209 of the 10,269 herds with vaccination-related symptoms. On 161 farms (164 herd vaccinations) 'chronic wasting' accounted for more than 20% of the symptoms. As expected, other symptoms were reported in addition to wasting. The symptom 'chronic wasting' was reported more often on forms where a 'known contaminated' vaccine was used. Inactivated vaccine was used for 154 herd vaccinations. In 34 cases, one or more symptoms of acute BVD were reported. The frequency was the same as that for live vaccines. The frequency of reported symptoms tended to be lower with the inactivated vaccine. On the basis of the SIS data, no relationship was found between vaccine batch and reported symptoms. This may be because (i) the classification of a vaccine as 'known contaminated', 'non-suspect', and 'not known' may not have been in keeping with the real status of the vaccine, (ii) farmers may have reported symptoms selectively, and (iii) there is no relationship with vaccination against BHV1.  相似文献   

4.

Background

Infection with bovine herpesvirus-1 (BHV-1) causes a wide range of disease manifestations, including respiratory disease and abortion, with world-wide distribution. The primary objective of the present study was to describe aspects of BHV-1 infection and control on Irish farms, including herd-level seroprevalence (based on pooled sera) and vaccine usage.

Methods

The characteristics of a diagnostic indirect BHV-1 antibody ELISA test when used on serum pools were evaluated using laboratory replicates for use in the seroprevalence study. The output from this indirect ELISA was expressed as a percentage positivity (PP) value. A proposed cut off (PCO) PP was applied in a cross-sectional study of a stratified random sample of 1,175 Irish dairy and beef cattle herds in 2009, using serum pools, to estimate herd seroprevalence. The study was observational, based primarily on the analysis of existing samples, and only aggregated results were reported. For these reasons, ethical approval was not required. Bulk milk samples from a subset of 111 dairy herds were analysed using the same ELISA. Information regarding vaccine usage was determined in a telephone survey.

Results

A PCO PP of 7.88% was determined to give 97.1% sensitivity and 100% specificity relative to the use of the ELISA on individual sera giving maximization of the prevalence independent Youden''s index, on receiver operating characteristics analysis of replicate results. The herd-level BHV-1 seroprevalence was 74.9% (95% CI - 69.9%-79.8%), with no significant difference between dairy and beef herds. 95.5% agreement in herd classification was found between bulk milk and serum pools. Only 1.8 percent of farmers used BHV-1 marker vaccine, 80% of which was live while 75% of vaccinated herds were dairy.A significant association was found between herd size (quartiles) and seroprevalence (quartiles).

Conclusions

The results from this study indicate BHV-1 infection is endemic, although BHV-1 vaccines are rarely used, in the cattle population in Ireland.  相似文献   

5.
Bovine respiratory disease complex is a very important health problem around the world. Present study describes serological distribution of bovine major respiratory viruses in non -vaccinated cattle population of Marmara region in north-western Turkey. Neutralising antibodies specific to bovine viral diarrhoea virus (BVDV), bovine herpesvirus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus 3 (PI-3), bovine adenovirus serotype 1 (BAV-1) and serotype 3 (BAV-3) were investigated. Among 584 serum samples collected from 39 establishments in 7 provinces, 41.4% were positive for BVDV, 17.1% for BHV-1, 73.0% for BRSV, 43.0% for PI-3, 89.5% for BAV-1 and 92.3% for BAV-3. There were significant differences observed between seroprevalence rates detected in neighbouring provinces. Serological prevalence of BVDV, BHV-1 and BRSV were extremely higher in large capacity dairy farms than of small capacity farms (p < 0.0001). This study demonstrates that herd capacity is a very important risk factor for respiratory viruses and, on the other hand bovine adenoviruses and BRSV are the common reason of respiratory diseases in the region.  相似文献   

6.
ABSTRACT

Aims: To investigate the seroprevalence of infection with bovine viral diarrhoea (BVD) virus among 75 beef herds and seroconversion in cattle during early pregnancy, and to determine the practices and opinions of farmers towards BVD control and their association with real and perceived herd serological status.

Methods: Blood samples were collected before mating in 75 beef herds across New Zealand from 15 unvaccinated heifers that had delivered their first calf that season. Serum samples were tested for BVD antibodies using ELISA individually, and after pooling samples for each farm. Animals that were antibody-negative were retested at either pregnancy diagnosis or weaning. Farmers were asked to complete a detailed survey about herd demographics, BVD testing and vaccination practices, and opinions towards national BVD control.

Results: Based on the pooled serum antibody ELISA results, there were 28/75 (37%) negative herds, 15/75 (20%) suspect herds, and 32/75 (43%) positive herds. Of 1,117 animals sampled 729 (65.3%) tested negative for BVD virus antibodies; when retested, 47/589 (8.0%) animals from 13/55 (24%) herds had seroconverted. Among 71 famers providing survey responses 11 (15%) believed their herd was infected with BVD, 24 (34%) were unsure and 36 (51%) did not think their herd was infected. Only 19/71 (18%) farmers had performed any BVD testing within the past 5 years and 50/70 (71%) had not vaccinated any cattle for BVD. Support for national BVD eradication programme was strong in 51/71 (56%) respondents, but the biggest challenge to BVD control was considered to be famer compliance. Compared to farmers who did not think their herd was infected, more farmers who thought BVD was present in their herds had previously tested for BVD, would consider testing all replacement calves, and would support establishing a national BVD database; fewer would consider purchasing BVD tested or vaccinated cattle only.

Conclusions and clinical relevance: Only 15% of the beef farmers in this study believed their herds were infected with BVD virus and few of them had undertaken BVD screening. Nevertheless many were supportive of implementing a national BVD control programme. It is likely that the lack of farmer awareness around BVD and the failure of farmers to recognise the potential impacts in their herds are hindering progress in controlling the disease in New Zealand. There are opportunities for New Zealand veterinarians to be more proactive in helping beef farmers explore BVD management options.  相似文献   

7.
Infection of cattle with bovine viral diarrhoea virus (BVD virus) is common throughout the world(1) and the prevalence of neutralising antibodies to the virus reported from surveys ranges from about 40% to 90%(2)(3)(4). The first isolation of BVD virus in New Zealand was reported in 1967(5) and, since that time, evidence of widespread infection in dairy cattle has been presented(6). Whilst the diseases associated with BVD viral infection have been well recognised in dairy herds, there has been a belief that infection of beef herds is less common. Based on this belief has been the fear that the growth of the dairy beef industry could lead to the introduction of BVD virus into an essentially naive beef population with disastrous results such as those reported by MacNeil and van der Oord(7). We decided therefore to sample beef cattle submitted to abattoirs throughout New Zealand for serological evidence of prior exposure to BVD virus.  相似文献   

8.

Background

Infections with bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhoea (BVD) virus cause diseases of cattle with a worldwide distribution. The primary objective of the present study was to describe aspects of herd-level BoHV-1 and BVDV seroprevalence (based on testing of pooled sera) and control on farms in Northern Ireland, including vaccine usage.An indirect antibody ELISA test (SVANOVA, Biotech AB, Uppsala, Sweden) was applied to serum pools which were constructed from serum samples taken for a cross-sectional study of a convenience sample of 500 Northern Irish dairy and beef cow herds in 2010, for which vaccination status was determined by telephone survey. The herd-level seroprevalence of BoHV-1 and BVDV in Northern Ireland was estimated in non-vaccinating herds and associations between possible risk factors (herd type and herd size (quartiles)) and herd-level prevalence were determined using chi-squared analysis.

Results

The herd-level seroprevalence (of BoHV-1 and BVDV) in non-vaccinating herds was 77.3% (95% CI: 73.6–80.9%) and 98.4% (95% CI: 97.3–99.5%) respectively in the cross-sectional study. A significant difference existed in BoHV-1 herd-level seroprevalence between dairy and beef herds (74.7% vs 86.5% respectively; p < 0.02) though not for BVDV seroprevalence (98.5% vs 98.3% respectively; p > 0.91). A significant association was found between herd size (quartiles) and herd-level classification for BoHV-1 herd-level seroprevalence based on cut-off percentage positivity (COPP) (p < 0.01) while no such association was found for BVDV (p = 0.22).15.5% and 23.8% of farmers used BoHV-1 and BVDV vaccines, respectively. BoHV-1 vaccine was used in 30% of dairy herds and in 11% of beef herds, while BVDV vaccine was used in 46% and 16% of dairy and beef herds, respectively.

Conclusions

The results from this study indicate that the true herd-level seroprevalences to bovine herpesvirus 1 and bovine virus diarrhoea virus in non-vaccinating herds in Northern Northern Ireland are 77.3% (95% CI: 73.6–80.9%) and 98.4% (95% CI: 97.3–99.5%), respectively. The present study will assist in guiding regional policy development and establish a baseline against which the progress of current and future control and eradication programmes can be measured.  相似文献   

9.
Bovine herpesvirus type 1 (BHV-1) is an important bovine pathogen, exacerbating poor health and the productivity of cattle. The aims of this study were to detect the efficacy of vaccination programmes in lowering the seroprevalence of BHV-1 gE within the dairy herd and to follow the dynamics of the infection in non-vaccinated herds with uninfected heifers. A two-year longitudinal study was carried out on seven herds that were vaccinated, and in five herds with uninfected heifers without applying a control programme. After the start of the vaccination programme, calves born remained free from the virus. However, in one herd, 7 per cent (95 per cent CI 2 to 18) of these animals showed antibodies to BHV-1 two years after the first vaccination. A decline in BHV-1 antibody prevalence was found in vaccinating herds. Among the five herds not under the control programme, one experienced active virus spread, although one herd experienced self-clearance of the virus. In the herds with high BHV-1 prevalence, vaccinating all cattle from three months of age twice a year with a commercial inactivated marker vaccine efficiently protected offspring from becoming infected, and lowered the prevalence of BHV-1 within the herd. A small proportion of herds may experience self-clearance of the virus.  相似文献   

10.
Serum samples from a total of 6979 dairy cattle from 55 herds in northern Italy (51 herds) and central Italy (4 herds), were examined by the serum neutralization test for the presence of antibody to bovine herpesvirus-1 (BHV-1). It was found that 84.31% of the farms selected in northern Italy and all the farms from central Italy had seropositive animals at titers of 1:4 or higher. The prevalence of infection was essentially the same among the cattle populations of the two selected areas of the country, being of 34.99% in the north and of 38.65% in central regions. A comparison of the data from the present study with those obtained in a serological survey conducted in Italy in 1966, shows that the rate of seropositive cattle to BHV-1 has increased by about 5.0% in the last 30 years.  相似文献   

11.
The objectives of this cross-sectional study were to estimate the seroprevalence of infectious bovine rhinotracheitis (IBR, BHV-1) and bovine viral diarrhea virus (BVDV) in a population of non-vaccinated, double purpose, dairy and beef herds in the Pacific Region of Central Costa Rica. Blood samples were collected from a total of 496 animals from 35 herds. Sera were tested for antibodies against BHV-1(IBR) and BVDV types 1 and 2 using serum neutralization test. The average number of animals tested in each herd for each of the viruses was 14. Overall individual seroprevalence was 48%, 27%, and 19% for IBR, BVDV type 1, and BVDV type 2, respectively. Median within-herd seroprevalence for IBR, BVDV type 1 and type 2 were 43%, 27%, and 24%, respectively.  相似文献   

12.
The epidemiology of bovine herpesvirus type 1 (BHV-1) and bovine viral diarrhoea virus (BVDV) was studied in a population of small dairy herds that had not been vaccinated. Bulk tank milk samples of 186 herds in Thailand were collected four times between 2002 and 2004. Serum samples from individual animals in 11 herds were also taken on three occasions. The prevalence of BHV-1 in the 186 herds was 61% in 2002, decreasing to 48% in 2004 and for BVDV was 91% in 2002, decreasing to 72% in 2004. A BVDV antigen-positive calf was found in one of the 11 herds, and animals in this herd and three other herds seroconverted to a recently described atypical BVDV strain (HoBi). This study showed a significantly decreasing prevalence for both BHV-1 and BVDV due to a self-clearance process. Further studies are needed to find out how the atypical BVDV strain entered the cattle population.  相似文献   

13.
During the period February to May 2008, bulk milk samples were collected from 57 dairy farms throughout Wales in the framework of a voluntary somatic cell count project. Bulk milk samples were tested for antibodies to bovine viral diarrhoea virus (BVDV), bovine herpesvirus type 1 (BHV-1) and Leptospira Hardjo, and samples were also tested for the presence of BVDV antigen by PCR. A questionnaire was used to determine whether the herd was open or closed, what the vaccination status was, and to obtain general farm information such as the herd size and average milk yield. Vaccination against BVD, infectious bovine rhinotracheitis and leptospirosis was practised on 37, 12 and 35 per cent of the farms, respectively. The presence of bulk milk antibodies on farms that did not use vaccination was 75 per cent for BVDV, 54 per cent for BHV-2 and 76 per cent for L Hardjo. Open herds had 10 times the odds (95 per cent confidence interval [CI] 1.7 to 59.4)of having bulk milk antibodies for BVDV and 16.7 times the odds (95 per cent CI 2.0 to 49.7) of having bulk milk antibodies to BHV-1 compared with closed herds. A farm with bulk milk antibodies to one disease had significantly higher odds of having bulk milk antibodies to a second disease (P<0.05).  相似文献   

14.
Bovine herpesvirus type 4 (BHV-4), a member of the genus Rhadinovirus, subfamily Gammaherpesvirinae, within the family Herpesviridae, was isolated in fetal bovine lung cells from samples of vaginal discharge taken from a dairy herd in which approximately 50 per cent of the cattle developed metritis after calving. The identity of the isolate was confirmed by immunofluorescent staining with a BHV-4-specific monoclonal antibody and partial sequencing of a portion of the glycoprotein B gene. Serological testing failed to demonstrate a significant association between the exposure of the cattle to BHV-4 and the metritis, but several cattle seroconverted during the periparturient period, consistent with the recrudescence and shedding of virus associated with the stresses of parturition and the onset of lactation. Despite the previous failure to detect BHV-4 in Northern Ireland, a serological survey of 999 cattle in 49 dairy herds and 51 beef herds found widespread evidence of exposure: 29 of the dairy herds and 35 of the beef herds contained one or more seropositive cattle, and 33.3 per cent of the dairy cattle and 23.3 per cent of the beef cattle were positive.  相似文献   

15.
Both cytopathic and noncytopathic bovine viral diarrhea virus (BVDV) were isolated from 16 of 17 bovine spleens representing 11 herds that had experienced acute BVD and from 12 of 21 bovine spleens from 1 herd affected with chronic BVD. It was concluded that isolation of cytopathic and noncytopathic BVDV from the same spleen probably indicates that an animal with a persistent, noncytopathic BVDV infection was superinfected with a cytopathic BVDV. The prevalence (greater than 70%) of 2 viruses in the spleen of cattle with acute or chronic BVD suggested that persistent infection with noncytopathic BVDV may be an important factor in the pathogenesis of BVD.  相似文献   

16.
Extract

Bovine viral diarrhoea (BVD) virus has a worldwide distribution and investigations in various parts of the world have shown that 60%–80% of cattle have neutralising antibodies to the virus(1)(2). Bovine viral diarrhoea virus infection is also common in New Zealand dairy herds(3), and its epidemiology on dairy farms is well understood. It had been considered that the traditional beef cattle population was essentially free from this infection and there was a concern that the rapidly expanding dairy-beef industry may introduce infection into an essentially naive beef cattle population. However, a recent study has shown that BVD virus infection is widespread in beef herds throughout New Zealand(4). To explore the issue further, we have examined the prevalence of BVD virus antibody- positive animals in selected dairy-beef operations and traditional cow-calf herds, and how BVD-virus infection, if present, is maintained within these cattle populations.  相似文献   

17.
Sera and blood buffy coat samples were obtained from 3,157 cattle in 66 selected herds. Antibodies to bovine viral diarrhea (BVD) virus were detected in 89% of the serum samples by immunoprecipitation or virus-neutralization tests. Cytopathic or noncytopathic BVD viruses were isolated from blood buffy coat samples from 60 cattle in 6 herds. A second blood buffy coat sample was obtained from 54 of the 60 cattle 2 months after the initial sampling, and BVD virus was isolated again from each cow. The 54 cattle were considered persistently infected with BVD virus. The frequency of persistent infection was 1.7%.  相似文献   

18.
ABSTRACT

Aims: To determine whether sheep that co-grazed with cattle that were suspected to be positive for bovine viral diarrhoea (BVD) virus had serological evidence of exposure to the virus.

Methods: Eighteen commercial farms that routinely co-grazed cattle and sheep in the same paddocks were recruited through purposive sampling. The recruiting veterinarians identified nine farms with cattle herds that were known or highly suspected to be positive for BVD and nine farms that were considered to be free of BVD. Blood samples were taken from 15 ewes aged 1 year on each farm and samples were submitted to a commercial diagnostic laboratory to test for antibodies against pestiviruses using an ELISA. All samples that were positive were then tested using a virus neutralisation test (VNT)for antibodies against BVD virus.

Results: Of the 270 blood samples, 17 were positive for pestivirus antibodies by ELISA and these originated from two farms that were known or suspected to have BVD virus-positive cattle. None of the samples from the nine flocks co-grazed with cattle herds that were known or suspected to be BVD virus-negative were positive for pestivirus antibodies. Within the two positive farms, 2/15 samples from the first farm and 15/15 samples from the second farm were antibody-positive. When the 17 positive blood samples were submitted for VNT, all 15 samples from the second farm tested positive for BVD virus antibodies with the highest titre being 1:512.

Conclusions and clinical relevance: In this small sample of New Zealand sheep and beef farms with suspected BVD infection in cattle, there was evidence of pestivirus exposure in co-grazed sheep. Although we were unable to confirm the origin of the exposure in these sheep, these findings highlight that farmers who are trying to eradicate BVD from their cattle should be mindful that the infection may also be circulating in sheep, and both populations should be considered a possible risk to each other for generating transient and persistent infections. Further work is needed to estimate the true prevalence of New Zealand sheep flocks that are affected by BVD and the associated economic impacts.  相似文献   

19.
20.
Bovine abortions due to Neospora caninum infection have been reported worldwide and its economic impact on the beef industry has been acknowledged as a problem. Uruguay has the largest export value of beef per acre in South America. However, no data on the prevalence of N. caninum infection have been available in this country. The objective of this study was to estimate the prevalence and distribution of N. caninum infection in beef cattle in Uruguay through a nationwide survey. A two stage sampling design was used with farms being selected in stage one and animals being selected in stage two. A brief questionnaire was administered on each farm. Seroprevalence of N. caninum in 4444 beef cattle from 229 farms in all the counties, except Montevideo, of Uruguay was determined by an ELISA. The data were then analyzed to identify associations between infection and variables such as type of animal (cow or heifer), herd size, use of veterinary advice, productivity of the soil in relation to the national average, use of improved grass, use of mineral salts, use of supplemental feed, and presence of a dog(s) on the farm. The estimated proportion of positive farms for all the beef cattle operations was 69.2% (95% confidence interval [CI], 53.7-84.7). The overall cattle seroprevalence was estimated as 13.9% (95% CI, 11.6-16.3). The prevalence estimation by animal category was 14.3% (95% CI, 11.4-17.2) for beef cows and 12.9% (95% CI, 10.0-15.8) for beef heifers. There was no significant difference in the estimated prevalence between the two animal types. There was no significant difference in the animal level prevalence of N. caninum infection among different herd sizes. None of the herd demographic or management variables was significantly associated with the seropositivity to N. caninum infection. In conclusion, these results show that N. caninum infection is common among beef herds across Uruguay. Since the beef industry is one of the key industries in Uruguay, the economic effect and risk factors of N. caninum infection among beef cattle in this country should be further evaluated in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号