首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phytoplankton calcification in a high-CO2 world   总被引:1,自引:0,他引:1  
Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the world's oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.  相似文献   

2.
The impact of agricultural soil erosion on the global carbon cycle   总被引:4,自引:0,他引:4  
Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year(-1) to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year(-1) resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.  相似文献   

3.
Recent time-series measurements of atmospheric O2 show that the land biosphere and world oceans annually sequestered 1.4 +/- 0.8 and 2.0 +/- 0.6 gigatons of carbon, respectively, between mid-1991 and mid-1997. The rapid storage of carbon by the land biosphere from 1991 to 1997 contrasts with the 1980s, when the land biosphere was approximately neutral. Comparison with measurements of delta13CO2 implies an isotopic flux of 89 +/- 21 gigatons of carbon per mil per year, in agreement with model- and inventory-based estimates of this flux. Both the delta13C and the O2 data show significant interannual variability in carbon storage over the period of record. The general agreement of the independent estimates from O2 and delta13C is a robust signal of variable carbon uptake by both the land biosphere and the oceans.  相似文献   

4.
The delta(13)C value of the dissolved inorganic carbon in the surface waters of the Pacific Ocean has decreased by about 0.4 per mil between 1970 and 1990. This decrease has resulted from the uptake of atmospheric CO(2) derived from fossil fuel combustion and deforestation. The net amounts of CO(2) taken up by the oceans and released from the biosphere between 1970 and 1990 have been determined from the changes in three measured values: the concentration of atmospheric CO(2), the delta(13)C of atmospheric CO(2) and the delta(13)C value of dissolved inorganic carbon in the ocean. The calculated average net oceanic CO(2) uptake is 2.1 gigatons of carbon per year. This amount implies that the ocean is the dominant net sink for anthropogenically produced CO(2) and that there has been no significant net CO(2) released from the biosphere during the last 20 years.  相似文献   

5.
Loss of carbon from the deep sea since the Last Glacial Maximum   总被引:1,自引:0,他引:1  
Deep-ocean carbonate ion concentrations ([CO(3)(2-)]) and carbon isotopic ratios (δ(13)C) place important constraints on past redistributions of carbon in the ocean-land-atmosphere system and hence provide clues to the causes of atmospheric CO(2) concentration changes. However, existing deep-sea [CO(3)(2-)] reconstructions conflict with one another, complicating paleoceanographic interpretations. Here, we present deep-sea [CO(3)(2-)] for five cores from the three major oceans quantified using benthic foraminiferal boron/calcium ratios since the last glacial period. Combined benthic δ(13)C and [CO(3)(2-)] results indicate that deep-sea-released CO(2) during the early deglacial period (17.5 to 14.5 thousand years ago) was preferentially stored in the atmosphere, whereas during the late deglacial period (14 to 10 thousand years ago), besides contributing to the contemporary atmospheric CO(2) rise, a substantial portion of CO(2) released from oceans was absorbed by the terrestrial biosphere.  相似文献   

6.
Atmospheric carbon dioxide and carbon reservoir changes   总被引:1,自引:0,他引:1  
The net release of CO(2) from the biosphere to the atmosphere between 1850 and 1950 is estimated to amount to 1.2 x 10(9) tons of carbon per year. During this interval, changes in land use reduced the total terrestrial biomass by 7 percent. There has been a smaller reduction in biomass over the last few decades. In the middle 19th century the air had a CO(2) content of approximately 268 parts per millon, and the total increase in atmospheric CO(2) content since 1850 has been 18 percent. Major sinks for fossil fuel CO(2) are the thermocline regions of large oceanic gyres. About 34 percent of the excess CO(2) generated so far is stored in surface and thermocline gyre waters, and 13 percent has been advected into the deep sea. This leaves an airborne fraction of 53 percent.  相似文献   

7.
Integrating conceptually similar models of the growth of marine and terrestrial primary producers yielded an estimated global net primary production (NPP) of 104.9 petagrams of carbon per year, with roughly equal contributions from land and oceans. Approaches based on satellite indices of absorbed solar radiation indicate marked heterogeneity in NPP for both land and oceans, reflecting the influence of physical and ecological processes. The spatial and temporal distributions of ocean NPP are consistent with primary limitation by light, nutrients, and temperature. On land, water limitation imposes additional constraints. On land and ocean, progressive changes in NPP can result in altered carbon storage, although contrasts in mechanisms of carbon storage and rates of organic matter turnover result in a range of relations between carbon storage and changes in NPP.  相似文献   

8.
Biogeochemical Controls and Feedbacks on Ocean Primary Production   总被引:4,自引:0,他引:4  
Changes in oceanic primary production, linked to changes in the network of global biogeochemical cycles, have profoundly influenced the geochemistry of Earth for over 3 billion years. In the contemporary ocean, photosynthetic carbon fixation by marine phytoplankton leads to formation of approximately 45 gigatons of organic carbon per annum, of which 16 gigatons are exported to the ocean interior. Changes in the magnitude of total and export production can strongly influence atmospheric CO2 levels (and hence climate) on geological time scales, as well as set upper bounds for sustainable fisheries harvest. The two fluxes are critically dependent on geophysical processes that determine mixed-layer depth, nutrient fluxes to and within the ocean, and food-web structure. Because the average turnover time of phytoplankton carbon in the ocean is on the order of a week or less, total and export production are extremely sensitive to external forcing and consequently are seldom in steady state. Elucidating the biogeochemical controls and feedbacks on primary production is essential to understanding how oceanic biota responded to and affected natural climatic variability in the geological past, and will respond to anthropogenically influenced changes in coming decades. One of the most crucial feedbacks results from changes in radiative forcing on the hydrological cycle, which influences the aeolian iron flux and, in turn, affects nitrogen fixation and primary production in the oceans.  相似文献   

9.
Nocturnal accumulations of carbon dioxide during 40 temperature inversions in 1 year were used as an index of the metabolic activity of a forest. Rates of CO(2) production varied with temperature and with season. Spring and summer rates were 2 to 3 times higher than winter rates at the same temperature. Mean monthly temperatures, averaged over 15 years, were used with the curves of respiration on temperature to compute annual gross respiration of the Brookhaven oak-pine forest. The forest was estimated to have a yearly release of approximately 3400 grams of CO(2) per square meter, theoretically equivalent to 2104 grams of dry matter (carbohydrate).  相似文献   

10.
Dimethyl sulfide (DMS) has been identified as the major volatile sulfur compound in 628 samples of surface seawater representing most of the major oceanic ecozones. In at least three respects, its vertical distribution, its local patchiness, and its distribution in oceanic ecozones, the concentration of DMS in the sea exhibits a pattern similar to that of primary production. The global weightedaverage concentration of DMS in surface seawater is 102 nanograms of sulfur (DMS) per liter, corresponding to a global sea-to-air flux of 39 x 10(12) grams of sulfur per year. When the biogenic sulfur contributions from the land surface are added, the biogenic sulfur gas flux is approximately equal to the anthropogenic flux of sulfur dioxide. The DMS concentration in air over the equatorial Pacific varies diurnally between 120 and 200 nanograms of sulfur (DMS) per cubic meter, in agreement with the predictions of photochemical models. The estimated source flux of DMS from the oceans to the marine atmosphere is in agreement with independently obtained estimates of the removal fluxes of DMS and its oxidation products from the atmosphere.  相似文献   

11.
Oceans on titan?     
If global oceans of methane exist on Titan, the atmosphere above them must be within 2 percent of saturation. The two Voyager radio occultation soundings, made at low latitudes, probably occurred over land, since they imply a relative humidity less, similar 70 percent near the surface. Oceans might exist at other low-latitude locations if the zonal wind velocities in the lowest 3 kilometers are 相似文献   

12.
The oceanic sink for anthropogenic CO2   总被引:6,自引:0,他引:6  
Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.  相似文献   

13.
采用间歇实验方法,研究4种磷矿粉在1M NH4OAc(pH4.8)酸性溶液中磷和钙溶出动力学规律,结果表明:磷矿粉中磷的溶出分为2个阶段,0~30min为快反应过程,30min后为慢反应过程,它能较好地符合Elvoich方程,磷的溶出速率(b)与枸溶性磷含量有较好的相关性,主要受磷矿粉中SiO2和碳酸钙含量的影响,枸溶性磷含量愈高,磷的溶出速率愈大,溶出磷的浓度也愈高。磷矿粉中钙的溶出也符合Elvoich方程,且与游离的碳酸钙含量有关,与其他磷矿粉不同,在PR1中钙的溶出浓度较高,很可能来自于碳酸钙的溶解。因而,磷矿粉不仅可以提供磷素营养,还提供植物生长所需的钙素营养。  相似文献   

14.
An empirical model of carbon flux and (14)C-derived ages of the water in the Canada Basin of the Arctic Ocean as a function of depth was used to estimate the long-term rate of primary production within this region. An estimate can be made because the deep waters of the Canadian Basin are isolated from the world oceans by the Lomonosov Ridge (sill depth about 1500 meters). Below the sill, the age of the water correlates with increased nutrients and oxygen utilization and thus provides a way to model the average flux of organic material into the deep basin over a long time period. The (14)C ages of the deep water in the Canada Basin were about 1000 years, the carbon flux across the 1500-meter isobath was 0.3 gram of carbon per square meter per year, and the total production was 9 to 14 grams of carbon per square meter per year. Such estimates provide a baseline for understanding the role of the Arctic Ocean in global carbon cycling.  相似文献   

15.
Trace gases have been measured, by electron-capture gas chromatography and gas chromatography-mass spectrometry techniques, at the South Pole (SP) in Antarctica and in the U.S. Pacific Northwest (PNW) ( approximately 45 degrees N) during January of each year from 1975 to 1980. These measurements show that the concentrations of CCl(3)F, CCl(2)F(2), and CH(3)CCl(3) have increased exponentially at substantial rates. The concentration of CCl(3)F increased at 12 percent per year at the SP and at 8 percent per year in the PNW; CCl(2)F(2) increased at about 9 percent per year at both locations, and CH(3)CCl(3) increased at 17 percent per year at the SP and 11.6 percent per year at the PNW site. There is some evidence that CCl(4) ( approximately 3 percent per year) and N(2)O (0.1 to 0.5 percent per year) may also have increased. Concentrations of nine other trace gases of importance in atmospheric chemistry are also being measured at these two locations. Results of the measurements of CHClF(2)(F-22), C(2)Cl(3)F(3)(F-113), SF(6), C(2)-hydrocarbons, and CH(3)Cl are reported here.  相似文献   

16.
The oceans play a major role in defining atmospheric carbon dioxide (CO2) levels, and although the geographical distribution of CO2 uptake and release in the modern ocean is understood, little is known about past distributions. Boron isotope studies of planktonic foraminifera from the western equatorial Pacific show that this area was a strong source of CO2 to the atmosphere between approximately 13,800 and 15,600 years ago. This observation is most compatible with increased frequency of La Ni?a conditions during this interval. Hence, increased upwelling in the eastern equatorial Pacific may have played an important role in the rise in atmospheric CO2 during the last deglaciation.  相似文献   

17.
We estimated the oceanic inventory of anthropogenic carbon dioxide (CO2) from 1980 to 1999 using a technique based on the global chlorofluorocarbon data set. Our analysis suggests that the ocean stored 14.8 petagrams of anthropogenic carbon from mid-1980 to mid-1989 and 17.9 petagrams of carbon from mid-1990 to mid-1999, indicating an oceanwide net uptake of 1.6 and 2.0 +/- 0.4 petagrams of carbon per year, respectively. Our results provide an upper limit on the solubility-driven anthropogenic CO2 flux into the ocean, and they suggest that most ocean general circulation models are overestimating oceanic anthropogenic CO2 uptake over the past two decades.  相似文献   

18.
Carbon dioxide supersaturation in the surface waters of lakes   总被引:9,自引:0,他引:9  
Data on the partial pressure of carbon dioxide (CO(2)) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within +/-20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure of CO(2) averaged 1036 microatmospheres, about three times the value in the overlying atmosphere, indicating that lakes are sources rather than sinks of atmospheric CO(2). On a global scale, the potential efflux of CO(2) from lakes (about 0.14 x 10(15) grams of carbon per year) is about half as large as riverine transport of organic plus inorganic carbon to the ocean. Lakes are a small but potentially important conduit for carbon from terrestrial sources to the atmospheric sink.  相似文献   

19.
The low O2 content of the Archean atmosphere implies that methane should have been present at levels approximately 10(2) to 10(3) parts per million volume (ppmv) (compared with 1.7 ppmv today) given a plausible biogenic source. CH4 is favored as the greenhouse gas that countered the lower luminosity of the early Sun. But abundant CH4 implies that hydrogen escapes to space (upward arrow space) orders of magnitude faster than today. Such reductant loss oxidizes the Earth. Photosynthesis splits water into O2 and H, and methanogenesis transfers the H into CH4. Hydrogen escape after CH4 photolysis, therefore, causes a net gain of oxygen [CO2 + 2H2O --> CH4 + 2O2 --> CO2 + O2 + 4H(upward arrow space)]. Expected irreversible oxidation (approximately 10(12) to 10(13) moles oxygen per year) may help explain how Earth's surface environment became irreversibly oxidized.  相似文献   

20.
A coral reef represents the net accumulation of calcium carbonate (CaCO3) produced by corals and other calcifying organisms. If calcification declines, then reef-building capacity also declines. Coral reef calcification depends on the saturation state of the carbonate mineral aragonite of surface waters. By the middle of the next century, an increased concentration of carbon dioxide will decrease the aragonite saturation state in the tropics by 30 percent and biogenic aragonite precipitation by 14 to 30 percent. Coral reefs are particularly threatened, because reef-building organisms secrete metastable forms of CaCO3, but the biogeochemical consequences on other calcifying marine ecosystems may be equally severe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号