首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Requirements of consumers for products with low residues of pesticides have increased the need for alternative disease management practices. The concentration of boron in fruit affects its quality, shelf life and the development of physiological disorders. However, the effect of boron on the susceptibility of peach to fruit rots has not been reported. This study investigated the effect of boron (Power B and Borax) on the development of Monilinia laxa on peaches (cv Andross). Mycelial growth of M. laxa was inhibited on potato dextrose agar supplemented with 750 μg ml−1 of Borax or 1000 μg ml−1 of Power B. The EC 50 values were 107.9 and 522.4 for Borax and Power B respectively. Field investigations showed that the incidence of peach infections by M. laxa was negatively correlated with the content of Boron in the leaves. Post-harvest dipping of peaches in Power B or Borax solution, at concentrations recommended by manufacturer (2 μg ml−1 for Power B and 1 mg ml−1 for Borax), significantly reduced the development of M. laxa. Power B, at rates of 6 μg ml−1, and Borax at rates of 3 mg ml−1 were the most effective in reducing infections by M. laxa. Finally, post-harvest dipping of fruit in Power B or Borax reduced losses of fruit weight and improved fruit firmness one month after storage, showing that boron increased the maintainability of peaches in cold storage. Peaches treated with 6 μg ml−1 Power B or 3 mg ml−1 Borax had the highest flesh firmness and the lowest water losses, while untreated control peaches were the least firm. Generally, Borax was significantly less effective than Power B, but better than the control treatment.  相似文献   

2.
The effects of extracts of different parts of the perennial tropical plant Balanites aegyptiaca (L) Del., including various solvent extracts of roots, methanol extracts from leaves, fruits, flowers and roots, partially purified saponins obtained from its roots and a standard saponin were studied on the life cycle (adult longevity, number of eggs, crawlers, adults, weight of adults and % wax content) of a laboratory-reared parthenogenic line of the mealy bug, Maconellicoccus hirsutus (Homoptera: Pseudococcidae). Extracts derived from various parts of B. aegyptiaca (leaves, fruits, flowers, and roots in methanol) affected the life cycle of M. hirsutus with a methanol root extract being the most effective at a concentration of 500 μg ml−1. Partially purified saponin of B. aegyptiaca and the commercial bark saponin extract (Sigma) from Quillaja saponaria at a concentration of 500 μg ml−1 were effective in reducing the longevity of M. hirsutus. Significant reductions in oviposition by M. hirsutus were found for all the extracts at a concentration of 500 μg ml−1. Extracts also affected the number of emerging crawlers, number of adults as well as the weight and wax content of emerging adults. These studies suggest that B. aegyptiaca plant extracts and saponins can be useful botanical insecticides for the protection of crops from mealy bugs.  相似文献   

3.
Some secondary metabolites of plants function as antimicrobial products against phytopathogens and constitute an increasingly important class of pesticides. In the present study, the essential oil of Asarum heterotropoides var. mandshuricum was analyzed by GC/MS and its antimicrobial activity was evaluated against five phytopathogenic fungi. Major components of the oil were methyleugenol (59.42%), eucarvone (24.10%), 5-allyl-1,2,3-trimethoxybenzene (5.72%), and 3,7,7-trimethylbicyclo(4.1.0)hept-3-ene (4.93%). The essential oil and the most abundant component, methyleugenol, were separately assayed for inhibition of 5 pathogens: Alternaria humicola, Colletotrichum gloeosporioides, Rhizoctonia solani, Phytophthora cactorum and Fusarium solani. Both the oil and methyleugenol strongly inhibited the growth of the test pathogens (IC50 values <0.42 μg ml−1) except F. solani, with the best activity against P. cactorum (IC50 values = 0.073 and 0.052 μg ml−1, respectively). It is concluded that the essential oil of A. heterotropoides var. mandshuricum has a broad antiphytopathogenic spectrum, and that methyleugenol is largely responsible for the bioactivity of the oil. The mode of action of methyleugenol against P. cactorum is discussed based on changes in the mycelial ultrastructure.  相似文献   

4.
More rapid progress in breeding peanut for reduced aflatoxin contamination should be achievable with a better understanding of the inheritance of, aflatoxin trait and physiological traits that are associated with reduced contamination. The objectives of this study were to estimate the heritability of aflatoxin traits and genotypic (rG) and phenotypic (rP) correlations between drought resistance traits and aflatoxin traits in peanut. One hundred-forty peanut lines in the F4:6 and F4:7 generations were generated from four crosses, and tested under well-watered and terminal drought conditions. Field experiments were conducted under the dry seasons 2006/2007 and 2007/2008. Data were recorded for biomass (BIO), pod yield (PY), drought tolerance traits [harvest index (HI), drought tolerance index (DTI) of BIO and PY, specific leaf area (SLA), and SPAD chlorophyll meter reading (SCMR)], and aflatoxin traits [seed infection and aflatoxin contamination]. Heritabilities of A. flavus infection and aflatoxin contamination in this study were low to moderate. The heritabilities for seed infection and aflatoxin contamination ranged from 0.48 to 0.58 and 0.24 to 0.68, respectively. Significant correlations between aflatoxin traits and DTI (PY), DTI (BIO), HI, biomass and pod yield under terminal drought conditions were found (rP = −0.25** to 0.32**, rG = −0.57** to 0.53**). Strong correlations between SLA and SCMR with A. flavus infection and aflatoxin contamination were also found. Positive correlations between SLA at 80, 90, and 100 DAP and aflatoxin traits were significant (rP = 0.13** to 0.46**, rG = 0.26** to 0.81**). SCMR was negatively correlated with aflatoxin traits (rP = −0.10** to −0.40**, rG = −0.11** to −0.66**). These results indicated that physiological-based selection approaches using SLA and SCMR might be effective for improving aflatoxin resistance in peanut.  相似文献   

5.
The efficacy of a new fungicide fluopicolide in suppression of Phytophthora blight caused by Phytophthora capsici was evaluated under laboratory and field conditions. Studies with 51 P. capsici isolates from vegetable crops in Georgia, USA, indicated that 5.9% of the isolates were resistant, 19.6% were intermediately sensitive, and 74.5% were sensitive to 100 μg ml−1 of mefenoxam based on in vitro mycelial growth. EC50 values of fluopicolide in inhibiting mycelial growth of 25 isolates, representing resistant, intermediately sensitive, and sensitive to mefenoxam, ranged from 0.05 to 0.35 μg ml−1 with an average of 0.2 μg ml−1 EC50 values of fluopicolide in suppressing zoospore germination and sporangium production of the 25 isolates ranged from 1.1 to 4.5 μg ml−1 and 0.3–9.0 μg ml−1, respectively. Evaluation of a collection of 150 P. capsici isolates from vegetables and irrigation ponds found none of the isolates were resistant to 10 μg ml−1 of fluopicolide. Field experiments were conducted to determine the efficacy and application methods of fluopicolide for control of P. capsici on squash in spring 2007 and 2009. Fluopicolide applied through drip irrigation or as a foliar spray at 86.6 or 115.4 g ha−1 consistently provided significant disease reduction and increased squash yield. Results with fluopicolide were similar or slightly superior to mefenoxam applied at recommended rate. Fluopicolide applied at 57.7 g ha−1 did not provide consistent satisfactory disease suppression. The results indicated that fluopicolide was effective in suppression of different stages of the life cycle of P. capsici and could be a viable alternative to mefenoxam for managing Phytophthora blight in squash production.  相似文献   

6.
Litchi downy blight caused by Peronophythora litchii is a devastating disease of litchi plants in China. Control of litchi downy blight requires numerous fungicide applications. A new carboxylic acid amide (CAA) fungicide, mandipropamid, was examined for its in vitro effects on multiple asexual stages of four single-sporangium P. litchii isolates and protective activity against downy blight in detached fruit assays. Though mandipropamid did not affect discharge of zoospores from sporangia, it strongly inhibited mycelial growth (mean EC50 = 0.0048 μg ml−1), sporangia production (mean EC50 = 0.0032 μg ml−1), germination of encysted zoospores (mean EC50 = 0.0023 μg ml−1), and germination of sporangia (mean EC50 = 0.0061 μg ml−1). On detached fruit, 0.39, 1.56 and 6.25 μg ml−1 of mandipropamid were superior in reducing downy blight compared to metalaxyl and flumorph, however, the 25 μg ml−1 application rate was necessary for all three CAA fungicides to completely inhibit the disease. In 2007, 100 isolates from Fujian, Guangdong, and Guangxi Provinces of China were characterized for the baseline sensitivity to mandipropamid. The isolates obtained from different provinces showed similar baseline sensitivities to mandipropamid. Baseline sensitivities formed a unimodal curve with mean EC50 values of 0.0055 ± 0.0012 μg ml−1 for inhibition of mycelial growth. The described baseline sensitivities of P. litchii populations will be useful for monitoring possible shifts in sensitivity to mandipropamid.  相似文献   

7.
Antifungal substances from a methanol extract of Cirsium japonicum roots were purified and characterized, and their antifungal activities against various plant pathogens were evaluated. Three polyacetylene substances were isolated from roots of C. japonicum using repeated column chromatography; these were identified as ciryneol A, ciryneol C and 1-heptadecene-11,13-diyne-8,9,10-triol by mass and nuclear magnetic resonance spectral analyses. In vitro antifungal activity of the three substances varied according to compound and target species. Magnaporthe oryzae, Colletotrichum coccodes, Colletotrichum acutatum, Pythium ultimum and Botrytis cinerea were relatively sensitive to the three polyacetylenes, with IC50 values below 50 μg mL−1. In vivo, they all showed similar and broad antifungal spectra against the seven plant diseases tested. At 500 μg mL−1, all three compounds effectively suppressed the development of rice blast, rice sheath blight, tomato late blight, wheat leaf rust and red pepper anthracnose, with control values over 90%. They were highly active especially against wheat leaf rust; they controlled the development of this disease more than 88% even at a concentration of 125 μg mL−1. In addition, ciryneol C effectively suppressed barley powdery mildew. This is the first report on the antifungal activities of the three polyacetylenes from roots of C. japonicum against plant pathogenic fungi. Polyacetylenes from roots of C. japonicum may contribute to the development of environmentally safer alternatives to protect crops from various phytopathogenic fungi.  相似文献   

8.
In maize, the effects of nitrogen (N) deficiencies on the determination of kernel number per plant (KNP) have been described only by changes in plant growth rate during the critical period for kernel set (PGRcp). We hypothesize that N availability affects KNP also through variations in biomass allocation to the ear, which determines a stable N concentration in this organ. Six maize hybrids of different breeding origin were evaluated in field experiments at two N levels (0 and 400 kg N ha−1 applied). Traits included were KNP and per apical ear (KNE1), and the allometric estimation of PGRcp, ear growth rate during the critical period (EGRcp), and N content and N concentration in different plant organs. We demonstrated that (i) N availability promoted differences among genotypes (G) in the response of EGRcp and KNP to PGRcp, (ii) variations in KNE1 were explained by EGRcp (r2 = 0.64) and by ear N content at silking + 12 d (r2 = 0.64), and (iii) ear N concentration was a highly conservative trait (range between 10.47 and 15.98 mg N g biomass−1) as compared to N concentration in vegetative tissues (range between 4.94 and 18.04 mg N g biomass−1). Three response patterns were detected among hybrids, one for which the relationship between EGRcp and PGRcp did not vary between N levels and experiments, a second one for which N availability affected this relationship, and a third one for which the response was affected by the year (Y) effect. These results, together with the high correlation between EGRcp and ear N content (r2 = 0.88), evidenced the importance of both photo-assimilate and N availability on EGRcp and KNP determination. Values of 1.5–2.3 g ear−1 d−1 during the critical period and 0.49–0.70 g of N ear−1 at silking + 12 d were determined as thresholds for maximizing KNE1, and both could be easily estimated by means of allometric models.  相似文献   

9.
Plant responses to water deficit need to be monitored for producing a profitable crop as water deficit is a major constraint on crop yield. The objective of this study was to evaluate physiological responses of cotton (Gossypium hirsutum) to various environmental conditions under limited water availability using commercially available varieties grown in South Texas. Soil moisture and variables of leaf gas exchange were measured to monitor water deficit for various varieties under different irrigation treatments. Lint yield and growth variables were also measured and correlations among growth parameters of interest were investigated. Significant differences were found in soil moisture, leaf net assimilation (An), stomatal conductance (g), transpiration rate (Tr), and instantaneous water use efficiency (WUEi) among irrigation treatments in 2006 while no significant differences were found in these parameters in 2007. Some leaf gas exchange parameters, e.g., Tr, and leaf temperature (TL) have strong correlations with An and g. An and WUE were increased by 30–35% and 30–40%, respectively, at 600 μmol (CO2) m−2 s−1 in comparison with 400 μmol (CO2) m−2 s−1. Lint yield was strongly correlated with g, Tr, WUE, and soil moisture at 60 cm depth. Relative An, Tr, and TL started to decrease from FTSW 0.3 at 60 cm and FTSW 0.2 at 40 cm. The results demonstrate that plant water status under limited irrigation management can be qualitatively monitored using the measures of soil moisture as well as leaf gas exchange, which in turn can be useful for describing yield reduction due to water deficit. We found that using normalized An, Tr, and TL is feasible to quantify plant water deficit.  相似文献   

10.
The essential oils from 9 aromatic plants were tested on repellency and mortality of Meligethes aeneus adults. All the tested essential oils caused high mortality of M. aeneus adults in the tarsal tests. The lethal doses after 6 h exposure were ranged between 197 and 1508 μg cm−2. Essential oils obtained from Carum carvi and Thymus vulgaris were most efficient where LD50 was estimated as 197 and 250 μg cm−2, respectively.Repellency declined in all the essential oils as a function of time. The longest persistence time was determined for essences obtained from C. carvi and T. vulgaris where significantly the highest repellent index of 65.6% and 63.8%, respectively, was determined. Repellent index lower than 15% was determined for the remaining essential oils.  相似文献   

11.
The present investigation was conducted at Vittal, Karnataka, India during 2004-2007 to study the feasibility of intercropping of medicinal and aromatic plants (MAPs) in arecanut plantation. The results revealed that MAPs can be successfully grown as intercrops in arecanut plantation with increased productivity and net income per unit area. Kernel equivalent yield of MAPs varied between 272 kg ha−1 in case of Piper longum to 1218 kg ha−1 in Cymbopogon flexuosus. Pooled data indicated that Asparagus racemosus produced fresh root yield of 10,666 kg ha−1 of arecanut plantation and contributed to maximum kernel equivalent yield of 1524 kg ha−1 among all medicinal and aromatic plants. Intercropping of MAPs in arecanut was found economical. The net return per rupee investment was highest in C. flexuosus (4.25) followed by Bacopa monnieri (3.64), Ocimum basilicum (3.46) and Artemisia pallens (3.12). The total system productivity of arecanut + MAPs intercropping system varied from 2990 to 4144 kg ha−1. Arecanut + O. basilicum intercropping system registered significantly higher production efficiency 8.2 kg ha−1 day−1 than other systems. Intercropping of MAPs had more positive effect on soil pH in arecanut based cropping system. The soil pH was 5.6 in 2004 and it was 0.3-0.9 units higher in 2007. Soil organic carbon (SOC) content varied significantly due to intercropping of MAPs at the end of experiment. The SOC content increased in Aloe vera, A. pallens, P. longum and B. monnieri, while it depleted in grasses and rhizomatic MAPs. Based on demand and marketing opportunities for MAPs, farmers are advised to grow aromatic plants in large areas on a community basis to meet huge industrial demand and variety of medicinal crops in small areas to meet the requirement of traditional systems of medicine.  相似文献   

12.
In Argentina, delayed sowing causes a decrease in seed yield and in radiation use efficiency (RUE) of peanut crops (Arachis hypogaea L.), but it is not known if RUE reduction is mainly due to reduced temperature during late reproductive stages or to a sink limitation promoted by decreased seed number in these conditions. We analyzed seed yield determination and RUE dynamics of two cultivars (Florman and ASEM) in four irrigated field experiments (Expn) grown at three sites and five contrasting sowing dates (between 17 October and 21 December) in three growing seasons. An additional field experiment was performed with widely spaced plants (i.e. with no interference among them) to evaluate the effect of peg removal on RUE and leaf carbon exchange rate (CER). Seasonal dynamics of mean air temperature and irradiance, biomass production (total and pods), and intercepted photosynthetically active radiation (IPAR) were followed. Seed yield and seed yield components (pod number, seeds per pod, seed number and seed weight) were determined at final harvest. Crop growth rate (CGR) and pod growth rate (PGR) were computed for growth phases of interest. RUE values for crops sown until 14 November were 1.89–1.98 g MJ−1 IPAR, within the usual range. RUE decreased significantly for cv. Florman in the late sowing of Exp1 (29 November) and for both cultivars in Exp3 (21 December sowing). Across experiments, seed yield (4.5-fold variation relative to minimum) was strongly associated (r2 = 0.87, P < 0.0001) with variations in seed number (3.5-fold variation relative to minimum), and to a lesser extent (r2 ≤ 0.54, P ≤ 0.001) to variations in seed weight (1.9-fold variation relative to minimum). Seed number was positively related (P < 0.01) to CGR (r2 = 0.66) and to PGR (r2 = 0.72) during the R3–R6.5 phase (seed number determination window), while crop growth during the grain-filling phase (i.e. between R6.5 and final harvest) was positively associated with grain number (r2 = 0.80, P < 0.001). No association was found between RUE and mean air temperature, neither for the whole cycle nor for the phase between R6.5 and final harvest, which showed the largest temperature variation (16.4–22.4 °C) across experiments. Use of mean minimum temperature records (range between 13.8 and 18.5 °C) did no improve the relationship. However, grain-filling phase RUE showed a positive (r2 = 0.69, P = 0.003) linear response to seed number across experiments. This apparent sink limitation of source activity was consistent with the reduced RUE (from 2.73 to 1.42 g MJ−1 IPAR) and reduced leaf CER at high irradiance (from ca. 30 to 15 μmol m−2 s−1) for plants subjected to 75% peg removal.  相似文献   

13.
The efficacy of agrochemical treatments, based on three different fungicides combined with an insecticide, was tested in southern Italy for two years on three maize hybrids to control Fusarium ear rot of maize and the accumulation in the maize kernels of the carcinogenic mycotoxins fumonisins. Insect damage incidence and severity, disease incidence and severity, identification of Fusarium species and levels of fumonisin contamination in kernels were determined. Field trials showed in both years that natural colonization of maize kernels by the fumonisin producing species Fusarium proliferatum and F. verticillioides (up to 81.5 and 26.5%, respectively) and total fumonisin contamination (up to 68.2 μg g−1) were highly severe. For all hybrids and in both years, the treatment with the insecticide applied alone reduced the insect damage severity consistently and the content of fumonisins in the kernel only in half of the cases, whereas fungicide treatments applied in combination with the insecticide showed a further significant reduction of fumonisin contamination in the three hybrids and in both years.  相似文献   

14.
A highly efficient regeneration protocol for oilseed crop Crambe abyssinica has been developed using hypocotyls as explants in this study. Crambe is a potential engineering oilseed crop for industrial purposes as it contains 55-60% erucic acid in its oil and, more importantly, it does not outcross with any food oil seed crops. However, the low regeneration frequency with the currently available protocols is still a limiting factor for genetic modification of Crambe. In this study, we investigated the effects of N-source, C-source, AgNO3, cultural conditions as well as the concentration and combination of plant growth regulators (PGR) on the regeneration frequency of C. abyssinica. The results showed that all these factors, especially the N-source and PGR concentrations and combinations, played an important role in shoot regeneration. Among all the factors tested, the combination of using hypocotyls from C. abyssinica cv. galactica, the Lepiovre basal medium supplemented with 16 g l−1 glucose, 0.5 g l−1 AgNO3, 2.2 mg l−1 thidiazuron (TDZ), 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 2.5 g l−1 Gelrite, seeds germinated in dark for 3 days and explants cultured in light, gave the best regeneration frequency (over 95%). The results also suggest that reducing the content of NH4+ or keeping a suitable NO3/NH4+ ratio in the regeneration medium would be crucial to Crambe shoot regeneration.  相似文献   

15.
Carbendazim, iprodione, prochloraz-Mn, thiabendazole and thiophanate-methyl were tested in vitro and in vivo for their effect on Mycogone perniciosa, the mycoparasite that causes wet bubble disease of white button mushroom. In vitro experiments showed that prochloraz-Mn (ED50 = 0.006–0.064 μg ml−1) and carbendazim (ED50 = 0.031–0.097 μg ml−1) were the most effective fungicides for inhibiting the mycelial growth of M. perniciosa, while iprodione (ED50 = 1.90–3.80 μg ml−1) was the least effective. The resistance factors calculated for the five fungicides were between 1.4 and 2. The results obtained suggest that there is very little risk that M. perniciosa will develop resistance to the fungicides assayed. The in vivo efficacy of fungicides for control of wet bubble was studied in two mushroom cropping experiments, which were artificially infected with two doses of M. perniciosa, 106 and 107 spores m−2, respectively. There was, in the low dose inoculum experiment, a very high degree of effectiveness (96.5–100.0%) with all the fungicides assayed. However, iprodione performed poorly (20.5–24.4%) compared with the other fungicides (88.7–100.0%) in the high concentration inoculum experiment. The most effective treatments for controlling wet bubble did not improve the biological efficiency of Agaricus bisporus.  相似文献   

16.
Castilleja tenuiflora is a highly valued medicinal plant that grows in pine-oak woods in Mexico. In this study, we identified for the first time verbascoside and isoverbascoside as the major phenylethanoid glycosides (PhGs) in C. tenuiflora. These compounds have proven biological activities, including anti-inflammatory, antioxidant, and cytotoxic activities, which may be related to the traditional uses of this plant. We developed a reverse-phase high-performance liquid chromatography (RP-HPLC) procedure to analyze PhGs, and determined their concentrations in various different tissues of wild plants. Verbascoside accumulated mainly in roots and inflorescences (9.23 and 7.88 mg g−1 dry biomass, respectively), while isoverbascoside accumulated mainly in the roots (7.13 mg g−1 dry biomass). To provide an alternative source of material for production of bioactive compounds, we established in vitro adventitious root cultures in which roots were grown in B5 medium containing either 10 μM indole 3-acetic acid (IAA) or 10 μM α-naphthaleneacetic acid (NAA). The greatest dry biomass yield (30 g L−1) was achieved at 30 days after transfer of roots into IAA-containing medium. The highest specific yields of PhGs were also obtained using this auxin; the maximum level of verbascoside was 14.62 mg g−1 dry root biomass (438.6 mg L−1) at 30 days after root transfer, and the maximum yield of isoverbascoside was 37.32 mg g−1 dry root biomass (522.48 mg L−1) at 23 days after root transfer. Adventitious root cultures of C. tenuiflora are a promising system for further studies on scale-up and phenylethanoid glycosides biosynthesis.  相似文献   

17.
The fungus Fusarium guttiforme (Syn. F. subglutinans f. sp. ananas) is responsible for fusariosis, one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). A structural study comparing epidermal differences in pineapple cultivars resistant and susceptible to fusariosis was performed, relating properties of the epidermis to known susceptibility to the disease. The basal, non-chlorophylled, portions of mature leaves of pineapple plants were analyzed by light and electron microscopy. All cultivars showed common morpho-anatomic aspects characteristic of Bromeliaceae, such as scutiform scales and unstratified epidermis. However, cultivar Vitoria (resistant) had less scales than cultivars Smooth Cayenne (susceptible, intermediate severity) and Perola (susceptible, with extreme severity of fusariosis symptoms). Inoculation of conidia suspension (105 conidia ml−1) of the fungus F. guttiforme to leaves and harvesting 24 h later yielded numbers of viable colonies related to the density of leaf scales. This suggests that scales can act as havens for fungal conidia and favour the epiphytic stage of the fungus on pineapple plants, and are involved in the interaction of plant and pathogen. A reduction in scale numbers was related to lower infection levels and is relevant to the future breeding programme for development of new pineapple cultivars resistant to fusariosis and their involvement in integrated control strategies.  相似文献   

18.
Two antimicrobial alkaloids, palmatine and jatrorrhizine, were isolated from tubers of traditional Chinese medicinal plant Tinospora capillipes using activity-guided isolation method and chromatography. Their antimicrobial activity was determined in vitro. The results showed that palmatine and jatrorrhizine had inhibitory activity against plant pathogens Colletotrichum gloeosporioides, Fusarium oxysporum f. sp. niveum, Mycosphaerella sentina, Pestalotia mangiferae, Cercospora kaki, Gymnosporangium haraeanum, Rhizoctonia solani and Colletotrichum graminicola, with the EC50 values of 0.0348-0.8356 g L−1 and 0.0240-0.8649 g L−1, respectively. Palmatine and jatrorrhizine also exhibited inhibition against animal pathogens Bacillus cereus, Bacillus megaterium, Bacillus subtilis, Staphyloccocus aureus, Staphylococcus epidermidi, Micrococcus lysodeikticus, Proteus vulgaris, Salmonella typhi and Escherichia coli, with the MIC values of 0.1-0.8 g L−1 and 0.1-0.6 g L−1, respectively. These results suggested that palmatine and jatrorrhizine showed relatively broad spectrum antimicrobial activity against plant and animal pathogens.  相似文献   

19.
Gymnema sylvestre is an important medicinal plant which bears bioactive compound namely gymnemic acids. The present work deals with optimization of cell suspension culture system of G. sylvestre for the production of biomass and gymnemic acid and we investigated effects of macro elements (NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 - 0.0, 0.5, 1.0, 1.5 and 2.0× strength) and nitrogen source [NH4+/NO3 ratio of: 0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20 and 14.38/37.60 (mM)] of Murashige and Skoog medium on accumulation of biomass and gymnemic acid content. The highest accumulation of biomass (165.00 g l−1 FW and 15.42 g l−1 DW) was recorded in the medium with 0.5× concentration of NH4NO3 and the highest production of gymnemic acid content was recorded in the medium with 2.0× KH2PO4 (11.32 mg g−1 DW). The NH4+/NO3 ratio also influenced cell growth and gymnemic acid production; both parameters were greater when the NO3 concentration was higher than that of NH4+. Maximum biomass growth (159.72 g l−1 of FW and 14.95 g l−1 of DW) was achieved at an NH4+/NO3 ratio of 7.19/18.80, and gymnemic acid production was also greatest at the same concentration of NH4+/NO3 ratio (11.35 mg g−1 DW).  相似文献   

20.
Ascochyta rabiei causes Ascochyta blight, a yield-limiting disease of chickpea (Cicer arietinum) world-wide. In 2007, fungal populations of A. rabiei resistant to the QoI group of fungicides were detected in the Northern Great Plains of the United States. Assays were conducted to determine fungal sensitivity for two alternative fungicidal modes of action. A total of 78 isolates of A. rabiei collected between 1983 and 2007 were screened to determine baseline sensitivity to the demethylation-inhibiting foliar fungicide, prothioconazole, and 100 isolates collected between 1987 and 2007 were screened for sensitivity to the methyl benzimidazole carbamate (MBC) fungicide, thiabendazole. Isolates were tested using an in vitro mycelial growth assay to determine the effective fungicide concentration at which 50% of fungal growth was inhibited (EC50) for each isolate-fungicide combination. Baseline EC50 values of prothioconazole ranged from 0.0526 to 0.2958 μg/ml, with a mean of 0.1783 μg/ml. Isolates of A. rabiei collected from 2007 to 2009 from North Dakota chickpea fields exposed to prothioconazole, were screened for prothioconazole sensitivity using the same assay. Mean EC50 values for these isolates were 0.3544 μg/ml, 0.3746 μg/ml, and 0.7820 μg/ml, respectively. These values represent an approximate 2.0 (2007-2008) and 4.4-fold (2009) decrease in sensitivity from the baseline mean. EC50 values of thiabendazole ranged from 1.192 to 3.819 μg/ml, with a mean of 2.459 μg/ml. No significant decrease in fungicide sensitivity was observed for thiabendazole. To date, no loss of Ascochyta blight control has been observed with the use of either prothioconazole or thiabendazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号