首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of no-till (disc seeder), conventional-till (tine scarifier+disc seeder) and rotary-till (rotary hoe+disc seeder) management on soil organic matter (SOM) components, rates of carbon (C) and nitrogen (N) cycling, substrate utilization and microbial community composition. We hypothesized that labile SOM fractions are sensitive to changes in tillage techniques and, in turn mediate any tillage-induced changes in microbial function and composition. A replicated field site was established in May 1998 in the semi-arid agricultural region of Western Australia and soils were collected in September 2004. We found soil pH varied between different tillage techniques as an initial lime application was mixed to deeper soil depths in rotary-till soil than no-till and conventional-till soil. Total-C was greater in surface soil and lower in subsurface soil from no-till and conventional-till plots than from rotary-till plots, but there was no effect of tillage technique on total-C when averaged across soil depths. Light (specific density <1.0 g cm?3) fraction organic matter (LFOM), dissolved organic matter (DOM) and microbial biomass (MB) C and N pools, and rates of C and N cycling all tended to decrease with soil depth. In general, LFOM-C and N, dissolved organic C (DOC) and microbial biomass carbon (MB-C), soil respiration, cellulase activity, gross immobilization rates were positively correlated (r>0.50) and were greater in no-till and conventional-till soil than rotary-till soil both within, and across soil depths. These soil variables generally increased (r>0.5) with increasing soil pH. Dissolved organic N and gross N mineralization were positively correlated (r>0.90) but neither was affected by tillage techniques. No-till soil had greater utilization of carboxylic acids and lower utilization of amino acids and carbohydrates than conventional-till and rotary-till soil; surface soil also had greater utilization of carboxylic acids than subsurface soil. In turn, substrate utilization differed between soil depths, and between no-till soil and conventional-till and rotary-till soil; these differences were correlated with soil pH, total-N, DOC, LFOM-N and microbial biomass nitrogen (MB-N). Bacterial and fungal biomasses generally decreased with soil depth and were greater in no-till and conventional-till soil than rotary-till soil. Microbial community composition differed between all tillage techniques and soil depths; these differences were correlated with soil textural classes, soil pH, and total, LFOM, DOM and microbial C and N pools. These results indicate that most tillage-induced changes to soil properties were associated with the greater soil disturbance under rotary-till than under no-till or conventional-till management. Our results indicate that tillage-induced changes to soil pH, and LFOM, DOM and microbial biomass pools are likely to be important regulators of the rates of C and N cycling, substrate utilization and microbial community composition in this coarse textured soil.  相似文献   

2.
In-field management practices of corn cob and residue mix (CRM) as a feedstock source for ethanol production can have potential effects on soil greenhouse gas (GHG) emissions. The objective of this study was to investigate the effects of CRM piles, storage in-field, and subsequent removal on soil CO2 and N2O emissions. The study was conducted in 2010–2012 at the Iowa State University, Agronomy Research Farm located near Ames, Iowa (42.0°′N; 93.8°′W). The soil type at the site is Canisteo silty clay loam (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquolls). The treatments for CRM consisted of control (no CRM applied and no residue removed after harvest), early spring complete removal (CR) of CRM after application of 7.5 cm depth of CRM in the fall, 2.5 cm, and 7.5 cm depth of CRM over two tillage systems of no-till (NT) and conventional tillage (CT) and three N rates (0, 180, and 270 kg N ha−1) of 32% liquid UAN (NH4NO3) in a randomized complete block design with split–split arrangements. The findings of the study suggest that soil CO2 and N2O emissions were affected by tillage, CRM treatments, and N rates. Most N2O and CO2 emissions peaks occurred as soil moisture or temperature increased with increase precipitation or air temperature. However, soil CO2 emissions were increased as the CRM amount increased. On the other hand, soil N2O emissions increased with high level of CRM as N rate increased. Also, it was observed that NT with 7.5 cm CRM produced higher CO2 emissions in drought condition as compared to CT. Additionally, no differences in N2O emissions were observed due to tillage system. In general, dry soil conditions caused a reduction in both CO2 and N2O emissions across all tillage, CRM treatments, and N rates.  相似文献   

3.
Mixed responses of soil nitrous oxide (N2O) fluxes to reduced tillage/no-till are widely reported across soil types and regions. In a field experiment on a Danish sandy loam soil we compared N2O emissions during winter barley growth following five years of direct drilling (DD), reduced tillage (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (−Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT, respectively, relative to N2O emissions from CT plots (P < 0.05). We observed that in residue removal scenarios N2O emissions were similar for all tillage treatments, but in residue retention scenarios N2O emissions were significantly higher in CT than in either DD or RT (P < 0.05). Irrespective of residue management, N2O emissions from DD and RT plots never exceeded emissions from CT plots. Retention of residue was estimated to reduce emissions from DD plots by 39% and in RT plots by 9%, but to increase N2O emissions from the CT plots by 35%. Relative soil gas diffusivity (Rdiff), soil NO3-N, soil temperature, tillage and residue were important driving factors for N2O emission (P < 0.05). A multiple linear regression model using Rdiff to represent the water factor explained N2O emissions better than a water-filled pore space (WFPS) based model, suggesting a need for review of the current use of WFPS in N2O prediction models. We conclude that on light textured soils, no-till has the potential for reducing N2O emissions when crop residues are returned to the soil.  相似文献   

4.
Tillage changes soil environmental conditions and controls the distribution of residues in the soil, both actions that affect the production and emission of soil biogenic gases (CO2, N2O, and CH4). The objective of this study was to determine how tillage-induced environmental conditions and substrate quality affect the mineralization rate of easily metabolizable compounds and the subsequent production of these gases. Carbon compounds, with and without nitrogen, were applied to soil cropped to maize under tilled and no-till systems. Following substrate application in the spring and summer, biogenic gases were measured periodically at the soil surface (flux) and within the profile (concentration) at 10-, 20-, and 30-cm depths (i.e., within, at the bottom of, and below the plough layer). Strong CO2 and N2O responses to sucrose and glycine in both the field and the laboratory indicate that the soil was C- and N-limited. Surface fluxes of CO2 and N2O were greater in soils amended with glycine than with sucrose and were greater in tilled than no-till soils. Transient emission of CH4 following the addition of glycine was observed and could be attributed to inhibition of N mineralization and nitrification processes on CH4 oxidation. Laboratory and field measurements indicated that the larger substrate-induced CO2 emission from the tilled soils could not be attributed to differences in the total biomass or the basal respiratory activity of the soils. Thus, there appears to be no underlying difference in the functional capacity of the microbial communities under different tillage regimes. Comparison of gas profiles indicates relative accumulation of CO2 at depth in soils under no-till, as well as greater decline in profile CO2 content with time in the tilled compared to the no-till soil. These results support the conclusion that greater CO2 efflux from the tilled soils resulted from more rapid gas diffusion through the profile. Hence, the observed differences in gas fluxes between tilled and no-till soils can be attributed to differences in physical environment.  相似文献   

5.
Carbon sequestration in agroecosystems represents a significant opportunity to offset a portion of anthropogenic CO2 emissions. Climatic conditions in the Virginia coastal plain and modern production practices make it possible for high annual photosynthetic CO2 fixation. There is potential to sequester a substantial amount of C, and concomitantly improve soil quality, with the elimination of tillage for crop production in this region. The objectives of our research were to: (1) measure C sequestration rate with continuous no-till management of grain cropping systems of the Virginia middle coastal plain; (2) determine the influence of biosolids application history on C content and its interaction with tillage management; and (3) evaluate the impact of continuous no-till C stratification as an indicator of soil quality. Samples were collected from 63 sites in production fields using a rotation of corn (Zea mays L.)–wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.)/soybean double-crop (Glysine max L.) across three soil series [Bojac (coarse-loamy, mixed, semiactive, thermic Typic Hapludults), Altavista (fine-loamy, mixed semiactive, thermic Aquic Hapludults), and Kempsville (fine-loamy, siliceous, subactive, thermic Typic Hapludults)] with a history of continuous no-till management ranging from 0 to 14 years. Thirty-two of the sites had a history of biosolids application. Five soil cores were collected at each site from 0–2.5, 2.5–7.5 and 7.5–15 cm and analyzed for bulk density and soil C. Bulk density in the 0–2.5 cm layer decreased and C stratification ratio (0–2.5 cm:7.5–15 cm) increased with increasing duration of continuous no-till due to the accumulation of organic matter at the soil surface. A history of biosolids application resulted in an increase of 4.19 ± 1.93 Mg C ha−1 (0–15 cm). Continuous no-till resulted in the sequestration of 0.308 ± 0.280 Mg C ha−1 yr−1 (0–15 cm). Our results provide quantitative validation of the C sequestration rate and improved soil quality with continuous no-till management in the region using on-farm observations.  相似文献   

6.
The greenhouse gases CO2 and N2O emissions were quantified in a long-term experiment in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated during 32 years in plots under a maize–wheat rotation. Continuous CO2 and periodical N2O soil emission measurements were performed during two periods: under maize cultivation (April 2003–July 2003) and during the fallow period after wheat harvest (August 2003–March 2004). In order to document the dynamics and importance of these emissions, soil organic C and mineral N, residue decomposition, soil potential for CO2 emission and climatic data were measured. CO2 emissions were significantly larger in NT on 53% and in CT on 6% of the days. From April to July 2003 and from November 2003 to March 2004, the cumulated CO2 emissions did not differ significantly between CT and NT. However, the cumulated CO2 emissions from August to November 2003 were considerably larger for NT than for CT. Over the entire 331 days of measurement, CT and NT emitted 3160 ± 269 and 4064 ± 138 kg CO2-C ha−1, respectively. The differences in CO2 emissions in the two tillage systems resulted from the soil climatic conditions and the amounts and location of crop residues and SOM. A large proportion of the CO2 emissions in NT over the entire measurement period was probably due to the decomposition of old weathered residues. NT tended to emit more N2O than CT over the entire measurement period. However differences were statistically significant in only half of the cases due to important variability. N2O emissions were generally less than 5 g N ha−1 day−1, except for a few dates where emission increased up to 21 g N ha−1 day−1. These N2O fluxes represented 0.80 ± 0.15 and 1.32 ± 0.52 kg N2O-N ha−1 year−1 for CT and NT, respectively. Depending on the periods, a large part of the N2O emissions occurred was probably induced by nitrification, since soil conditions were not favorable for denitrification. Finally, for the period of measurement after 32 years of tillage treatments, the NT system emitted more greenhouses gases (CO2 and N2O) to the atmosphere on an annual basis than the CT system.  相似文献   

7.
Drainage, tillage, and intensive land use lead to drastic alterations in physical characteristics of organic soils. As decomposition and soil formation progress, bulk density (ρb) increases and total porosity (ft) decreases due to subsidence, shrinkage, and mineralization of soil organic matter (SOM). However, the rate of subsidence and the changes in soil properties differ among management systems. Thus, the objectives of this study were to determine the effects of different tillage practices on ρb and ft of cultivated peat soils. These experiments were conducted during 2004–2005, on Histosols in north central Ohio. Soil core samples were obtained from experimental plots managed with moldboard plow (MB), no-till (NT), or left bare (B). Conversion of plow tillage to NT increased ρb from 0.52 to 0.57 Mg m−3, and decreased ft from 0.72 to 0.70 m3 m−3.  相似文献   

8.
Carbon dioxide emission from soil plays an important role in the global carbon cycle. Short term losses of soil carbon due to tillage are of a variable magnitude. Our objective was to evaluate the effect of plowing the soil on CO2-C emissions during summer in a coarse-loamy mixed thermic Typic Hapludoll from the Argentine Rolling Pampa. Temperature after tillage was higher in the plowed soil than under no-tillage, being higher the soil water content in the later treatment. Plowing the soil did not produce an immediately impact on soil surface CO2-C emission, but induced an important CO2-C flush few days later. A difference of 16 up to 25 kg C ha–1 d–1 in the CO2-C emissions was observed from the second up to the fourth sampling dates after tillage. Difference in total CO2-C emissions between the plowed soil and the no-tillage treatment was 580 kg C ha–1, during the 40 days measurement period. This difference in CO2-C emission was partitioned between residue decomposition and humus mineralization. Carbon mineralized from humus was 270 kg C ha–1 higher under plow tillage than under no tillage. This figure represented an important extra loss of 0.48% of the soil organic carbon content from the 0–30 cm depth, as consequence of plowing in the warmest season of the year.  相似文献   

9.
Denitrification rates are often greater in no-till than in tilled soils and net soil-surface greenhouse gas emissions could be increased by enhanced soil N2O emissions following adoption of no-till. The objective of this study was to summarize published experimental results to assess whether the response of soil N2O fluxes to the adoption of no-till is influenced by soil aeration. A total of 25 field studies presenting direct comparisons between conventional tillage and no-till (approximately 45 site-years of data) were reviewed and grouped according to soil aeration status estimated using drainage class and precipitation during the growing season. The summary showed that no-till generally increased N2O emissions in poorly-aerated soils but was neutral in soils with good and medium aeration. On average, soil N2O emissions under no-till were 0.06 kg N ha−1 lower, 0.12 kg N ha−1 higher and 2.00 kg N ha−1 higher than under tilled soils with good, medium and poor aeration, respectively. Our results therefore suggest that the impact of no-till on N2O emissions is small in well-aerated soils but most often positive in soils where aeration is reduced by conditions or properties restricting drainage. Considering typical soil C gains following adoption of no-till, we conclude that increased N2O losses may result in a negative greenhouse gas balance for many poorly-drained fine-textured agricultural soils under no-till located in regions with a humid climate.  相似文献   

10.
Northeast China, the important grain-producing region in China, is under threat from soil degradation because of long-term conventional tillage (CT). The adoption of conservation tillage is anticipated to restore soil fertility, maintain crop yields and enhance sustainability. However, the integrated effects of conservation tillage practice on crop yields and soil organic carbon (SOC) remain unclear. In this meta-analysis of peer-reviewed studies conducted in the Northeast China region, we assess crop yields and SOC values under no-till, ridge tillage and subsoiling tillage practices. The results indicate that in areas with mean annual temperatures (MAT) below 3°C, crop yields were significantly (p < .05) higher under ridge tillage (0.8%) and subsoiling tillage (13.1%) compared with CT, whereas yields reduced under no-till (−3.7%). Ridge tillage generally had a similar effect on crop yield as no-till, without the negative impact in colder regions. We also report that no-till practice increased SOC concentrations by 24.1%, 43.9% and 17.4% in areas of higher temperature (MAT > 6°C), low mean annual precipitation (MAP) (<500 mm) and continuous cropping conditions, respectively. Ridge tillage and subsoiling tillage also had positive effects on SOC concentrations (to a lesser degree than no-till), indicating that conservation tillage can enhance SOC in Northeast China. Overall, the implementation of different conservation tillage measures in Northeast China was found to enhance crop yields and sequester carbon. We recommend that ridge tillage is used in colder areas and that subsoiling tillage is used in rotation with other tillage measures to maintain crop yields.  相似文献   

11.
Although the Midwestern United States is one of the world's major agricultural production areas, few studies have assessed the effects of the region's predominant tillage and rotation practices on greenhouse gas emissions from the soil surface. Our objectives were to (a) assess short-term chisel (CP) and moldboard plow (MP) effects on soil CO2 and CH4 fluxes relative to no-till (NT) and, (b) determine how tillage and rotation interactions affect seasonal gas emissions in continuous corn and corn–soybean rotations on a poorly drained Chalmers silty clay loam (Typic Endoaquoll) in Indiana. The field experiment itself began in 1975. Short-term gas emissions were measured immediately before, and at increasing hourly intervals following primary tillage in the fall of 2004, and after secondary tillage in the spring of 2005, for up to 168 h. To quantify treatment effects on seasonal emissions, gas fluxes were measured at weekly or biweekly intervals for up to 14 sampling dates in the growing season for corn. Both CO2 and CH4 emissions were significantly affected by tillage but not by rotation in the short-term following tillage, and by rotation during the growing season. Soil temperature and moisture conditions in the surface 10 cm were significantly related to CO2 emissions, although the proportion of variation explained by temperature and moisture was generally very low (never exceeded 27%) and varied with the tillage system being measured. In the short-term, CO2 emissions were significantly higher for CP than MP and NT. Similarly, mean seasonal CO2 emissions during the 2-year period were higher for CP (6.2 Mg CO2-C ha−1 year−1) than for MP (5.9 Mg CO2-C ha−1 year−1) and NT (5.7 Mg CO2-C ha−1 year−1). Both CP and MP resulted in low net CH4 uptake (7.6 and 2.4 kg CH4-C ha−1 year−1, respectively) while NT resulted in net emissions of 7.7 kg CH4-C ha−1 year−1. Mean emissions of CO2 were 16% higher from continuous corn than from rotation corn during the two growing seasons. After 3 decades of consistent tillage and crop rotation management for corn and soybean producing grain yields well above average in the Midwest, continuous NT production in the corn–soybean rotation was identified as the system with the least soil-derived C emissions to the atmosphere from among those evaluated prior to and during corn production.  相似文献   

12.
Amino sugars are key compounds of microbial cell walls, which have been widely used as biomarker of microbial residues to investigate soil microbial communities and organic residue cycling processes. However, the formation dynamics of amino sugar is not well understood. In this study, two agricultural Luvisols under distinct tillage managements were amended with uniformly 13C-labeled wheat residues of different quality (grain, leaf and root). The isotopic composition of individual amino sugars and CO2 emission were measured over a 21-day incubation period using liquid chromatography–isotope ratio mass spectrometry (LC–IRMS) and trace gas IRMS. Results showed that, the amount of residue derived amino sugars increased exponentially and reached a maximum within days after residue addition. Glucosamine and galactosamine followed different formation kinetics. The maxima of residue derived amino sugars formation ranged from 14 nmol g−1 dry soil for galactosamine (0.8% of the original concentration) to 319 nmol g−1 dry soil for glucosamine (11% of the original concentration). Mean production times of residue derived amino sugars ranged from 2.1 to 9.3 days for glucosamine and galactosamine, respectively. In general, larger amounts of amino sugars were formed at a higher rate with increasing plant residue quality. The microbial community of the no-till soil was better adapted to assimilate low quality plant residues (i.e. leaf and root). All together, the formation dynamics of microbial cell wall components was component-specific and determined by residue quality and soil microbial community.  相似文献   

13.
Soil tillage is an agricultural practice that directly affects the global carbon cycle. Our study sought to assess the implications of adopting sunn hemp cover crops with different tillage practices on CO2 emissions for two soil types (clayey and sandy soil) cultivated with sugarcane in Brazil. The experimental design was a split‐plot with randomized blocks, with the main plots being with cover crop or fallow and sub‐plots being under conventional or minimum tillage. Our results indicate that during the first 50 days after soil tillage, the variation in soil CO2 emissions was stimulated by cover crop and soil tillage, while after that, it became dominated by the root respiration of sugarcane plants. We also found that over the first 97 days after the tillage, the clayey soil showed differences between minimum tillage with cover crop and fallow. Conversely, for sandy soil over the first 50 days following, there were differences between the tillage systems under cover cropping. Emissions from sugarcane rows were found to be greater than those from inter‐row positions. We concluded that soils under different textural classes had distinct patterns in terms of soil CO2 emissions. The correct quantification of CO2 emissions during the sugarcane renovation period should prioritize having a short assessment period (~50 days after soil tillage) as well as including measurements at row and inter‐row positions.  相似文献   

14.
Annual horticultural systems rely on frequent and intensive tillage to prepare beds, manage weeds and control insects. But this practice reduces soil organic carbon (SOC) through accelerated CO2 emission. Crop residue incorporation could counteract this loss. We investigated whether vegetable systems could be made more resilient by including a high‐residue grain crop such as sweet corn (Zea mays L. var. rugosa), in the rotation through the use of conventional (no residue, no soil sieving) and organic (residue incorporated and soil sieved) soil management scenarios. We evaluated short‐term emission of CO2‐C and soil C content in incubated Chromosol and Vertosol soils (Australian Classification) with and without sieving (simulated tillage) or the incorporation of ground sweet corn residue. Residue treatment emitted 2.3 times more CO2‐C compared to the no‐residue treatment, and furthermore, sieved soil emitted 1.5 times more CO2‐C than the unsieved across the two soil types. The residue incorporation had a greater effect on CO2‐C flux than simulated tillage, suggesting that C availability and form can be more important than physical disturbance in cropping soils. The organic scenario (with residue and sieved) emitted more CO2‐C, but had 13% more SOC compared with the conventional scenario (without residue and unsieved), indicating that organic systems may retain more SOC than a conventional system. The SOC lost by soil disturbance was more than offset by the incorporation of residue in the laboratory conditions. Therefore, the possible SOC loss by tillage for weed control under organic management may be offset by organic residue input.  相似文献   

15.
Tillage and wind effects on soil CO2 concentrations in muck soils   总被引:1,自引:0,他引:1  
Rising atmospheric carbon dioxide (CO2) concentrations from agricultural activities prompted the need to quantify greenhouse gas emissions to better understand carbon (C) cycling and its role in environmental quality. The specific objective of this work was to determine the effect of no-tillage, deep plowing and wind speeds on the soil CO2 concentration in muck (organic) soils of the Florida Everglades. Miniature infrared gas analyzers were installed at 30 cm and recorded every 15 min in muck soil plowed with the Harrell Switch Plow (HSP) to 41 cm and in soil Not Tilled (NT), i.e., not plowed in last 9 months. The soil CO2 concentration exhibited temporal dynamics independent of barometric pressure fluctuations. Loosening the soil resulted in a very rapid decline in CO2 concentration as a result of “wind-induced” gas exchange from the soil surface. Higher wind speeds during mid-day resulted in a more rapid loss of CO2 from the HSP than from the NT plots. The subtle trend in the NT plots was similar, but lower in magnitude. Tillage-induced change in soil air porosity enabled wind speed to affect the gas exchange and soil CO2 concentration at 30 cm, literally drawing the CO2 out of the soil resulting in a rapid decline in the CO2 concentration, indicating more rapid soil carbon loss with tillage. At the end of the study, CO2 concentrations in the NT plots averaged about 3.3% while that in the plowed plots was about 1.4%. Wind and associated aerodynamic pressure fluctuations affect gas exchange from soils, especially tilled muck soils with low bulk densities and high soil air porosity following tillage.  相似文献   

16.
The surface characteristics of soil can have a profound effect on the hydrology of tilled land. Apposite measurements of the surface hydraulic properties of Plainfield sand (Wisconsin, U.S.A.), a Typic Udipsamment, were used to assess the hydrologic impact of 5 years tillage by either moldboard plow or no-till. The crop was always corn (Zea mays L.). The “mean” pore size (λm), weighted in a way relevant to the flow of water through the soil surface, was computed here from saturated and unsaturated measurements of sorptivity (S0) and hydraulic conductivity (K0). Disc permeameters of dissimilar radii were used at two unsaturated supply-potential heads of ψ0=−100 mm and −20 mm to find S0 (ψ0) and K0 (ψ0). At saturation (ψ0=0), infiltration rings of contrasting radii were employed. The saturated and unsaturated values for S0 and K0 of the plowed soil were either the same as, or greater than the corresponding values for the no-till soil. Combination of the values for the saturated S0 and K0 showed that the no-till soil had a λm=1.34 (±0.67) mm, while in the plowed soil the “mean” pore size during saturated flow was only 0.19 (±0.18) mm. The large λm, and the high coefficient of variation, for the no-till soil was presumed to be related to the macropore network associated with the decay of crop residue in the less-sorptive matrix. The small homogeneous λm of both the saturated and unsaturated plowed soil reflects the annual pulverization of the soil surface by tillage.  相似文献   

17.
免耕和秸秆覆盖对黑垆土磷素形态组分的影响   总被引:1,自引:0,他引:1  
[目的]探究免耕及添加秸秆条件下黑垆土土壤磷组分特征及其与AM真菌侵染的关系,了解雨养农业区农业系统磷素利用效率。[方法]在陇东黄土高原黑垆土区域,测定传统耕作、传统耕作+秸秆覆盖、免耕和免耕+秸秆覆盖4种处理小麦—玉米—大豆轮作系统中玉米阶段土壤全磷、速效磷组分及AM真菌菌根侵染率。[结果]水土保持耕作处理实施9a后,免耕和秸秆覆盖处理下0—5cm土壤磷素含量显著提高,活性磷组分H2O—Pi,NaHCO3—Pi,NaOH—Pi分别比对照提高84.6%,85.2%和56.6%;活性无机磷(H2O—Pi,NaHCO3—Pi之和)和潜在活性磷(NaOH—Pi)分别占总无机磷的11.4%和4.5%,全磷含量与磷组分、速效磷与磷组分呈显著正相关,2个免耕处理菌根侵染率分别比对照增加20.8%和16.5%。[结论]免耕和秸秆覆盖显著提高了土壤磷含量,免耕对AM真菌菌根侵染率有积极影响。  相似文献   

18.
The effect of three land use types on decomposition of 14C-labelled maize (Zea mays L.) residues and soil organic matter were investigated under laboratory conditions. Samples of three Dystric Cambisols under plow tillage (PT), reduced tillage (RT) and grassland (GL) collected from the upper 5 cm of the soil profile were incubated for 159 days at 20 °C with or without 14C-labelled maize residue. After 7 days cumulative CO2 production was highest in GL and lowest in PT, reflecting differences in soil organic C (SOC) concentration among the three land use types and indicating that mineralized C is a sensitive indicator of the effects of land use regime on SOC. 14CO2 efflux from maize residue decomposition was higher in GL than in PT, possibly due to higher SOC and microbial biomass C (MBC) in GL than in PT. 14CO2 efflux dynamics from RT soil were different from those of PT and GL. RT had the lowest 14CO2 efflux from days 2 to 14 and the highest from days 28 to 159. The lowest MBC in RT explained the delayed decomposition of residues at the beginning. A double exponential model gave a good fit to the mineralization of SOC and residue-14C (R2 > 0.99) and allowed estimation of decomposition rates as dependent on land use. Land use affected the decomposition of labile fractions of SOC and of maize residue, but had no effect on the decomposition of recalcitrant fractions. We conclude that land use affected the decomposition dynamics within the first 1.5 months mainly because of differences in soil microbial biomass but had low effect on cumulative decomposition of maize residues within 5 months.  相似文献   

19.
Plant nutrition requires organic nitrogen to be mineralized before roots can absorb it. A 13‐year field study was conducted on typical rain‐fed Mediterranean Vertisol to determine the effects of tillage system, crop rotation and N fertilizer rate on the long‐term NH4+–N content in the soil profile (0–90 cm). The experiment was designed as a randomized complete block with a split–split plot arrangement and three replications. The main plots tested the effects from the tillage system (no‐tillage and conventional tillage); the subplots tested crop rotation with 2‐year rotations (wheat–wheat, wheat–fallow, wheat–chickpea, wheat–faba bean and wheat–sunflower) and the sub‐subplots examined the N fertilizer rate (0, 50, 100 and 150 kg N/ha). Soil NH4+–N content was greatest in the rainiest years and greater under the no‐tillage (NT) system than the conventional tillage (CT) system (57 and 48 kg/ha, respectively). The deepest soil (30–60 and 60–90 cm) contained a greater NH4+–N content (21.0 and 21.4 kg/ha, respectively) than the shallowest soil (19.5 kg/ha in 0–30 cm). This observation may be related to Vertisol characteristics, especially crack formation that allows greater mineralization in the deepest layers by displacing organic matter.  相似文献   

20.
Tillage practices can potentially afect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a double-cropped rice (Oryza sativa L.) field in Hunan Province of China. Three tillage treatments, no-till (NT), conventional plow tillage(PT), and rotary tillage(RT), were laid in a randomized complete block design. Concentrations of SOC and bulk density(BD) of the 0-80 cm soil layer were measured, and SOC stocks of the 0-20 and 0-80 cm soil layers were calculated on an equivalent soil mass(ESM) basis and fixed depth (FD) basis.Soil carbon budget(SCB) under diferent tillage systems were assessed on the basis of emissions of methane(CH4) and CO2 and the amount of carbon (C) removed by the rice harvest. After four years of experiment, the NT treatment sequestrated more SOC than the other treatments. The SOC stocks in the 0-80 cm layer under NT (on an ESM basis) was as high as 129.32 Mg C ha 1,significantly higher than those under PT and RT (P < 0.05). The order of SOC stocks in the 0-80 cm soil layer was NT > PT > RT,and the same order was observed for SCB; however, in the 0-20 cm soil layer, the RT treatment had a higher SOC stock than the PT treatment. Therefore, when comparing SOC stocks, only considering the top 20 cm of soil would lead to an incomplete evaluation for the tillage-induced efects on SOC stocks and SOC sequestrated in the subsoil layers should also be taken into consideration. The estimation of SOC stocks using the ESM instead of FD method would better reflect the actual changes in SOC stocks in the paddy filed, as the FD method amplified the tillage efects on SOC stocks. This study also indicated that NT plus straw retention on the soil surface was a viable option to increase SOC stocks in paddy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号