首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
为了筛选优良的种质资源应用于小麦的品质改良,利用SDS-PAGE技术对贵州省的136份地方种质进行高分子量麦谷蛋白亚基组成分析.结果表明,贵州的地方种质Glu-1位点存在较丰富的变异,共出现10种亚基和12种组合类型.Glu-A1位点存在2种等位变异:Null和1亚基,Glu-B1位点存在5种等位变异:20、13+16、17+18、7+8和7+9亚基,Glu-D1位点存在3种等位变异:2+12、4+12和5+10亚基,其中Null、7+8和2+12出现频率分别达90%、76.4%和95.6%;12种高分子量麦谷蛋白亚基组合类型中,Null、7+8和2+12出现的频率最高,达70.6%,所有的组合品质评分在5~9分,平均得分为6.01分.  相似文献   

2.
我国秋播麦区小麦Glu-1和Glu-3位点等位变异分析   总被引:3,自引:0,他引:3  
用SDS-PAGE分析了251份我国秋播麦区主栽品种和高代品系的高分子量麦谷蛋白亚基和低分子量麦谷蛋白亚基构成.结果表明,Glu-A1位点有2、1和N 3种等位变异,Glu-B1位点有9种等位变异,即17+18、14+15、7+8、7+8、7+9、13+16、6+8、20和7,Glu-D1位点有4种等位变异,即5+10、2+12、3+12和4+12,Glu-A3位点有5种等位变异,即GluA3d、GluA3b、GluA3c、GluA3a和GluA3e,Glu-B3位点有8种等位变异,即GluB3d、GluB3b、GluB3b'、GluB3a、GluB3f、GluB3f、GluB3g和GluB3j.品质较差的HMW-GS N、7+9、2+12和LMW-GS GluA3a与GluB3j(1BL/1RS)在我国秋播麦区分布较广,频率分别为39.4%、45.0%、59.8%、37.1%和44.6%;优质HMW-GS 14+15和5+10,以及优质LMW-GS GluB3d和GluB3g的频率较低,分别为1.6%、24.7%、20.7%和0.8%.劣质HMW-GS和LMW-GS的频率较高是我国小麦面筋品质差的主要原因.  相似文献   

3.
以潍麦8号与济麦20为亲本构建的重组自交系群体RIL-8的468个系为材料,利用SDS-PAGE技术检测分析了其高分子量麦谷蛋白亚基(HMW-GS)及亚基组合构成特点。结果表明:供试RIL-8群体在Glu-A1、Glu-B1和Glu-D1三个位点共检测到12种等位变异,其中Glu-A1位点2种,Glu-B1位点5种,Glu-D1位点5种;共检测到23种HMW-GS组合,其中2种亲本类型,21种新类型;不同HMW-GS和亚基组合在群体中的分布频率存在较大差异。  相似文献   

4.
【目的】 研究新疆春小麦及CIMMYT引进材料的HMW-GS组成差异,为新疆春小麦杂交选配提供依据。【方法】 采用SDS-PAGE电泳技术。分析新疆春小麦192份材料中的HMW-GS的组成及分布频率。【结果】 供试材料中共检测出13种HMW-GS等位变异,Glu-A1位点等位变异Null亚基频率最高(64.06%),其次为1亚基(21.35%)和2*亚基(14.58%)。Glu-B1 位点等位变异类型表现最丰富,其亚基频率高低顺序为7+8(39.58%)>7(17.19%)>7+9(13.54%)>17+18(11.46%)>22(9.38%)>13+16(7.29%)>6+8(1.04%)>14+15(0.52%);其中 7+8、17+18、14+15 和 13+16 亚基为优质亚基,频率为58.85%。Glu-D1 位点检测2+12(49.48%)和5+10(50.52%)频率较为接近。在Glu-A1、Glu-B1和Glu-D1位点的优质亚基比例均表现为新疆春小麦品种(系)>引进CIMMYT材料。【结论】 全部HMW-GS共形成32种亚基组合,品质评分平均分为7.04分,其中新疆春小麦近年育成的新品种(系)表现出品质评分较高平均分为8.12分,明显高于引进CIMMYT材料品质评分平均为6.09分。评分为10分的材料有25个,评分在8分以上的有90份材料。  相似文献   

5.
采用聚丙烯酰胺电泳技术(SDS-PAGE)分析了64个抗白粉病八倍体小偃麦衍生品系的高分子量麦谷蛋白亚基(HMW-GS)组成。结果表明,在供试材料中亚基组成类型极其丰富。在Glu-A1,Glu-B1和Glu-D1这3个位点上分别检测到3,5,2种不同的亚基组成类型。其中,在Glu-A1位点上大多数品种都具有null亚基,占该位点亚基的90%;在Glu-B1位点上的变异类型最丰富,7+8亚基出现频率最高,为50%;在Glu-D1位点上,劣质亚基2+12出现的频率最高,为78%,被世界公认的优质亚基5+10出现的频率为22%。这些抗白粉病小麦种质可为育种工作者提供优点突出而无突出缺点的亲本。  相似文献   

6.
长江中下游麦区小麦地方品种HMW-GS遗传多样性分析   总被引:4,自引:1,他引:3  
采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法,对长江中下游麦区1 120份小麦地方品种的高分子量麦谷蛋白亚基(HMW-GS)的组成进行了研究.结果表明:在供试材料中,Glu-1位点共有14种等位基因变异,其中Glu-A1位点3种,Glu-B1位点5种,Glu-D1位点6种.亚基null、7+8和2+12在各自的位点上出现频率最高,分别达到了99.38%、97.86%和98.03%.亚基组成类型共有14种,主要为null/7+8/2+12,频率高达95.90%,其中有8份材料具有1、2*、14+15等优质亚基.  相似文献   

7.
无芒春小麦高分子量麦谷蛋白亚基组成分析   总被引:1,自引:0,他引:1  
无芒且品质优良的春小麦新品种是在青海省获得大面积推广的重要保障。为充分利用无芒小麦种质资源,利用SDS-PAGE技术对100个无芒春小麦品种的高分子量麦谷蛋白亚基组成进行分析。结果表明,100个无芒品种在Glu-1位点上共有15个等位变异,其中Glu-A1位点3种、Glu-B1位点8种、Glu-D1位点4种;1、7+9、2+12亚基在各自基因位点表达的频率最高,分别为48.0%、37.0%和49.0%,优质亚基1、5+10出现频率均为48.0%,显著高于其他地区有芒和无芒混合在一起的分析结果。在15个等位变异中,发现2个新的高分子量麦谷蛋白等位变异的亚基1Bx6w和1Dy10w。亚基组合类型共有25种,无明显占优势的组合,Null/7+8/2+12、1/7+9/5+10和1/7+8/2+12的频率最高,分别为18.0%、17.0%和10.0%,其他22种组合类型的频率均在10.0%以下;筛选出10个在3个位点均为优质亚基的品种,优质亚基组合为1/7+8/5+10、1/14+15/5+10、1/17+18/5+10、2*/7+8/5+10和2*/13+16/5+10。  相似文献   

8.
长穗偃麦草(Agropyron elongatum)是小麦品质遗传改良的重要基因资源。为明确98份具有优异抗病性的小麦-长穗偃麦草渗入系中的高分子量麦谷蛋白亚基(HMW-GS)类型,利用SDS-PAGE法对其进行了调查。结果表明,共有13种等位基因变异,其中,Glu-A1位点上有1,2*和N型,N型亚基出现频率最高,为57.14%;Glu-B1位点上发现了6种等位变异,优质亚基14+15,7+8,13+16和17+18出现频率达到45.92%;Glu-D1位点上发现4种等位变异,出现频率最高的为2+12型,优质亚基5+10型达到20.41%。在22种亚基组合中,N,9+7,2+12组合出现的频率最高,为28.57%。品质为8~10分的材料有31份,频率达到31.5%。由此可见,在小麦-长穗偃麦草渗入系中存在丰富的高分子量谷蛋白亚基变异和优质组合,这为选育优质抗病的小麦品种提供了种质资源与依据。  相似文献   

9.
为发掘新的种质资源,利用SDS-PAGE方法对144份CIMMYT小麦材料的高分子量谷蛋白亚基(HMW-GS)进行了分析。结果表明:在供试材料中共检测出9种HWM-GS类型和14种亚基组合类型。Glu-A1位点具有1、2*与null(N)共3种类型,亚基2*占优势,占55.56%;Glu-B1位点具有7+9、17+18、7、7+8共4种类型,7+9为优势亚基,占59.72%;Glu-D1位点具有5+10、2+12这2种类型,5+10占优势,占79.86%。优势亚基组合类型为2*、7+9、5+10,占41.67%。144份材料的高分子谷蛋白亚基品质评分变幅为4~10分,平均为8.54分。在优质亚基中,Glu-A1位点具有优质亚基(l和2*)的频率为86.8%;Glu-B1位点具有优质亚基(7+8和17+18)的频率为30.56%;Glu-D1位点具有优质亚基5+10的的频率为79.86%。本试验同时筛选出一大批含优质亚基的育种资源材料。今后小麦品质育种中,还应加强对具有优质亚基2*、17+18的利用。  相似文献   

10.
为了了解伊犁河谷小麦的品质状况,采用SDS-PAGE电泳技术对伊犁河谷50多年来不同历史时期主要推广的小麦品种(系)高分子量谷蛋白亚基(HMW-GS)组成、变异及出现频率进行了分析。结果表明:在这些品种中Glu-A1、Glu-B1、Glu-D1位点上的等位变异分别为4、6、7种,各自位点的优势亚基分别是null、7+8、2+12,其频率分别是49.1%、43.9%、64.9%。在Glu-1位点共检测出28种亚基组合,其中组合(null,7+8,2+12)的频率最高,为19.2%,其次是组合(1,7+8,2+12)和(1,7+9,2+12),其频率分别为12.3%、10.5%,其他亚基组合的频率均低于10%。另外,在Glu-A1位点上还检测到了1个新的亚基1*,Glu-D1位点上检测到了单亚基5、12。从供试材料中筛选出在2个基因位点上有优质亚基的小麦品种15份,在3个基因位点上均有优质亚基的小麦品种7份,可供优质小麦育种利用。  相似文献   

11.
 用SDS-PAGE法分析了64份中国西部特有小麦征集材料的高分子量谷蛋白亚基组成及遗传多样性。从34份云南小麦中,发现2种高分子量谷蛋白谱带(null、7+8、2+12和null、7、2+12);从24份西藏小麦中,发现3种高分子量谷蛋白谱带(null、7+8、2+12, null、6+8、2+12和null、7+8、2),其中西藏小麦TB18的Glu-D1位点仅编码亚基2;从6份新疆小麦中,观察到1种高分子量谷蛋白谱带(null、7、2+12)。在云南、西藏和新疆这3种中国西部特有的小麦材料中,Glu-1位点分别出现4(Glu-A1c、Glu-B1a、Glu-B1b和Glu-D1a)、5(Glu-A1c、Glu-B1d、Glu-B1b、Glu-D1a和Glu-D1?)和3个(Glu-A1c、Glu-B1a和Glu-D1a)等位基因。云南小麦、西藏小麦和新疆小麦材料内的Nei's平均遗传变异系数分别为0.1574、0.1366和0,表明云南小麦和西藏小麦材料内的高分子量谷蛋白位点的遗传变异要高于新疆小麦。云南小麦、西藏小麦和新疆小麦A、B和D基因组的Nei's平均遗传变异系数分别为0、0.2674和0.0270,这说明在遗传多样性方面,Glu-B1位点最高,其次为Glu-D1位点,Glu-A1位点最低。  相似文献   

12.
本研究以京411为背景的含有不同小麦高分子量谷蛋白亚基(HMW-GS)的小麦近等基因系为材料,通过1年3点试验,研究了HMW-GS与小麦SDS-沉降值、揉混特性的关系.结果表明:1)Glu-D1,Glu-B1,Glu-A1位点对沉降值和揉混特性的影响顺序为Glu-D1> Glu-B1> Glu-A1.2)各个位点对沉降值的贡献表现为,在Glu-A1上,N=1;在Glu-B1上7+8-17+18;在Glu-D1上,5+10>2+12.3)各个位点对揉混特性的影响表现为,在Glu-A1位点上,N>1;当Glu-B1位点为17+18亚基,Glu-D1位点为2+12亚基时,但N亚基与1亚基的揉混特性没显著性差异,但是当Glu-B1位点为7+8亚基,Glu-D1位点为2+12亚基时,N亚基的揉混特性明显优于1亚基;当Glu-A1亚基都为1,Glu-D1亚基都为2+12时,Glu-B1位点上7+8亚基与17+18的揉混特性无显著差异,但当Glu-A1亚基都为N,Glu-D1亚基都为2+12时,Glu-B1位点上7+8亚基的揉混特性优于17+18亚基;在Glu-D1上,5+10>2+12.4)组合为N,7+8,5+10的小麦无论是在耐柔性上还是在面筋强度上都是最好的.研究还发现,Glu-D1位点对谷蛋白含量及揉混仪参数的加性效应最大.  相似文献   

13.
Wheat processing quality is greatly influenced by the seed proteins especially the high molecular weight glutenin subunit (HMW-GS) components, the low molecular weight glutenin subunit (LMW-GS) components and gliadin components. Genes encoding the HMW-GS and LMW-GS components were located on the long arms and the short arms of homoeologous group 1 chromosomes, respectively. HMW-GS components in 5 129 accessions of wheat germplasms were analyzed systematically, including 3 459 landraces and 1 670 modern varieties. These accessions were chosen as candidate core collections to represent the genetic diversity of Chinese common wheat (Triticum aestivum ) germplasms documented and conserved in the National Gene Bank. These candidate core collections covered the 10 wheat production regions in China. In the whole country, the dominating alleles at the three loci are Glu-A1b (null), Glu-B1b (7 + 8), and Glu- D1a (2 + 12), respectively. The obvious difference between the land race and the modern variety is the dramatic frequency increase of alleles Glu-A1a (1), Glu-B1c (7 + 9), Glu-B1h (14 + 15), Glu-D1d (5 + 10) and allele cording 5 + 12 subunits in the later ones. In the whole view, there is minor difference on the genetic(allelic)richness between the landrace and the modern variety at Glu-1, which is 28 and 30 respectively. However, the genetic dispersion index (Simpson index) based on allelic variation and frequencies at Glu-A1, Glu-B1 and Glu-D1 suggested that the modern varieties had much higher genetic diversity than the landraces. This revealed that various isolating mechanisms (such as auto-gamous nature, low migration because of undeveloped transposition system) limited the gene flow and exchange between populations of the landraces, which led up to some genotypes localized in very small areas. Modern breeding has strongly promoted gene exchanges and introgression between populations and previous isolated populations. In the three loci, Glu-B1 has the highest genetic diversity, then Glu-D1, while Glu- A1 always keeps the lowest genetic diversity. In the landrace, the three regions with the highest allelic richness are Huanghuai Winter Wheat Region, Northwest Spring Wheat Region and Southwestern Winter Wheat Region. For the bred varieties, the highest allelic richness existed in Southwest Winter Wheat Region, Huanghuai Winter Wheat Region, Low & Middle Branch Winter Wheat Region of Yangtze River. Introduction and utilization of foreign varieties in cross breeding has had great effects on the allelic components and frequency of the three loci, which greatly affected the genetic dispersion index. This has made “population“ of the modern variety quite different from that of the landrace.  相似文献   

14.
为了解山西小麦品质现状并且为今后山西小麦育种提供材料和依据,利用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)方法分析123份山西小麦品种资源高分子量谷蛋白亚基(High molecular weight glutenin subunits,HMW-GS)的组成。结果表明:在123份供试材料中,共检测出18种HMW-GS,其中Glu-A1位点上有1、2*和Null共3种,Glu-B1位点上有7+8、7+9、7、6+8、17+18、14+15、20、13+16和13+19共9种,Glu-D1位点上有2+12、5+10、5+12、2+10、3+12和4+12共6种;亚基Null、7+8和2+12在各自位点上出现频率最高,分别为78.05%、60.16%和65.85%。亚基组合类型共34种,主要是Null/7+8/2+12,占45.53%,其次是Null/7+9/2+12,占12.20%,优良亚基组合类型1/7+8/5+10与1/17+18/5+10相当缺乏。育成品种与地方品种比较分析发现,在Glu-A1位点上优良亚基1提高14.16%;Glu-B1位点上7+8下降9.05%;Glu-D1位点上5+10在地方品种中没有出现,但在育成品种中达14.89%。同时筛选出10份得9和10分的优质品种资源,还有12份含稀有亚基的品种资源,可作为山西今后小麦品质育种的亲本材料。  相似文献   

15.
【目的】低分子量麦谷蛋白亚基(LMW-GS)以Glu-A3c、Glu-B3b、Glu-D3c为背景,明确不同高分子量麦谷蛋白亚基(HMW-GS)对面团流变学特性、贮藏蛋白组份含量和面包加工品质作用大小。【方法】在新疆乌鲁木齐和石河子种植以澳大利亚小麦品种Aroona作为轮回亲本培育的近等基因系(NILs),并测定其粉质仪、拉伸仪、贮藏蛋白组份含量和面包加工品质等参数。【结果】HMW-GS对延展性效应不显著,对面团强度效应大小为Glu-D1>Glu-B1>Glu-A1;就单个亚基对而言,7+9、17+18和5+10面团强度最大;亚基组合1、7+9、5+10具有最大面团强度,2*、7+9、2+12和1、7+9、2.2+12具有最好的延展性。HMW-GS对不溶性谷蛋白聚合体百分含量(%UPP)效应大小为Glu-D1>Glu-B1>Glu-A1;就单个亚基对而言,7+9、17+18和5+10的%UPP最高;亚基组合1、7+9、5+10具有最高的%UPP。HMW-GS对面包总分效应大小为Glu-D1>Glu-A1>Glu-B1;就单个亚基或亚基对而言,1、2*、2+12和5+10具有最高的面包总分;亚基组合1、7+9、2+12面包总分最高,1、7+9、5+10次之,null、7+9、2+12最低。【结论】在相同LMW-GS(Glu-A3c、Glu-B3b、Glu-D3c)背景下,HMW-GS对面团强度、%UPP和面包加工品质影响较大,对延展性影响较小;单个亚基或亚基对1、2*、7+9、17+18和5+10对小麦品质影响较大;亚基组合1、7+9、5+10可作为品质改良的最佳组合。  相似文献   

16.
 贮藏蛋白组成是决定小麦加工品质的重要因素。本文调查了我国冬播麦区251份主栽品种和高代品系的高分子量麦谷蛋白亚基(HMW-GS)、低分子量麦谷蛋白亚基(LMW-GS)和1B/1R易位的分布状况,研究了它们与加工品质性状的关系。结果表明,品质较差的HMW-GS N、7+9、2+12和LMW-GS Glu-A3a与Glu-B3j(1B/1R易位)在冬播麦区分布较广,频率分别为39.4%、45.0%、59.8%、37.1%和44.6%。HMW-GS和LMW-GS等位变异对籽粒蛋白质含量影响较小,对SDS沉降值、和面时间与耐揉性的加性和互作效应达1%的显著水平。按位点对加工品质性状的贡献大小,Glu-D1>Glu-B3>Glu-B1>Glu-A3>Glu-A1;就单个亚基而言,Glu-A1位点,1>2*>N;Glu-B1位点,7+8>14+15>7+9;Glu-D1位点,5+10>4+12>2+12;Glu-A3位点,Glu-A3d>Glu-A3a>Glu-A3c>Glu-A3e,Glu-B3位点; Glu-B3d>Glu-B3b>Glu-B3f >Glu-B3j。1B/1R易位对SDS沉降值、和面时间和耐揉性等加工品质性状有显著负面效应。通过选择优质高低分子量麦谷蛋白亚基和淘汰1B/1R易位系,将有助于提高我国小麦的面筋质量。  相似文献   

17.
为了解浙南小麦核心育种亲本的品质遗传基础,采用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)技术对28份核心品种(系)的高分子量谷蛋白亚基(HMW-GS)组成进行分析。结果表明:供试品种(系)在Glu-A1位点具有Null(57.14%)和1(42.86%)2种类型;在Glu-B1位点具有7+8(67.86%)、7+9(25.00%)、17+18(3.57%)和13+16(3.57%)4种类型;在Glu-D1位点具有2+12(96.43%)和5+10(3.57%)2种类型。另外,各供试品种(系)共有5种亚基组合,依次为1/7+8/2+12(39.29%)、Null/7+8/2+12(28.57%)、Null/7+9/2+12(25.00%)、1/17+18/5+10(3.57%)和Null/13+16/2+12(3.57%)。  相似文献   

18.
Allelic variation and genetic diversity at HMW glutenin subunits loci, Glu-A1, Glu-B1and Glu-D1 were investigated in 64 accessions of three unique wheats of western China using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Two HMW glutenin patterns (i.e., "null, 7+8, 2+12" and "null, 7, 2+12") in 34 Yunnan wheat accessions, 3 HMW glutenin patterns (i.e., "null, 7+8, 2+12"; "null, 6+8, 2+12" and "null, 7+8, 2") in 24 Tibetan accessions and 1 HMW glutenin pattern ("null, 7, 2+12") in 6 Xinjiang wheat accessions were found. The Tibetan accession TB18 was found to be with a rare subunit 2 encoded by Glu-D1. A total of 4 (i.e., Glu-A1c, Glu-B1a, Glu-B1b and Glu-D1a), 5 (i.e., Glu-A1c, Glu-B1d, Glu-B1b, Glu-D1a and Glu-D1) and 3 alleles (i.e.,Glu-A1c, Glu-B1a and Glu-D1a) at Glu-1 locus were identified among Yunnan, Tibetan and Xinjiang unique wheat accessions, respectively. For Yunnan wheat, Tibetan wheat and Xinjiang wheat, the Nei′s mean genetic variation indexes were 0.1574, 0.1366 and 0,respectively, which might indicate the higher genetic diversity at HMW glutenin subunits loci of Yunnan and Tibetan wheat accessions as compared to that of Xinjiang wheat accessions. Among the three genomes of hexaploid wheats of western China, the highest Nei′s genetic variation index was appeared in B genome with the mean value of 0.2674,while the indexes for genomes A and D were 0 and 0.0270, respectively. It might be reasonable to indicate that Glu-B1 showed the highest, Glu-D1 the intermediate and GluA1 always the lowest genetic diversity.  相似文献   

19.
新疆小麦高分子量谷蛋白亚基对其加工品质的影响   总被引:3,自引:1,他引:2  
[目的]贮藏蛋白对小麦的加工品质起重要作用,高分子量麦谷蛋白亚基是研究的重点,明确新疆小麦谷蛋白亚基对加工品质的影响.[方法]以79份新疆小麦作为实验材料,进行SDS-PAGE和部分加工品质性状检测,分析了HMW-GS对小麦加工品质性状--蛋白质含量、湿面筋含量、沉淀值和硬度的影响.[结果]高分子量麦谷蛋白基因位点不同,对同一品质性状的效应不同,同一位点对不同的品质性状效应也不同,且同一位点的不同亚基间对品质性状的效应也存在差异.对于沉淀值,Glu-1的三个位点对其效应大小顺序为 Glu-D1> Glu-A1 >Glu-B1,而对于蛋白质含量,顺序则为Glu-B1> Glu-D1 >Glu-A1.高分子量谷蛋白亚基对加工品质的影响情况更为复杂,对于沉淀值, 2+11>5+10>5+12>3+12>2+12>4+12>2+10, 亚基2+12和2+11、5+10差异显著;对于蛋白质含量,2+10>5+12>4+12>2+12>5+10>2+11>3+12,亚基2+10和5+10、2+11、3+12差异显著.[结论]提高优质亚基1,5+10的频率,保持7+8亚基的频率,是新疆小麦育种的方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号