首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

2.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

3.
In the present study, a total of 380 samples of 5 rice varieties were investigated for the presence of aflatoxins (AFs) and tocopherols (Vitamin E) using HPLC, equipped with a fluorescence detector. The data revealed that super basmati rice has the highest mean level of total AFs (12.45 μg/kg) followed by KS-282 (11.2 μg/kg), basmati PK-385 (9.8 μg/kg), Irri-6 (9.7 μg/kg) and the lowest mean level was found in Irri-9 (8.9 μg/kg). Furthermore, the results have shown that the variety with lowest level of AFs has the highest level of tocopherol content; i.e. Irri-9 (53.2 mg/100 g), basmati PK-385 (45.9 mg/100 g), Irri-6 (45.3 mg/100 g), KS-282 (40.4 mg/100 g) and super basmati rice (40.2 mg/100 g). The data has shown correlation (r = −0.62, p < 0.05) between vitamin E content and AFs concentration in different rice varieties. The results are interesting and need further study to investigate the mechanistic background of vitamin E content and its effect on aflatoxins contamination.  相似文献   

4.
Acrylamide (AcA) contents of different rice flour- and wheat flour-based butter cookies baked at 130 °C for 20, 55, or 90 min were investigated. AcA contents of different flour-based cookies increased with baking time. Color parameters in terms of CIE L*, b*, C*, and ΔE values showed significant opposite correlation to the AcA formation in each of the raw flour cookie. The cookies based on white rice flour had the lowest AcA contents ranging from not detectable (ND) to 204 μg/kg, followed by cookies based on brown rice flour (ND to 450 μg/kg), white wheat flour (155 μg/kg to 661 μg/kg), and whole wheat flour (306 μg/kg to 982 μg/kg). Considerably lower AcA levels were found in the rice flour-based cookies than in the wheat flour-based cookies, as well as in the milled flour-based cookies than in the whole-grain cookies. Although the flour source was considered to play a primary role in determining the AcA content, AcA content was apparently not dependent on the quantities of reducing sugars and free asparagine in the starting raw flour and cookies during baking. In summary, given its reducing potential for AcA formation, rice flour could be used in the production of cookies safe from heat-induced contaminants.  相似文献   

5.
6.
The applicability of Raman spectroscopy combined with chemometrics using different preprocessed spectra data was examined to develop fast, low-cost, and non-destructive spectroscopic methods for classification and quantification of aflatoxin-contaminated maize samples within the aflatoxin concentration range of 0–1206 μg/kg. This technique will find useful application in evaluating large numbers (e.g. >2000) of samples from maize hybrid performance trials and breeding programs. The best discriminant models were obtained from the linear discriminant analysis (LDA). The LDA models on validation samples showed correct classification rates in the range of 94–100% and did not misclassify any aflatoxin contaminated samples as aflatoxin negative. Of the models for predicting aflatoxin concentration, the partial least squares regression (PLSR) models showed the best quality of regression (slopes of 0.939–0.990) and highest coefficient of determination (r2 = 0.941–0.957). The models provide limited applicability to quantify aflatoxin concentration below 20 μg/kg. No significant difference was observed between predicted values using Raman spectroscopy and reference values using high-performance liquid chromatography (HPLC) (p > 0.05), indicating the suitability of Raman spectroscopy to rapidly screen large numbers of maize samples for aflatoxin contamination.  相似文献   

7.
This study identified the role of milling and parboiling on arsenic (As) content and its species in large numbers of rice samples. Total As contents were 108 ± 33 μg/kg in polished rice grains (PR), 159 ± 46 μg/kg in unpolished rice grains (UR), 145 ± 42 μg/kg in parboiled polished rice grains (PPR) and 145 ± 44 μg/kg in parboiled unpolished rice grains (PUR). The percentages of inorganic As (iAs) were 66% ± 8% in PR and from 72% to 77% in other grain categories. The polishing process reduced the As content in the rice grains, removing outer part of the UR with high amount of As, whereas the parboiling technique transferred the semimetal content within the grain. Total As and iAs contents were not significantly different in UR, PPR and PUR, homogenizing its distribution inside the grains. The results allowed to understand how different operations affect As fate and its chemical forms in grains.  相似文献   

8.
ABSTRACT

Stem lodging can limit the grain yield of Tartary buckwheat (Fagopyrum tataricum), and creates difficulties in harvesting. A 2-year study was conducted to study the relationships between stem characteristics and lodging resistance in Tartary buckwheat. Six Tartary buckwheat cultivars with three stem types (short-stemmed XQ1 and CQ1; mid-length stemmed YQ1 and QK3; and tall-stemmed DAB and DN1) were used. The stem characteristics differed significantly among the three stem types. Mid-length stems had the thickest stem wall, the greatest numbers of large and small vascular bundles, and the lowest stem diameter/stem wall thickness ratio among the three stem types. Mid-length stems had the highest stem breaking strength (SBS) and stem puncture strength (SPS) among the three types of stem. The lignin content was significantly higher in mid-length stems than in tall and short stems. The activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and cinnamyl alcohol dehydrogenase (CAD), but not 4-coumarate: CoA ligase (4CL), differed significantly among the three stem types. In correlation analyses, SBS was significantly positively correlated with stem diameter, stem wall thickness, and the number of large and small vascular bundles, but significantly negatively correlated with stem diameter/stem wall thickness and lodging rate. The lignin content was significantly positively correlated with the activities of lignin-related enzymes and with SBS and SPS, and significantly negatively correlated with lodging rate. The present study provides preliminary insights into the relationship between stem traits and lodging resistance in Tartary buckwheat, laying a foundation for a further understanding of lodging resistance.  相似文献   

9.
Gluten free (GF) flour (amaranth, buckwheat, chickpea, corn, millet and quinoa) was blended with rice flour to compare their impact on dough rheological characteristics and bread quality. The potential of some GF-rice blends in breadmaking has already been studied on blends with prevailing content of rice flour. The impact of added flour may be expected to rise with increasing amount of flour; therefore blends containing 30 g/100 g, 50 g/100 g and 70 g/100 g of GF flour in 100 g of GF-rice blend were tested. Under uniaxial deformation, peak strain was not impacted by the addition of GF flour; stress (12.3 kPa) was, however, significantly (P < 0.05) decreased (2.9–6.2 kPa). The reduction initiated by the presence of buckwheat, chickpea, quinoa and partly amaranth, together with thermally-induced dough weakening initiated by buckwheat and quinoa flour, may be related to significantly better crumb porosity. Overall acceptability of composite breads containing amaranth, chickpea and quinoa was negatively impacted by the aroma and taste of these flours. Higher potential to improve rice dough behavior and bread quality was found in the blend containing buckwheat flour (30 g/100 g; 50 g/100 g). Millet and corn flour deteriorated dough and bread quality.  相似文献   

10.
Superheated steam (SS) at 170 °C for 5 min was used to inactivate lipase of common buckwheat grains in this study, which effectively retarded lipid hydrolytic rancidity and maintained lipid nutrition of common buckwheat. Higher stabilities based on lower free fatty acid accumulation and lipase activity were observed in SS-treated buckwheat samples during storage. Meanwhile, SS could suppress oxidation of unsaturated fatty acids (UFA) in buckwheat, significantly retard the increase of saturated fatty acids and the decrease of polyunsaturated fatty acids during storage. Moreover, the lipidomics profile results indicated that SS processing could retard the increased hydrolysis and oxidation of sulfoquinovosyl diacylglycerol, phosphatidylethanolamine, phosphatidylserine and lysophosphatidic acid during storage, while regulate the content of galactolipids. Thus, SS processing could effectively inactivate lipase, suppress UFA oxidation, change glycerolipids and glycerophospholipids subclass metabolism, and consequently retard hydrolytic rancidity and the loss of lipid nutrition in buckwheat during storage. SS processing was proved to effectively protect the quality of buckwheat during storage for the first time.  相似文献   

11.
Effect of high pressure processing (HPP) on buckwheat nutritional properties is investigated in this study. The results indicated that the digestion of buckwheat starches of untreated and HPP treated at room temperature (RT) showed an “internal corrosion” pattern. However, an “exocorrosion” digestion behavior was observed for the starches of HPP treated sample at 45 °C, which might be due to the formation of amylose–lipid complexes during the process as revealed by X-ray diffraction (XRD). HPP treatment at 45 °C increased the antioxidant activity of the buckwheat as measured using 1,1′-diphenyl-2-picrylhydrazylvalue (DPPH) and iron chelating capacity (ICC) compared to untreated sample (P < 0.05), which might be associated with the release of bound phenolic compounds. More importantly, this is the first study to investigate the ability of buckwheat extract for inhibiting the formation of fat droplets using a C3H10T1/2 mesenchymal stem cell line, and found that the extract of buckwheat after HPP treatment at 45 °C demonstrated significant anti-adipogenic effects. This study suggested the HPP treatment at an increased temperature (45 °C) achieved a better nutritional value of the buckwheat than both untreated and treated at RT.  相似文献   

12.
Large volumes of condensed distillers solubles (CDS) are generated as by-products, from the sorghum bioethanol industry. The objective was to assess the physico-chemical and bioactive properties of CDS. The unfractionated CDS showed the highest content of phenolic compounds (16 mg GAE/g), antioxidant (522 μM Trolox/g) and antimicrobial activity (MIC 1%(w/v) against Campylobacter spp.) compared to its extracts. The water and methanol extracts also showed high levels of phenolic compounds and antioxidant activity (11.6 and 9.2 mg GAE/g and 349 and 409 μM Trolox/g respectively), followed by ethanol and acetone extractions (7.5 and 6.6 mg GAE/g; 337 and 346 μM Trolox/g respectively). A positive correlation was revealed between total phenol and antioxidant activity. The main phenolic compounds found in the extracts were protocatechuic acid, 4-hydroxybenzoic acid, taxifolin, ferulic acid, cinnamic acid and p-coumaric acid. This study indicates the potential of using CDS as a functional ingredient for other food and feed applications.  相似文献   

13.

The production of bread with addition of selenium-enriched soya malt was studied. Processing of this soya malt included soaking of the soya beans in the solution of hydroselenite with concentration 1.5 mg Se/L (20 μg of Se per 1 g of soya beans), then 4 days of beans germination at 20 °C, drying at 50 °C until moisture content 8%, separation from the sprouts and grinding. The soya malt was a powder containing 15–18 μg of Se in 1 g. The accumulated selenium was mainly in the protein fraction of soya malt. Addition of selenium-enriched soya malt to leaven intensified activity of yeasts and lactic acid bacteria. The quality of the wheat bread with selenium-enriched soya malt was better than that of the bread in control. The enriched bread had specific pleasant smell and soft texture. The daily intake of 277 g of bread with the selenium-enriched soya malt, which is added in quantity of 1.0–1.75% to mass of plain flour, ensures the consumption of 30–50% of selenium recommended daily allowance for 17 million population of the northern and northwestern Ukraine.

  相似文献   

14.
《Plant Production Science》2013,16(4):475-480
Abstract

Buckwheat contains fagopyrin, which induces photosensitization in light-skinned livestock when exposed to sunlight. Here, we developed a high-performance liquid chromatography (HPLC) method to measure the fagopyrin content of buckwheat. The HPLC profile of the fagopyrin extract purified from Tartary buckwheat ‘Rotundatum’ had 3 apparent peaks. The ultraviolet-visible (UV-vis) absorption spectrum of each peak yielded absorbance maxima ( λmax) at 547 nm and 591 nm, indicating that these peaks corresponded to fagopyrin and unidentified fagopyrin derivatives. We considered the total content reflected by the 3 peaks to be the fagopyrin content of buckwheat. We determined the fagopyrin content in the leaves of Tartary buckwheat ‘Rotundatum’ and common buckwheat ‘Miyazakiootsubu’ both by UV-vis photometric analysis and the newly developed HPLC method. The fagopyrin content is overestimated by UV-vis photometry because the extracts contain a considerable amount of chlorophyll. Thus, HPLC analysis is more efficacious for fagopyrin-content measurements than UV-vis photometric analysis. The HPLC analysis of fagopyrin is easy, quick and efficacious for screening buckwheat varieties with trace or no fagopyrin. There are only a few reports on the accumulation sites of fagopyrin in buckwheat. We revealed that in Tartary and common buckwheat, fagopyrin is present mainly in the leaves and flowers and slightly in the stems, hulls, and groats. The fagopyrin contents of the leaves and flowers of Rotundatum were approximately 2.6 and 2.8 times higher than those in Miyazakiootsubu, respectively.  相似文献   

15.
In this study, we evaluated tartary buckwheat during germination to provide an effective process that can lead to a rapid accumulation of both the total flavonoids and d-chiro-Inositol (DCI), as well as the elimination of trypsin inhibitor activity. At different concentrations of Al3+, Cu2+, and Zn2+, we found significant differences of the total flavonoids and DCI accumulation, and we observed changes in phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and α-Galactosidase (α-Gal) activities in germinated tartary buckwheat (p < 0.05). Correlation analysis between these enzymes (PAL, CHI and α-Gal) activities and the total flavonoids and DCI contents revealed a significant correlation in germinated tartary buckwheat. The maximum accumulation of the total flavonoids and DCI were 1315.52 mg/100 g DW and 60.46 mg/g DW with the addition of Al3+, 1315.41 and 63.59 with the addition of Cu2+, and 1189.42 and 53.10 with the addition of Zn2+. In these metal-treated samples, both total flavonoids and DCI were significantly higher than in the control (p < 0.05). Moreover, the metallic additives at the optimum concentration had no influence on total protein content, whereas a lower trypsin inhibitor activity was observed in correlation with higher protein digestibility.  相似文献   

16.
Increased atmospheric carbon dioxide (CO2) is a consequence of recent anthropogenic environmental changes, and few studies have evaluated its effects on tropical grasses used in Brazilian pastures, the main feed source for major part of ruminant livestock. This study evaluated forage production, chemical composition, in vitro total gas production and organic matter degradability of Brachiaria brizantha under contrasting CO2 atmospheric conditions in a free air carbon dioxide enrichment (FACE) facility. The forage plants were sown in each of the 12 octagonal rings of the FACE facility: six under ambient atmospheric CO2 concentration of approximately 390 μmol/mol, hereafter referred to as control (CON) plots, and other six rings enriched with pure CO2 flux to achieve a target CO2 concentration of 550 μmol/mol, hereafter called elevated CO2 (eCO2) plots. Soil samples were collected to determine carbon and nitrogen concentrations. After seventy days of sowing, a standardization cutting was performed and then at regular intervals of 21 days the forage was harvested (ten harvest dates) and forwarded to laboratorial analyses. Forage above‐ground biomass production (dry matter (DM): 6,143 vs. 6,554 kg/ha), as well as morphological characteristics (leaves: 71% vs. 68%; stem: 28% vs. 31%), chemical composition (crude protein: 162.9 vs. 161.8; neutral detergent fibre: 663.8 vs. 664.3; acid detergent fibre: 369.5 vs. 381; lignin: 60.1 vs. 64.1 g/kg DM; total C: 45.9 vs. 45.9; total N: 2.8 vs. 2.8; total S: 0.2% vs. 0.2%), organic matter in vitro degradability (573.5 vs. 585.3 g/kg), methane (5.7 vs. 4.3 ml/g DM) and total gas (128.3 vs. 94.5 ml/g DM) production did not differ significantly between CON and eCO2 treatments (p > .05). The results indicated that at least under short‐term enrichment, B. brizantha was not affected by eCO2.  相似文献   

17.
This study describes the antioxidant activities and antigenotoxic effects of garlic extracts prepared by different processing methods. Aged-garlic extract (AGE) showed a significantly higher total phenolic content (562.6 ± 1.92 mg/100 g garlic acid equivalents) than those of raw garlic extract (RGE) or heated garlic extract (HGE). The SC50 for DPPH RSA in HGE was significantly the highest at 2.1 mg/ml. The SC50 for SOD-like activity in garlic extracts was, in decreasing order, RGE (7.3 mg/ml) > AGE (8.5 mg/ml) > HGE (9.2 mg /ml). The ED50 of AGE was the highest (19.3 μg/ml) regarding H2O2 induced DNA damage and its inhibition rate was 70.8%. The ED50 of RGE for 4-hydroxynonenal (a lipid peroxidation product) induced DNA damage was 38.6 μg/ml, followed by AGE > HGE. Although the heat treatment of garlic tended to decrease the TPC and SOD-like activity and increased DPPH RSA, garlic, in general, has significant antioxidant activity and protective effects against oxidative DNA damage regardless of processing method.  相似文献   

18.
Seven cultivated Triticum species or subspecies (Triticum monococcum, Triticum turgidum ssp dicoccum, T. turgidum ssp. durum, T. turgidum ssp turanicum, Triticum timopheevii, Triticum aestivum and Triticum zhukovskyi) were compared for their contents of bioactive compounds, mainly 5-n-alkylresorcinols (ARs). Multivariate analysis of variance and principal component analysis were used to evaluate the differences in the phytochemical profiles and to establish the relationships among variables. Significant differences were observed for both total phenol (TP) and AR content. The highest AR level (377 μg/g) was observed in Triticum dicoccum, which also exhibited the highest variability for these compounds (298–436 μg/g). By contrast, the lowest AR content (286 μg/g) was found in Triticum durum. C21:0 was the main homologue chain in all the samples, its value ranging between 54.5% in T. durum and 41.2% in T. aestivum. The T. dicoccum and T. monococcum wheats had relatively low amounts of TP, whereas Triticum turanicum (215 mg/kg), T. timopheevii (250 mg/kg) and T. zhukovskyi (286 mg/kg) had approximately 3-fold higher TP levels. These results suggest that there are opportunities for breeding wheat varieties with superior health benefits and for promoting the use of ancient Triticum crops as novel sources of healthy food.  相似文献   

19.
In silvopastoral (SP) systems, forage responses depend on the microenvironment in which the plants develop. Our objective was to evaluate canopy and tillering characteristics of shaded 'Marandu' palisadegrass [Brachiaria brizantha (Hochst A Rich) Stapf, syn. Urochloa brizantha] under continuous stocking in a SP system. Treatments were one full sun (FS) and three shaded systems (silvopasture, SP) corresponding to distances from tree groves: 7.5 m north (SP1), and 15 m (SP2) and 7.5 m south (SP3) studied during two rainy seasons (Year 1 and Year 2). The tree in the SP system was Eucalyptus urograndis (hybrid of Eucalyptus grandis W. Hill ex Maiden × Eucalyptus urophylla S. T. Blake). The photosynthetic active radiation was greater in FS (923 μmol m-2 s-1), followed by SP2 (811 μmol m-2 s-1), SP1 (727 μmol m-2 s-1) and SP3 (673 μmol m-2 s-1). Forage accumulation in FS was 15% greater than the mean of SP1, SP2 and SP3 (10,663 kg DM/ha). There was no difference in net accumulation of leaf, stem and dead material, averaging 3,302, 3,420 and 4,063 kg DM/ha respectively. Leaf accumulation and accumulation rate were greater in Year 2, and leaf accumulation rate was similar among treatments (19 kg DM ha−1 day−1). Leaf proportion increased 14% from Year 1 to Year 2. Specific leaf area was greater for treatments SP1 and SP3 (193 cm2/g). Tiller population density was similar across treatments in Year 1. Shaded palisadegrass maintains leaf productivity similar to FS under continuous stocking in an SP system.  相似文献   

20.
The effects of Lactobacillus plantarum (LP) and Chinese gallnut (Rhus chinensis Mill) tannin on the fermentation quality, nitrogen distribution, protein fractions and proteases activity of alfalfa (Medicago sativa) silage were studied. Additives added to alfalfa forage (approximately 40% DM) were LP (1 × 106 cfu/g FW) plus sucrose (4 g/kg FW) (LP + S), LP (1 × 106 cfu/g FW) plus commercial cellulase (0.1 g/kg FW) (LP + C) and Chinese gallnut tannin at two levels (20 and 50 g/kg DM) (TA 2% and TA 5%). The control was sprayed with the same volume of distilled water. Silage was sampled and analysed on days 1, 3, 5, 7, 14, 21, 28 and 35. The results showed that the degradation of protein to nonprotein nitrogen took place mainly during the first 3 days, while the degradation of peptides and free amino acids occurred throughout the ensiling process. All additives lowered nonprotein nitrogen and free amino acids nitrogen proportion during the ensiling. Additive TA 5% was the most effective to inhibit proteolysis among the four additives, followed by LP + S. They inhibited the activities of all three plant proteases and decreased production of nonprotein nitrogen, free amino acids and ammonia nitrogen during the ensiling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号