首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative importance of the genotype × year (G × Y), genotype × location (G × L) and genotype × location × year (G × L × Y) interactions has significant implications on the testing strategy of crop breeding lines. The goal of this study was to examine the dynamic patterns of these three interactions for pod yield of peanut using a crop simulation model. Pod yields of 17 peanut lines in the early-rainy, mid-rainy and dry seasons at 112 locations covering all peanut production areas in Thailand were simulated for 30 years (1972–2002) with the Cropping System Model (CSM)-CROPGRO-Peanut. Combined analyses of variance were preformed for individual seasons and for overall seasons, with the number of year incrementally increasing from 2 to 30, and the relative contributions of the individual sources of variation were determined. This procedure was repeated four times with different starting years. The results showed that the environmental effects accounted for the major proportion of the total yield variation, followed by the genotype effects, while the genotype × environment (G × E) effects were rather small. The contributions of the individual sources changed as the number of years in the analysis changed. Increasing number of years in the analyses resulted in an increase in the magnitude of the G × Y and G × L × Y interactions, but a decline in the G × L contribution. The contributions of the G × Y and G × L interactions were greater and more fluctuated in the dry season, while those of the G × L × Y interactions were greater in the mid-rainy season. Notable increases in the G × Y interaction in the dry season were observed in certain years. The decline in the G × L interaction with increasing number of years was closely associated with the increase in the G × L × Y interaction, and both became stable when 6 or more years were included. Several cross-over in the ranks of peanut lines for mean pod yield in two contrasting years were also observed for the mid-rainy season. These results raise a question on the effectiveness of the strategy for using locations to replace years in varietal testing that is normally employed by breeders. The practical limit of multi-year evaluation of crop breeding lines could be overcome by the use of a crop simulation model.  相似文献   

2.
While a large genotype-by-environment (G × E) interaction component of variance for grain yield (GY) has been widely reported for rainfed lowland rice, the reasons for such large interactions are not well known. A random reference population of 34 genotypes taken from the Cambodian rice improvement program was used to examine the magnitude and nature of G × E interactions for GY in Cambodia. These genotypes were evaluated in a multi-environment trial (MET) conducted across 3 years (2000–2002) and eight locations in the rainfed lowlands. The G × E interaction was partitioned into components attributed to genotype-by-location (G × L), genotype-by-year (G × Y) and genotype-by-location-by-year (G × L × Y) interactions. The G × L × Y interaction was the largest component of variance for GY. The G × L interaction was also significant and comparable in size to the genotypic component (G). The significant G component was partly explained by a group of four genotypes that were broadly adapted to different environmental conditions represented by three environmental groups. The three environmental groups were identified from a pattern analysis, and the grouping was partly related to the time of sowing, and hence water availability at flowering. A major factor contributing to the large G × L × Y interactions for GY was late maturing genotypes being affected greatly when soil water availability at flowering was reduced greatly, compared to earlier maturing genotype groups. While the differential genotypic responses to the water availability environment explained part of a large G × E interaction for GY, other non-water related environmental conditions also appeared to have contributed to the interaction. Three target environments were identified for focusing efforts of the breeding programs in Cambodia, and four putative genotypes were selected for their high yield and wide adaptation in the rainfed lowlands.  相似文献   

3.
Sorghum shoot fly (Atherigona soccata) is a serious pest that destabilizes the performance of sorghum cultivars and ultimately reduces sorghum production in many parts of the world. Identifying sorghum genotypes with stable resistance to shoot fly is important as it helps to reduce the cost of cultivation and stabilizes yields. In the present study, our objective was to identify stable shoot fly resistant genotypes among 385 recombinant inbred lines (RILs) of a cross between a susceptible parent and a resistant parent. We evaluated this set of RILs in eight environments over three years (2006-2008) for shoot fly resistance and component traits. Non-significant genotype-environment (G × E) linear component and significant pooled deviation for deadheart percentage indicated that the performance of genotypes was unpredictable over the environments. However, five lines had deadheart percentages much less than the population mean with regression coefficient (bi) values close to unity, and non-significant deviation from regression, indicating that they have stable shoot fly resistance and are well adapted to all the environments. Additive main effect and multiplicative interaction (AMMI) analysis partitioned main effects into genotype, environment and G × E interacts with all the components showing highly significant effects (p < 0.001). Environment had the greatest effect (69.2%) followed by G × E interactions (24.6%) and genotype (6.2%). Low heritability and high environmental influence for deadheart percentage suggested that shoot fly resistance is a highly complex character, emphasizing the need for marker assisted selection. We observed transgressive variation in the RIL population for all the traits indicating the contribution of alleles for resistance from both resistant and susceptible parents. Since the alleles for shoot fly resistance are contributed by both resistant and susceptible parents, efforts should be made to capture favourable alleles from resistant and susceptible genotypes.  相似文献   

4.
Analysis of multi-environment trials (METs) of genotypes (G) and genotype × environment (GE) interactions for yield performance across environments, and selection of the best genotypes is an important routine in maize breeding programs. Analysis and interpretation of METs data have been limited to analysis of variance and mean comparison among genotypes. This type of analysis has not been effective in exploiting GE interactions encountered in METs data sets. The objectives of this study were to exploit METs data sets from maize regional trails using G plus GE interaction (GGE) biplot based on the site regression (SREG) model. The GGE biplots displays graphically the relationship among test environments, genotypes and GE interactions. Grain yield data of 35 early to medium maturing open pollinated maize varieties (OPVs) from five seasons (1999–2003) across 59 locations in Southern African Development Community (SADC) were analyzed. The GGE biplots based on the SREG model indicated that yield performance of maize OPVs were under major environments and of GE interactions. The construction of GGE biplots based on SREG model analysis showed the ideal test environments that discriminate well performing maize OPVs from poor ones, the performance of each OPV in specific year, the discrimativiness versus representativeness view of the GGE biplot of the test locations across the years, the relation among OPVs relative to grain yield, the stability of OPVs across environments and which OPVs is best for what.  相似文献   

5.
Zinc and iron are important micronutrients for human health for which widespread deficiency occurs in many regions of the world including South Asia. Breeding efforts for enriching wheat grains with more zinc and iron are in progress in India, Pakistan and CIMMYT (International Maize and Wheat Improvement Centre). Further knowledge on genotype × environment interaction of these nutrients in the grain is expected to contribute to better understand the magnitude of this interaction and the potential identification of more stable genotypes for this trait. Elite lines from CIMMYT were evaluated in a multilocation trial in the eastern Gangetic plains (EGP) of India to determine genotype × environment (GE) interactions for agronomic and nutrient traits. Agronomic (yield and days to heading) data were available for 14 environments, while zinc and iron concentration of grains for 10 environments. Soil and meteorological data of each of the locations were also used. GE was significant for all the four traits. Locations showed contrasting response to grain iron and zinc. Compared to iron, zinc showed greater variation across locations. Maximum temperature was the major determinant for the four traits. Zinc content in 30–60 cm soil depth was also a significant determinant for grain zinc as well as iron concentration. The results suggest that the GE was substantial for grain iron and zinc and established varieties of eastern Gangetic plains India are not inferior to the CIMMYT germplasm tested. Hence, greater efforts taking care of GE interactions are needed to breed iron and zinc rich wheat lines.  相似文献   

6.
A Box-Behnken experimental design and response surface methodology were employed to optimize the pretreatment parameters of a formic/acetic acid delignification treatment of Miscanthus × giganteus for enzymatic hydrolysis. The effects of three independent variables, namely cooking time (1, 2 and 3 h), formic acid/acetic acid/water ratio (20/60/20, 30/50/20 and 40/40/20) and temperature (80, 90 and 107 °C) on pulp yield, residual Klason lignin content, concentration of degradation products (furfural and hydroxymethylfurfural) in the black liquor, and enzymatic digestibility of the pulps were investigated. The major parameter influencing was the temperature for pulp yield, delignification degree, furfural production and enzymatic digestibility. According to the response surface analysis the optimum conditions predicted for a maximum enzymatic digestibility of the glucan (75.3%) would be obtained using a cooking time of 3 h, at 107 °C and with a formic acid/acetic acid/water ratio of 40/40/20%. Glucan digestibility was highly dependent on the delignification degree.  相似文献   

7.
A pea breeding strategy is required to cope with the large climatic variation featuring south-European environments. Thirty-seven recent cultivars bred by 21 European or Australian institutions were grown in two climatically contrasting Italian sites (Lodi, subcontinental; Foggia, Mediterranean), two cropping years per site and two sowing times per year, to define various elements of this strategy. The study assessed: (i) the impact of genotype × environment (GE) interaction due to spatial and temporal factors on the consistency of top-yielding cultivars; (ii) the similarity between environments for GE effects and its implications on adaptation strategies; (iii) the extent of genotypic and GE interaction effects, and the relationship with adaptive responses, for various morphophysiological traits; (iv) the adaptation pattern and the combination of adaptive traits featuring three germplasm types, i.e. European spring and winter types, and germplasm selected in Mediterranean environments; (v) the predicted efficiency of direct and indirect selection procedures for grain yield. The geoclimatic area had a major impact on crop yield (5.15 t/ha in Lodi vs. 2.52 t/ha in Foggia) but tended to affect GE interaction less than time or year of autumn sowing, suggesting to breed for wide adaptation. Top-yielding cultivars as modeled by additive main effects and multiplicative interaction were environment-specific. On average, spring and winter materials outyielded the Mediterranean germplasm but the spring type, characterized by wide entry variation, included most widely- and specifically-adapted top-yielding cultivars. Cold-tolerant spring-type germplasm is preferable to breed for wide adaptation as it may combine high yield potential with adaptation to winter cold and terminal drought and heat stress. Lodging susceptibility, harvest index, onset and duration of flowering, and canopy height at maturity assessed in individual environments showed moderate to fairly high broad-sense heritability on a plot basis (h2 > 0.20) and tended to correlation with yield over test environments (r ≥ 0.20). An indirect selection index including harvest index and canopy height exhibited about 20% greater predicted efficiency than direct selection for yield when using one selection environment and could be preferred for early selection stages. Direct yield selection in late selection stages should ideally be performed across 2 years in two environments that contrast for geoclimatic area and time of autumn sowing.  相似文献   

8.
A marker-assisted back-cross (MABC) programme was used to introgress four root quantitative trait loci (QTLs) from the tropical japonica rice variety Azucena into the Indian upland rice variety, Kalinga III. Previously we tested the products for root traits and reported that the introgressed QTL9 (on chromosome 9) significantly increased root length in the new genetic background. Here we describe field testing for agronomic traits in near-isogenic lines (NILs) that differ for introgressed QTLs. Four NILs were selected and characterised in replicated field experiments in eastern and western India over 3 years. They were tested by upland farmers in a target population of environments (TPE) in three states of eastern India, over 2 years. NILs out-performed Kalinga III for grain and straw yield and there was interaction between the genotypes and the environment (G × E). No effect was found for the root QTL9 on grain or straw yield, however, the presence of several introgressions significantly improved both traits. Some of this effect was due to introgression of Azucena alleles at non-target regions. Overall, the Azucena introgressions increased straw yield more than grain yield. While it has yet to be demonstrated whether this effect is due to improved root systems, this finding fits with the assumption that introgressed genes are involved in partitioning of biomass to the roots and stems, rather than to the grain. The NILs could replace Kalinga III for cultivation in medium upland environments in eastern India.  相似文献   

9.
Lucerne (Medicago sativa L.) can enhance the economic and environmental sustainability of crop-livestock systems in the western Mediterranean basin, but requires improved adaptation to stressful environments because of a predicted shortage of irrigation water and climate change. This study reports on three-year dry matter yields of five landraces from Morocco, Italy and Tunisia and seven varieties from France, Italy, Australia and USA assessed across 10 agricultural environments of Algeria, Tunisia, Morocco and Italy of which four were rainfed, one was continuously irrigated (oasis management), and five were irrigated but adopted a nine-week suspension of irrigation during summer. Our objectives were targeting cultivars to specific environments, and assisting regional breeding programmes in defining adaptation strategies, genetic resources and opportunities for international co-operation. The crop persisted well in all environments, but environment mean yield was strictly associated (P < 0.01) with annual and spring-summer (April–September) water available. Rainfed cropping implied 42% lower yield with 61% less spring-summer water available relative to irrigation with withheld summer water across three sites hosting both managements. All of these sites showed genotype × management interaction (at least P < 0.10). Cross-over genotype × environment (GE) interaction between top-yielding cultivars occurred across the 10 environments. Total number of harvests (range: 9–23), soil salinity as measured by electrical conductivity (range: 0.20–6.0 dS m−1), and average spring-summer water available (range: 102–932 mm) were selected as significant (P < 0.05) environmental covariates in a factorial regression model explaining 53% of GE interaction variation. This model was exploited for targeting cultivars as a function of site-specific levels of these factors. Its indications agreed largely with those of an additive main effects and multiplicative interaction model with two GE interaction principal components. An Italian landrace exhibited specific adaptation to severely drought-prone environments, whereas landraces from north Africa were not adapted to such environments. One Moroccan landrace was specifically adapted to high number of harvests (partly reflecting frequent mowing). One variety selected for salt tolerance, and one Moroccan landrace, were specifically adapted to salt-stress environments. Environment classification as a function of GE interaction effects indicated three groups which may be object of specific breeding: (i) rainfed or irrigated environments featuring limited spring-summer water available (<350 mm), nil or low soil salinity, and moderate to low number of harvests; (ii) salt-stress environments; and (iii) environments characterized by high number of harvests.  相似文献   

10.
The morphological and chemical characteristics of the woods from several eucalypt hybrids from the Brazilian Genolyptus program were studied. The hybrids selected for this study were Eucalyptus grandis × E. urophylla (IP), E. urophylla × E. urophylla (U1 × U2), E. grandis × [E. urophylla × E. globulus] (G1 × UGL), and [E. dunnii × E. grandis] × E. urophylla (DG × U2). The analyses of the lipophilic extractives indicated a similar composition in all eucalypt hybrids, which were dominated by sitosterol, sitosterol esters and sitosteryl 3β-d-glucopyranoside. These compounds are responsible for pitch deposition during kraft pulping of eucalypt wood. Some quantitative differences were found in the abundances of different lipid classes, the wood from U1 × U2 having the lowest amounts of these pitch-forming compounds. The chemical composition and structure of lignins were characterized by Py-GC/MS and 2D-NMR that confirmed the predominance of syringyl over guaiacyl units and only showed traces of p-hydroxyphenyl units in all the woods, with the highest S/G ratio for G1 × UGL. The 2D-NMR spectra gave additional information about the inter-unit linkages in the lignin polymer. All the lignins showed a predominance of β-O-4′ ether linkages (75-79% of total side-chains), followed by β-β′ resinol-type linkages (9-11%) and lower amounts of β-5′ phenylcoumaran-type, β-1′ spirodienone-type linkages or β-1′ open substructures. The lignin from the hybrid G1 × UGL presented also the highest proportion of β-O-4′ linkages, and therefore, it is foreseen that the wood from this hybrid will be more easily delignifiable than the other selected Brazilian eucalypt hybrids. In complement to these chemical analyses, the morphological characterization of fibers, vessels and fines revealed that hybrid eucalypt clone DG × U2 presented the most interesting properties for the manufacture of paper pulps and biofuels.  相似文献   

11.
Miscanthus × giganteus bark was subjected to mild fractionation with peroxyformic acid by a two stage process. A factorial experimental design was used to study and quantify the effect of the variables (formic acid concentration (80-90%), hydrogen peroxide concentration (0.2-0.4%), temperature of the first stage (60-80 °C), and treatment time of the second stage (60-120 min)) on the main parameters of fractionation: pulp yield, remaining lignin and total polysaccharides in pulp. The dependence of lignin precipitation rate on hydrogen peroxide concentration in liquor was also studied. Hydrogen peroxide concentrations inferior to 0.5% seems to be suitable to recover high percentages of lignin. The isolated lignin was analysed by 2D-HSQC, 13C- and 31P NMR spectroscopy, FTIR spectroscopy, size-exclusion chromatography and chemical analysis. The most important chemical modifications taken place in the lignin during the fractionation were identified: β-O-4′ cleavage and hydrolysis of LC-bond structures. The C9-formula was also determined: C9H6.81O2.90(OCH3)0.68(COOH)0.07(OHPh)0.38(OHAl)0.33.  相似文献   

12.
Cultivar × location interaction for lucerne forage yield across northern Italy is large, repeatable and associated with summer drought-stress level and soil type. The objectives of this study were: (i) to investigate the genotypic factors associated with cultivar adaptive responses to drought-stress and soil factors; (ii) to identify adaptive traits exploitable for selection of widely adapted or specifically adapted material. Aerial dry matter (DM) over 12 harvests and shoot traits of 13 landraces and four varieties were evaluated in four artificial environments created by the factorial combination of drought-stress level (almost nil or high) and soil type (sandy-loam or silty-clay) (Exp. 1). Aerial and root DM over four or five harvests were evaluated in metal containers 55 cm × 12 cm × 75 cm deep for the factorial combinations of three varieties by two drought-stress levels by two soil types (Exp. 2), or six landraces by two drought-stress levels (Exp. 3). Cultivar × environment interaction was detected for forage yield, plant mortality after the second summer, leaflet size and stem weight. The environments of Exp. 1 reproduced well the variety adaptive responses across agricultural environments. The relationship of cultivar forage yield with shoot traits was environment-specific, i.e.: (i) strictly negative with plant mortality, in no-stress environments (where mortality and plant competition were severe); (ii) positive with stem number per plant and autumn-winter growth, in stress environments; (iii) positive with stem dry weight, in ‘stress/sandy-loam soil’; and (iv) positive with leaflet size, in ‘no-stress/sandy-loam soil’. Cultivars specifically adapted to no-stress or sandy-loam conditions showed consistently greater root DM across three soil layers than material with opposite adaptive response. Entry yields tended to inverse genetic correlation between two environments which represented contrasting geographical subregions and were characterized by different combinations of traits associated with higher yield, i.e.: (i) higher root biomass, lower plant mortality and larger leaflets, for ‘no-stress/sandy-loam soil’; and (ii) more stems per plant and greater autumn-winter growth, for ‘stress/silty-clay soil’. The difficulty of yield-based selection for wide adaptation may hardly be overcome by selection based on adaptive traits. Adaptive trait-based selection for specific adaptation may be envisaged especially for ‘stress/silty-clay soil’ conditions, for which the relevant traits are inexpensive to record, not correlated, and not subject to cultivar × environment interaction.  相似文献   

13.
A collection of 191 durum wheat accessions representing Mediterranean Basin genetic diversity was grown in nine different environments in four countries, with productivities ranging from 0.99 to 6.78 t ha−1. The population breeding structure comprised eight genetic subpopulations (GSPs) using data derived from 97 evenly distributed SSR markers. The phenotypic structure was assessed: (i) from the mean values of six agronomic traits across environments (multivariate), and (ii) from data representing each trait in each environment (univariate). Mean daily maximum temperature from emergence to heading was significantly (P < 0.05) and negatively associated to yield, accounting for 59% of yield variations. Significant but weak relationships were obtained between the genetic similarities among accessions and their overall agronomic performance (r = 0.15, P < 0.001), plant height (r = 0.12, P < 0.001), spike–peduncle length (r = 0.06, P < 0.01) and thousand kernel weight (r = 0.03, P < 0.05), suggesting a very low possibility of prediction of the agronomic performance based on random SSR markers. The percentage of variability (measured by sum of squares) explained by the environment varied between 76.3 and 98.5% depending on the trait, while that explained by genotypes ranged between 0.4 and 12.6%, and that explained by the GE interaction ranged from 1.1 to 12.5%. The clustering of the accessions based on multivariate phenotypic data offered the best explanation of genotypic differences, accounting for 30.3% (for yield) to 75.1% (for kernel weight) of the observed variation. The genotype × environment interaction was best explained by the phenotypic univariate clustering procedure, which explained from 28.5% (for kernel weight) to 74.9% (for days to heading) of variation. The only accessions that clustered both in the genetic dissimilarities tree and the tree obtained using Euclidean distances based on standardized phenotypic data across environments were those closely related to the CIMMYT hallmark founder ‘Altar 84’, the ICARDA accessions adapted to continental-dryland areas, and the landraces, suggesting that genetic proximity corresponded to agronomic performance in only a few cases.  相似文献   

14.
This study presents the characteristics of four Salix viminalis × Populus tremula hybrids, produced for the first time in the world grown in a three-year field experiment. Shoot weight per plant and major biomass yield components, including plant height, number of shoots per rootstock and shoot diameter, were determined. The infection severity caused by leaf rust (Melampsora sp.) was also evaluated. The biomass of three-year-old hybrid plants was subjected to chemical analyses and calorimetric tests to determine the energy value of biomass as solid fuel. Among the studied genotypes the highest yield was achieved by one of the studied hybrids. Its biometric parameters did not differ significantly from the standard genotype, and they were superior to the parameters of the maternal form. All Salix × Populus hybrids were more susceptible to rust infections than their maternal form and one hybrid was more resistant to infections caused by fungi of the genus Melampsora. Two hybrids have optimal biomass parameters as regards both calorific value and amount of carbon, hydrogen, sulfur and nitrogen.  相似文献   

15.
The aim of this work was to find new sources of resistance to chocolate spot disease, and to validate their stability across different environments. In order to do so, a collection of 307 accessions of Vicia faba was screened for resistance to Botrytis fabae under field conditions; stability of resistance of the 40 most-resistant accessions was tested in a multi-location experiment in Austria, Chile, Egypt, France and Spain over two field seasons. Although complete resistance was not found, nine accessions showed interesting levels of incomplete resistance (ranging from 10 to 20% of average severity across environments, maximum average severity being 47.9%). Genotype × environment interaction accounted for 22% of the sum of squares of the multi-environment evaluation, revealing instability of the phenotypic expression across environments. This usually hampers the efficiency of selection and reduces the adaptability of the plant material. Three accessions stand out for their consistent resistance, both in terms of reduced disease severity and high stability, which make them good candidates for breeding programs. As for environments, those with the highest total severity mean were the most discriminant between accessions. In contrast, those with lower severity means were the most representative of the whole range of environments. It can be concluded that validation of resistance to chocolate spot in different environments is an essential step when screening for material of interest and should be taken into account for further works.  相似文献   

16.
Matricaria recutita L. is one of the most common medicinal plants, included in all over the world pharmacopoeias due to, among others, the relevant health benefits of its sesquiterpenic compounds. This paper aims to study the impact of the agricultural practices of M. recutita L. on the occurrence of sesquiterpenic compounds. To fulfill this objective, a methodology that combines the headspace solid phase microextraction (HS-SPME) coupled with one-dimensional gas chromatography-quadrupole mass spectrometry detection (GC-qMS) was implemented. Thirteen populations from different geographic origins, agricultural practices, and harvest times, grown in Santa Catarina and Paraná states, in Brazil, were analyzed. The samples from organic practice showed a tendency to have lower amount of sesquiterpenic compounds than those from the conventional agricultural system. Eleven samples were classified as chemotype B (rich in bisabolol oxide B) and the remaining 2 were classified as chemotype A (rich in bisabolol oxide A). Predominance of chemotype B was observed concerning the agricultural practices (organic or conventional) or geographic origin (Santa Catarina or Paraná). In order to obtain a deeper insight into the sesquiterpenic compounds, comprehensive two-dimensional gas chromatography with time of flight mass spectrometry detection (GC × GC-ToFMS) was also applied, allowing to identify for the first time in chamomile 8 compounds.  相似文献   

17.
The nitrogen (N) requirement of dedicated crops for bioenergy production is a particularly significant issue, since N fertilisers are energy-intensive to make and have environmental impacts on the local level (NO3 leaching) and global level (N2O gas emissions). Nitrogen nutrition of Miscanthus × giganteus aboveground organs is assumed to be dependent on N stocks in belowground organs, but the precise quantities involved are unknown. A kinetic study was carried out on the effect of harvest date (early harvest in October or late harvest in February) and nitrogen fertilisation (0 or 120 kg N ha−1) on aboveground and belowground biomass production and N accumulation in established crops. Apparent N fluxes within the crop and their variability were also studied.Aboveground biomass varied between 24 and 28 t DM ha−1 in early harvest treatments, and between 19 and 21 t DM ha−1 in late harvest treatments. Nitrogen fertilisation had no effect on crop yield in late harvest treatments, but enhanced crop yield in early harvest treatments due to lower belowground biomass nitrogen content. Spring remobilisation, i.e. nitrogen flux from belowground to aboveground biomass, varied between 36 and 175 kg N ha−1, due to the variability of initial belowground nitrogen stocks in the different treatments. Autumn remobilisation, i.e. nitrogen flux from aboveground to belowground organs, varied between 107 and 145 kg N ha−1 in late harvest treatments, and between 39 and 93 kg N ha−1 in early harvest treatments. Autumn remobilisation for a given harvest date was linked to aboveground nitrogen accumulation in the different treatments. Nitrogen accumulation in aboveground biomass was shown to be dependent firstly on initial belowground biomass nitrogen stocks and secondly on nitrogen uptake by the whole crop.The study demonstrated the key role of belowground nitrogen stocks on aboveground biomass nitrogen requirements. Early harvest depletes belowground nitrogen stocks and thus increases the need for nitrogen fertiliser.  相似文献   

18.
White lupin requires grain yield improvement to realize its potential as a high-protein grain crop. Some 121 entries representing 13 germplasm pools (11 landrace pools from European countries and from regions of North and East Africa, West Asia and Atlantic islands, and one winter-type and one spring-type variety pools) were evaluated in three major agroclimatic conditions, i.e., Mediterranean and subcontinental climate in Italy under autumn sowing and suboceanic climate in France under spring sowing, with the aim to assess: (i) the variation among and within germplasm pools for grain yield and 13 major morphophysiological traits; (ii) the impact of evaluation environments on entry characteristics; and (iii) the relation of wide- and specific-adaptation responses with morphophysiological traits. Indications on top-yielding genetic resources, entry morphophysiological traits and association of these traits with grain yield were largely environment-specific. Germplasm pools summarized a fairly high portion of genotypic and genotype × environment (GE) interaction variation, indicating their usefulness as a criterion for locating genetic resources with specific characteristics. Adaptive responses of germplasm pools and individual entries, modeled through Additive Main effects and Multiplicative Interaction analysis, highlighted the outstanding agronomic value for specific agroclimatic conditions of a few landrace germplasm pools in comparison with variety pools. Overall within-pool diversity for morphophysiological traits and adaptive response was largest in the landrace pools from Italy, Turkey, East Africa and West Asia. Only flowering time and individual seed weight exhibited high genetic correlations between environments for entry response, suggesting caution in inferring accession characteristics from evaluation data obtained in environments very different from those targeted by possible germplasm users. Optimal flowering time was early in the spring-sown environment, intermediate in the Mediterranean environment, and late (associated with winter survival) in the subcontinental-climate environment. Owing to the association of phenology with several other traits, germplasm ordination for adaptation pattern and for overall morphophysiological variation were very similar. Pod fertility emerged among the seed yield components because of its correlation with grain yield in each environment combined with fairly low GE interaction. Beside contributing to the ecogeographic classification of landrace germplasm, our results can support breeding programs of Europe and Mediterranean-climate regions in defining useful genetic resources, adaptation strategies and adaptive traits. Genetic resources from Madeira & Canaries (high-yielding across environments), Italy (featuring high adaptive and morphophysiological diversity) and a few other regions are of special interest for breeding in targeted definite agroclimatic conditions.  相似文献   

19.
Evaluation of crop and forage yield stability is of increasing relevance in the context of current and recent environmental changes but, in contrast to other field crops, there are no published systematic analyses among forage crops in Europe. A study of stability performance was conducted with 13 Czech cultivars of lucerne at four locations over a 2‐year period with the following aims: (a) to evaluate yield stability of varieties across different environments and (b) to calculate measurable benefits of variety selection in relation to the specific environment. The cultivar Vlasta was identified as the highest yielding cultivar (annual yield 16.0 t DM/ha), whereas the lowest yielding cv. Magda, Tereza and Oslava averaged around 14.9 t DM/ha. Effect of genotype × environment interaction (G × E) was two times higher than for genotype alone. Additive main effects and the multiplicative interaction (AMMI) model showed that the highest yielding cultivars may not be stable across environments. This study demonstrated further that significant yield improvement could be detected, even among a relatively homogenous group of domestic cultivars, and this was driven mainly by site productivity: the improvement was +10% in low‐yielding sites, compared with +3% in high‐yielding sites. Results highlight that advanced agronomy should also consider stability parameters such as AMMI stability value or superiority measures for forage crops in response to the challenges associated with climate change.  相似文献   

20.
应用AMMI模型评价马铃薯品种的稳定性和适应性   总被引:7,自引:1,他引:7  
应用AMMI模型对6个马铃薯品种的区试产量进行了分析。结果表明:在线型回归分析的条件不具备时,AMMI模型可解释基因型与环境之间的互作。通过AMMI模型双标图和稳定性参数可以比较基因型与环境互作的大小,进而评价各参试品种的稳定性与适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号