首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
Abstract

The main objective of this study was to increase the productivity of soybean [Glycine max (L.) Merr. cv. Enrei] seed by deep placement of controlled release nitrogen fertilizers and by the application of different methods of inoculation of bradyrhizobia. Ten days old seedlings in an inoculated paper pot (IPP), in a non-inoculated paper pot (NIPP), and those grown in a vermiculite bed without paper pot (DT) were transplanted to an upland field converted from a drained paddy field in Nagaoka. In addition to the basal application of 16 kg N ha?1 in the surface layer (Control), deep placement of 100 kg N ha?1 of urea (Urea), 100-day type coated urea (CU-100), and calcium cyanamide (CaCN2) treatments were applied at the depth of 20 cm. In the IPP method, a significantly higher seed yield was obtained with the deep placement of CaCN2 and CU-100 compared with the Urea and Control treatments. A similar tendency was observed for the DT and NIPP methods. Among the same N fertilizer treatments, the seed yield for IPP and DT tended to exceed that for NIPP, although the NIPP roots also showed nodulation probably due to infection with indigenous bradyrhizobia. The percentage of nitrogen derived from atmospheric N2 estimated by the simple relative ureide method was higher in the plants with CU-100 and CaCN2 compared with those with the Urea and Control treatments at the RI stage, suggesting that the basal deep placement of CaCN2 or CU-100 for soybean cultivation enabled the supply of N without concomitant depression of N2 fixation. Thus the deep placement of cheaper CaCN2 was found to be as effective as that of CU-100 for enhancing the soybean seed yield.  相似文献   

2.
There is little information available about soybean aphid (Aphis glycines Matsumura) effects on the physiology and mineral nutrition of soybean (Glycine max [L.] merr.). Controlled-environment studies were conducted to measure soybean aphid infestation effects on dry weight, nitrogen (N) fixation, ureide-N, and nitrate-N concentration and accumulation. Plants grown in perlite using –N nutrient solution culture were infested at the 3rd trifoliolate (V3) stage and measured for N fixation, nodule characteristics, and ureide-N concentration at the full pod (R4) stage. When compared to uninfested control plants, aphid infestation reduced total nodule volume per plant by 34%, nodule leghemoglobin per plant by 31%, plant N fixation rate by 80% and shoot ureide-N concentration by 20%. Soil-grown plants were infested at the first trifoliolate (V1) stage and shoots were measured for dry weight, nitrate-N, and ureide-N at the full bloom (R2) stage. Infestation reduced shoot dry weight by 63%, increased nitrate-N concentration by 75%, but did not significantly affect ureide-N concentration. Because nutrient concentration is a single-point measurement that results from the integration of two dynamic processes, nutrient accumulation and dry matter production, we conclude that aphid-induced reductions in N fixation, coupled with decreased dry weight accumulation, caused shoot ureide-N concentration to remain unchanged in aphid-injured plants when compared to uninfested plants. Because nitrate-N concentration was greater in aphid-damaged shoot tissue, we further conclude that nitrate-N accumulation was less sensitive to aphid injury than dry weight accumulation.  相似文献   

3.
The objective of the present study was to record the seed yield and to examine visually the quality of soybean seeds cultivated under different types and placements of urea fertilizers. In addition to the conventional fertilizer application (including ammonium sulfate 16 kg N ha-1 broadcasting (100 kg N ha-1 of urea (0B) and X00-d type coated urea CU-100 (CUB), and deep placement (100 kg N ha-1) of urea (UD) and 100-d type coated urea CU-100 (CUD) was conducted in separate plots in a paddy field converted to an upland field located at Shindori Experimental Station of Niigata University. Soybean plant growth was periodically analyzed and the quality of harvested seeds was also visually examined (hereafter referred to as “visual quality”). It was found that the deep placement treatments were more conducive 1o nitrogen (N2)fixation, based on the relative mreide N concentration in the xylem sap, which is a good indicator of N~fixation by soybean. Also the total seed yield was the highest in CUD (82 g plant-1) and 0D (81 g plant-1), compared to the control (62 g plant-1), UB (68 g plant-1), and CUB (68 g plant-1). The visual quality of harvested seeds showed that CUD enhanced the quality of seeds compared to the other treatments, in which the percentage of good quality seeds, hereafter referred to as "good seeds," based on the dry weight was 51 (control), 65 (K3B), 61 (CUB), 61 (0D), and 6696 (CUD). In terms of diseased seeds, the percentage of turtle wrinkle and broken seed coats was found to decrease by N application compared to the control. Thus, it is suggested that N fertilization management is important for maximum yield of soybean as well as for the enhancement of seed quality.  相似文献   

4.
An experiment was conducted to identify the main nitrogenous compound transported in the xylem sap of soybean plants nodulated with Rhizobium fredii. Soybean (Glycine max L. Merr.) cultivars, wild type Bragg (nod+, fix+) and its nitrate tolerant, hypernodulating mutant ntsll16 (nod++, fix+) were used for this experiment. These soybean plants were inoculated with a slowgrowing rhizobium, Bradyrhizobium japonicum USDAllO or fast-growing rhizobia consisting of a mixture of R. fredii USDA191, USDA193, and USDA-194 and grown in a phytotron under natural light and controlled temperature conditions. Xylem sap was collected from Bragg and ntsll16 plants at the flowering and pod elongation stages. Acetylene reduction activity per plant or per nodule weight was not different between soybean lines and inoculums. The composition of the nitrogenous compounds in the xylem sap was compared between the symbionts, with B. japonicum and R. fredii. At the flowering stage, ureide-N and amide-N accounted for 53 to 70% and 20 to 27% respectively of the total N in the sap collected from the plants inoculated either with B. japonicum or R. fredii. At the pod elongation stage, ureide-N and amide-N accounted for 74 to 85%, and 7 to 19% of total sap N. With the growth of the soybean plants, the ratio of ureide-N in the xylem sap increased. These results suggest that in the case of wild soybean and the hypernodulating mutant line nodulated by R. fredii, ureide is transported as the main nitrogenous compound of fixed nitrogen in the xylem sap in the same way as in plants nodulated with B. japonicum.  相似文献   

5.
Abstract

We reported in the previous paper (Takahashi et al. 1991) that the deep placement of slow release N fertilizer (coated urea) contributed to a stable increase of soybean (Glycine max L. Merr.) yield. In the previous study we observed that the deep placement of coated urea did not depress appreciably the nitrogen fixation by root nodules although fertilizer N was efficiently utilized. We assumed that the N absorbed from the roots in the deep layers did not cause nodule senescence, contributed to the maintenance of the leaf activity during the maturation stage, and that the increase in the availability of carbohydrate and N improved seed production. In the current report the effects of placement of coated urea fertilizer on the root growth and activity were studied by measuring the root dry weight and Rb absorption activity.  相似文献   

6.
Effects of phosphorus (P) deficiency on nodulation were examined in soybean grown in nutrient solution for 7 weeks. Increasing P supply increased shoot growth of nitrogen (N2)-fixing plants from week 5 and that of nitrate-fed plant from week 4 after treatment. Nitrogen (N2)-fixing plants had a greater P requirement for maximum growth at week 5. Increasing P supply from 1 to 16 μ M increased N concentration in N2-fixing plants at week 4 but did not affect it from week 5. By contrast, P deficiency increased N concentration in nitrate-fed plants. Increasing P supply improved nodule formation from week 3. Nodule mass was affected more by P supply than nodule number, which, in turn, was affected more than plant growth. However, P supply did not decrease nodule specific N2 fixation from week 5. The results suggest that P deficiency impaired symbiotic N2 fixation through delaying onset of nodule function and decreasing nodule development.  相似文献   

7.
We studied the effect of the soil physical properties on soybean nodulation and N2 fixation in the heavy soil of an upland field (UF) and an upland field converted from a paddy field (UCPF) in the Hachirougata polder, Japan. Seeds of the soybean cultivar Ryuho were sown in each field with or without inoculation of Bradyrhizobium japonicum A1017. The soybean plants were sampled at 35 (V3) and 65 (Rl) d after sowing (DAS), and then nodulation and the percentage of N derived from N2 fixation in the xylem sap were determined. The soil physical properties were different between UF and UCPF, especially the air permeability and soil water regime. Nodule growth was restricted in UCPF irrespective of rhizobial inoculation, though rhizobial infection was not inhibited by the unfavorable soil physical conditions. Soybean plant growth was closely related to the nodule mass and N2 fixation activity, and the inoculation of a superior rhizobium strain was effective only at 35 DAS. These results indicate that soybean nodulation and N2 fixation was considerably affected by the physical properties of heavy soil, and that it is important to maintain the N2 fixation activity and inoculate the soybean plants with a superior rhizobium strain at a later growth stage in order to increase soybean production in heavy soil fields.  相似文献   

8.
Domesticated and wild-type tepary beans (Phaseolus acutifolius A. Gray) were grown with or without inoculation with rhizobia in pots under bacteriologically controlled conditions in a temperature-controlled glasshouse. Seeds were inoculated with a mixture of seven strains isolated from nodules collected from domesticated field-grown tepary bean in Arizona, USA, or with a commercial inoculant strain for Phaseolus vulgaris (CC511). Different degrees of plant reliance upon N2 fixation for growth were generated by supplying the inoculated plants throughout growth with nutrients containing a range of concentrations of 15N-labeled NO3 (0, 1, 2, 5 or 10 mM). An uninoculated treatment that received 10 mM 15N-labeled NO3 was included to provide data for plants solely dependent upon NO3 for growth. Six weeks after sowing, shoots were harvested for dry matter determination and subsequent 15N analysis, root-bleeding xylem sap was collected, and nodulation assessed. With regard to shoot biomass production, domesticated lines were more responsive to inoculation, but less responsive to applied N than wild types. All inoculated plants were nodulated, but the field isolates from tepary bean were more effective in N2 fixation than strain CC511. It was concluded that tepary bean requires a specific inoculant to benefit from fixation of atmospheric N2. Xylem sap samples were analysed for ureides (allantoin and allantoic acid), amino acid content (α-amino-N), and NO3 concentration. The amount of ureide-N present in xylem sap was expressed as a percentage of total solute N, described as the relative abundance of ureide-N (RUN), for each N treatment and was compared to the proportion of plant N derived from N2 fixation (%Ndfa) calculated using a 15N dilution technique. The RUN values ranged from 8% for saps collected from uninoculated plants provided with 10 mM NO3 in the nutrient solution (%Ndfa=0) to 86-91% for nodulated plants grown in the absence of externally supplied NO3 (%Ndfa=100). These data indicated that ureides were the principal product of N2 fixation exported from the nodules to the shoot in xylem sap. Since RUN values were closely related to %Ndfa, it was proposed that N-solute analysis of xylem sap could provide a valuable analytical tool to monitor the symbiotic performance of tepary bean.  相似文献   

9.
Co-inoculation of selected nitrogen-fixing bacteria with plant growth-promoting bacteria is the promising way for the improvement of soybean production through enhancing plant growth, nodulation, and N2 fixation. Therefore, this experiment was conducted to study the effects of co-inoculation of Bradyrhizobium elkanii BLY3-8 with Streptomyces griseoflavus P4 on plant growth, nodulation, N2 fixation, N uptake, and seed yield of Rj4 soybean varieties. Two experiments with completely randomized design and three replicates were done in this study. N2-fixation ability of soybean was evaluated by acetylene reduction activity (ARA) and relative ureide method. In the first experiment, synergetic effect in N2 fixation and nodulation was occurred in co-inoculation treatment (BLY3-8 + P4) in Yezin-3 and Fukuyutaka. Based on these results, co-inoculation effect of BLY3-8 and P4 was assessed on Yezin-3 and Fukuyutaka varieties at three different growth stages, using Futsukaichi soil under natural environmental conditions. This study shows that co-inoculation of BLY3-8 and P4 significantly increased N2 fixation at V6 stage; plant growth, nodulation, N2 fixation, and N uptake at R3.5 stage; and shoot growth, N uptake, and seed yield at R8 stage, in Rj4 soybean varieties compared with the control. Significant difference in plant growth, nodulation, N2 fixation, N uptake, and yield between co-inoculation and control, not between single inoculation and control, suggests that there is a synergetic effect due to co-inoculation of BLY3-8 and P4.  相似文献   

10.
Abstract

Sowing on elevated ridges is effective in reducing wet injury of soybean plants cultivated in upland fields converted from rice paddy fields. Therefore, we investigated the effect of ridge tillage (RT) on soybean N accumulation properties. We compared the amounts of plant N associated with N2 fixation of nodules and from soil and fertilizer in the RT treatment with amounts in conventional tillage (CT) in two fields in 2002–2003. Both fields were upland fields converted from rice paddy fields (Typic Hydraquents). The main difference between the fields was the presence of a field underdrain. The amounts of Rb and K accumulated in the shoots were also determined to estimate soybean root distribution. The grain yields with RT increased in both fields from 106% to 129% compared with CT. Increased pod number and seed weight were the major factors responsible for the yield increase. anova indicated that RT significantly increased the activities of both N2 fixation of nodules and N absorption by roots until R1 (flowering stage). The ratio of Rb and K accumulated in the shoots indicated that with RT, the root distribution was more abundant in the superficial layers compared with CT. Thus, RT reduced wet injury during the rainy season that overlapped the flowering stage. Nitrogen accumulation from N2 fixation until the R7 stage with RT was significantly higher than that with CT. We concluded that RT was effective in increasing N2 fixation of nodules in poorly drained upland fields converted from rice paddy fields.  相似文献   

11.
A pot experiment was conducted to investigate the effect of growing soybean on N2O emission from soil. When soybean was growing in pots, the cumulative N2O emission during the growing season was 2.26 mg N pot−1, which was 5.9 times greater than that from the identical but unplanted pots (CK). However, the difference in N2O fluxes between the two treatments was not significant until the grain-filling stage. Of the total N2O emission, 94% took place during the period from grain-filling to ripening. Premature harvesting of the aerial parts of the plants at various growth stages substantially stimulated N2O emission from the soil. These results implied that the process of symbiotic N fixation per se does not stimulate N2O production or emission, but rather senescence and decomposition of the roots and nodules in the late growth stage. Therefore, additional N2O would be emitted from the soil after harvesting of soybean with roots, litter, and residues left in situ.  相似文献   

12.
We compared the concentrations and contents of protein and oil in mature seeds from nodulated and non-nodulated soybean plants grown on soils with four different N levels during maturation. We observed a positive correlation between the contents of protein and oil in seeds from nodulated plants. Seeds from nodulated plants grown on urea-treated soil showed higher protein and lower oil contents than those from plants grown on soil treated with coated slow release N fertilizer (LP-100). Contents of these compounds in seeds from nodulated plants grown on LP-100 soil were almost the same as those from non-nodulated plants on the same soil. These observations indicated that N economy in roots during seed maturation affects the contents of storage compounds. We suggested that the control of the N2 fixation activity of soybean plants and management of soil N level during seed maturation are important to determine the contents of protein and oil in seeds.  相似文献   

13.
The effects of phosphorus supply (0, 30, and 90 mg P kg‐1) on growth, N2 fixation, and soil N uptake by soybean (Glycine max (L.) Merr.) were studied in a pot experiment using the 15N isotope technique. Phosphorus supply increased the top dry matter production at flowering and the dry matter production of seeds, straw, pod shells, and roots at late pod filling of inoculated soybeans. Phosphorus supply reduced the N concentration of plant tops at flowering, but increased the amount of N accumulated at both flowering and late pod filling. In inoculated soybeans total N accumulation paralleled the dry matter production. The P concentration in above‐ground plant parts of nodulated soybeans was not affected by P application. At flowering only 18 to 34% of total N was derived from N2 fixation, whereas as much as 74% was derived from N2 fixation at late pod filling. Only the addition of 90 mg P kg‐1 soil significantly increased the amount of N2 fixed at the late pod filling stage. Phosphorus supply did not influence the uptake of fertilizer or soil N in soybeans, even if the root mass was increased up to 60% by the P supply.  相似文献   

14.
This work evaluates the effect of different slow-release fertilizers and nitrification inhibitors (NI) on N-use efficiency, grain yield and N2 fixation in rice fields of Valencia (Spain) during three consecutive crop seasons (1998–2000). Eight N sources [ammonium sulphate, urea, polymer-coated urea (PCU 32% and 40% N), sulphur coated urea, isobutylidene diurea (IBDU), ammonium sulphate nitrate (ASN) plus dicyandiamide and ASN plus dimethyl pyrazole phosphate, were applied at 120 kg N ha–1 and at 2 or 15 days before flooding (DBF) during 1998. Another experiment was based on the use of urea blended with PCU (40% N) at four ratios (1:0, 3:1, 1:1, 1:3) and applied at 15 DBF and at four rates (70, 95, 120 and 145 kg N ha-1) during 1999 and at only one rate (120 kg N ha–1) during 2000. Both experiments also included a control (no N). The results showed that, when applied shortly before flooding, PCU (32% and 40% N) and IBDU application improved biological N2 fixation compared to the conventional fertilizer application, with or without NI, reaching similar values to those observed in the absence of N fertilizer. Slow release fertilizers, particularly PCU 40% N applied basally before flooding, were the best N source for grain yield and improved recovery efficiency. Differences among N sources were only significant when the flooding was delayed for 15 days after fertilizer application.  相似文献   

15.
Whether a legume obtains its nitrogen (N) from the air, through dinitrogen fixation, or from the soil, as nitrate (NO3), may influence its susceptibility to zinc (Zn) deficiency. The influence of N source [potassium nitrate (KNO3)+ native soil N versus rhizobium‐inoculated seed + native soil N] and phosphorus (P) (0 and 200 mg P/kg), and Zn fertilizers (0, 1, and 8 mg Zn/kg) on growth and nutrient composition of soybean (Glycine max L. cv. McCall) and navy bean (Phaseolus vulgaris L. cv. Seafarer) grown on a calcareous soil were studied under greenhouse conditions. Inoculated plants, but not their KNO3‐treated counterparts, had root nodules. However, due to N deficiency resulting from suboptimal N fixation, growth of these inoculated plants, especially of navy bean, was poorer than that of similarly treated KNO3‐fed plants. As a consequence of this restricted growth, responses to P and Zn fertilizers were generally greater in KNO3‐treated plants. Added P decreased the yield of KNO3‐treated navy bean in the absence of added Zn, but P‐induced Zn deficiency had little effect on the growth of similarly treated inoculated plants. Plant excess bases (EB)/total plant N ratios [EB = 1/2 Ca + l/2Mg + Na + K ‐ Cl ‐ total S (S = divalent) ‐ total P (P = monovalent)] were less in KNO3‐treated soybean than in correspondingly treated navy bean. Therefore, rhizosphere pH values around navy bean roots were probably less than those around soybean roots. Despite the hypothesized lower rhizosphere pH values, KNO3‐treated navy bean was more susceptible to Zn deficiency than soybean. This greater susceptibility of navy bean to Zn deficiency was apparently at least partly due to poor translocation of Zn from the roots to the tops.  相似文献   

16.
A field experiment was conducted to study the effect of adding different phosphorus (P) fertilizer levels [0, 40, and 80 kg phosphorus pentoxide (P2O5) ha?1 (abbreviated as P0, P1, and P2, respectively)] and rates of sheep manure (M) [0, 20, and 40 ton ha?1 (abbreviated as M0, M1, and M2, respectively)] on growth and nitrogen (N2) fixation of soybean (Glycine max L.). Sorghum bicolor L. was employed as a reference crop to evaluate N2 fixation using the 15N-isotpic dilution technique. Results showed that addition of P fertilizer or sheep manure had positive effects on dry-matter production, N accumulation, and seed yield. Such effects were more pronounced when adding sheep manure and P together than adding separately. Solely P fertilizer had a small impact on N2 fixation. A tangible increase in the amounts of N2 fixed due to manure addition occurred. The efficient use of N fertilizer (%NUE) increased significantly as the result of adding a high level of P fertilizer. However, a drastic decrease in %NUE was observed when sheep manure was added solely or in combination with P fertilizer. From productivity and ecological standpoints, P2M1 and P2M2 surpassed the other treatments in showing greater grain yield and greater N2 fixation. However, considering the high cost of sheep manure, P2M1 was the optimal treatment for improving growth and N2 fixation in soybean plants with minimal manure consumption. In conclusion, the integrated use of manure and P fertilizer could be considered a useful agricultural practice for improving the performance of soybean plants grown in an Aridisol. Their beneficial effects were mainly attributed to the enhancement of N2 fixation through root growth and soil property improvements besides being a source of P and other nutrients that are essential for N2-fixation process.  相似文献   

17.
Several important features of the N. fixation in paddy fields which were reported previously were confirmed and some new additional results regarding the evaluation of the N2 fixation in the rhizosphere were obtained by reinvestigation in the fields. In addition, rice plants were cultivated in the submerged soil in pots and various parts of the soil were analyzed for the N2-fixing activity as well as several other properties. The results of the pot experiments were found to be fairly similar to those observed in the field investigations, indicating the validity of the submerged soil in a pot as a rather simulated model for the actual paddy field. By using this model system, the following facts were ascertained: (1) Water-percolation had almost no effect on the N2-fixing activities of both the rhizosphere and the non-rhizosphere soils. (2) Suppressing effect of washing the root of rice plant on the N2-fixing activity was slight in the seedling stage and marked in the tillering and flowering stages. (3) The N2-fixing activity of a single rice root varied from tip to base.  相似文献   

18.
The contribution of biological N2 fixation to the N nutrition of nodulated soybean was estimated using the 15N isotope dilution technique and a non-nodulating soybean isoline as a non-fixing control plant. The plants were grown in the field in concrete cylinders (60 cm dia) and harvested at seven stages of plant growth. Labelled N was added to the soil either as labelled organic matter before planting or in seven small additions (2kg N ha?1) of (NH4)2SO4 during the growing period.There was good agreement between isotope dilution estimates of nitrogen fixation for the two labelling methods. Acetylene reduction assays on intact root systems greatly underestimated N2 fixing activity. The difference in total N between nodulated and non-nodulated plants generally gave higher estimates compared with the isotope technique. The data indicate that this was because nodulated plants recovered more N from the soil than the non-nodulated plants. After 92 days of growth, the soybean derived approximately 250kg N ha?1 from biological N2 fixation.  相似文献   

19.
Residues from some tree species may contain allelopathic chemicals that have the potential to inhibit plant growth and symbiotic N2-fixing microorganisms. Soybean [Glycine max (L.) Merr] was grown in pots to compare nodulation and N2-fixation responses of the following soil amendments: control soil, leaf compost, red oak (Quercus rubra L.) leaves, sugar maple (Acer saccharum Marsh) leaves, sycamore (Platanus occidentalis L.) leaves, black walnut (Juglans nigra L.) leaves, rye (Secale cereale L.) straw, and corn (Zea mays L.) stover. Freshly fallen leaves were collected from urban shade trees. Soil was amended with 20 g kg-1 air-dried, ground plant materials. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage to determine N2-fixation by the difference method. Although nodulation was not adversely affected, soybean grown on leaf-amended soil exhibited temporary N deficiency until nodulation. Nodule number was increased by more than 40% for soybean grown on amended soil, but nodule dry matter per plant generally was not changed compared with control soil. Nonnodulating plants were severely N deficient and stunted as a consequence of N immobilization. Nodulating soybean plants grown on leaf or crop residue amended soil were more dependent on symbiotically fixed N and had lower dry matter yields than the controls. When leaves were composted, the problem of N immobilization was avoided and dry matter yield was not reduced. No indication of an allelopathic inhibition on nodulation or N2-fixation from heavy application of oak, maple, sycamore, or walnut leaves to soil was observed.  相似文献   

20.
Four kinds of new developed urea, some of which were amended with biological inhibitors and coated and some of which were only coated with inorganic materials, were prepared by coating conventional granular urea (nitrogen 46.0%). Using a coated urea [resin-coated urea, 90 day, (RCU)] made in China and a conventional granular urea as check, their effects on physiological characteristics, yield, and quality of peanut were examined in a field experiment. The results indicated that four kinds of urea kept greater ammonium nitrogen (NH4 + -N) and nitrate nitrogen (NO3?N) contents at flowering stage (FS) and podding stage (PS) compared to conventional urea, and coated urea + dicyandiamide + hydroquinone treatment (CU + DCD + HQ) had the greatest contents, being similar to RCU treatment. At FS and PS, the chlorophyll content, photosynthetic rate, transpiration rate, and chlorophyll fluorescence parameters were significantly increased upon CU + DCD, CU + HQ, and CU + HQ + DCD treatments. In addition, CU + HQ + DCD treatment produced 27.3% more pod yield, 6.7% more total yield, and 9.17% more protein content and decreased NO3?-N content by 46.56% as compared to conventional urea treatment. This product has excellent slow-release capacity, is inexpensive and environmentally friendly, and could be especially useful in agricultural application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号