首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 500 毫秒
1.
为了探索棉花蕾期涝盐胁迫下的响应特征,采用筒栽试验,研究了不同矿化度咸水造墒条件下蕾期淹水对棉花生长过程的影响。结果表明:当造墒水矿化度大于2g/L后,棉花的出苗率、株高、茎粗、叶面积和干物质质量显著降低;与正常处理相比,蕾期淹水处理的棉花叶片叶绿素相对含量、株高、干物质质量和成铃数降低,茎粗增加;蕾期淹水进一步加重了盐分胁迫下棉花株高和叶面积的生长,但造墒水矿化度大于2g/L的淹水处理在排出淹水后40d出现了2次生长。综上所述,涝盐胁迫对蕾期棉花生长的抑制表现出叠加效应,盐分胁迫程度相对较高的处理在排出淹水后棉花表现出生长补偿效应。  相似文献   

2.
不同灌溉方式下底墒水矿化度对棉花出苗率的影响   总被引:1,自引:0,他引:1  
采用二因素随机试验设计,在田间进行了底墒水灌溉方式和矿化度对棉花耐盐特征值影响的试验研究。结果表明,畦灌和沟灌方式下,随着底墒水矿化度的增高,棉花出苗时间延迟;无论何种灌水方式,棉花的出苗率均与底墒水矿化度和土壤盐分含量呈线性负相关关系,采用矿化度小于4 g/L微咸水造墒,处理间出苗率差异未达极显著水平,畦灌和沟灌方式...  相似文献   

3.
微咸水造墒对棉花生长发育及产量的影响研究   总被引:1,自引:0,他引:1  
采用小区对比试验方法,研究了河北低平原区旱地等雨播种(HD)、播前淡水造墒(S1)以及矿化度为2.2g/L(S2.2)和5g/L(S5)微咸水造墒等不同处理对棉花生长发育和产量的影响。结果表明,棉花生育期内HD处理0~100cm土壤含水率明显低于3种造墒处理;S5处理0~40cm土壤盐分含量最高,但降雨淋洗效果较为显著...  相似文献   

4.
研究不同矿化度微咸水和再生水在不同灌水量条件下,盆栽棉花出苗率、苗期冠层和根生长情况,探索微咸水和再生水在棉花灌溉中的应用技术。试验设置灌水量和水质2个试验因素,研究灌水量和水质处理对盆栽棉花出苗率、苗期冠层和根系生长的影响。结果表明,出苗率、苗期冠层和根系生长随灌水量减少而降低;2~4 g/L微咸水和再生水处理促进出苗,高于4 g/L微咸水抑制出苗;在环境温度较低时,2~4 g/L微咸水和再生水处理促进冠层生长和根系生长;在环境温度较高时,2~6 g/L微咸水处理抑制冠层生长和根系生长,再生水处理促进冠层生长,抑制根系生长。该研究为再生水应用于棉花灌溉提供参考。  相似文献   

5.
[目的]明确河套灌区盐碱地咸水滴灌条件下适宜的食葵播种深度和造墒水盐调控初次灌水量等关键参数,提出与盐碱地咸水滴灌相适应的食葵种植模式.[方法]通过田间试验的方式,布置了4个播种深度(2、4、6 cm和8 cm)和3个造墒水盐调控初次灌水量(21、28 mm和35 mm),分析了以上农艺种植措施对食葵出苗率和幼苗生长状...  相似文献   

6.
为了揭示棉花生长发育对咸水灌溉的响应特征,采用小区对比试验,研究了不同矿化度咸水灌溉对棉花出苗、株高、叶面积、果枝数、地上部干质量等形态指标以及产量构成、耗水量和水分利用率的影响.结果表明,棉花出苗率和成苗率随着灌溉水矿化度的增大而减小,但3 g/L灌水处理与对照间的差异不具有统计学意义,而5,7 g/L处理与对照间差异极具统计学意义.在移栽补全苗情况下,咸水灌溉对棉花形态生长指标产生了一定的抑制效应,灌溉水矿化度愈大,抑制作用愈大;对株高、叶面积和地上部干质量的影响在蕾期最明显,花铃期之后开始逐渐减弱;对果枝数和棉铃生长的影响程度随着棉花生育进程的推进而降低.处理间棉花的耗水量差异不具有统计学意义,籽棉产量和水分利用率的大小顺序,按灌水处理依次为3,1,5,7 g/L,其中7 g/L处理与对照间的差异具有统计学意义.与灌水前初始值相比,试验结束后1,3 g/L灌水处理的0~40 cm土层盐分未增加,5,7 g/L灌水处理则形成了积盐.研究结果可为咸水安全利用提供重要参考.  相似文献   

7.
棉花成苗和幼苗生长对咸水滴灌的响应特征   总被引:2,自引:1,他引:1  
【目的】解决咸水灌溉植棉成苗率低的难题。【方法】采用膜下滴灌灌水方式,研究了不同灌溉水矿化度(1、3、5、7、9 g/L)和不同灌水控制下限(田间持水率的70%和60%)相组合对棉花苗期土壤水盐变化及棉花出苗过程、成苗率和幼苗生长的影响。【结果】0~30 cm土层土壤盐分随着灌溉水矿化度的增加而增大,土壤水分变化不明显;随着灌水控制下限的提高,土壤水分和盐分分别呈增加和降低的趋势,但变化幅度不大。与1 g/L灌水处理相比,3 g/L咸水滴灌加快了棉花的出苗进程,平均成苗率提高了6.06%;5 g/L咸水滴灌对棉花出苗影响不大,成苗率增加了0.45%;7 g/L和9 g/L咸水滴灌延迟了出苗过程,平均成苗率降低了3.66%和12.97%,其中仅9 g/L与1 g/L灌水处理间的差异达到显著水平。不同处理棉花幼苗的生长指标呈现出随灌水控制下限的提高而增大的趋势;2组灌水控制下限条件下,棉花苗期的单株叶面积、茎粗和地上部干质量等指标的大小顺序均是3、1、5、7、9 g/L,其中7、9 g/L与1 g/L处理间的差异达显著水平。棉花相对成苗率与灌溉水矿化度之间呈显著的二次函数关系,相对成苗率为1和0.9时,对应的灌溉水矿化度特征值分别为6.0 g/L和8.4 g/L。【结论】采用≤7 g/L的咸水滴灌不会对棉花成苗率产生显著影响,适度提高灌水控制下限、增加咸水灌溉次数,可促进棉花幼苗生长。  相似文献   

8.
微咸水和再生水对盆栽棉花土壤理化性质和根系的影响   总被引:1,自引:0,他引:1  
为缓解华北水资源短缺问题,寻求代替水源,进行了微咸水和再生水灌溉条件下不同灌水量对盆栽棉花土壤理化性质和棉花根系影响的试验。试验设置灌水水质和灌水量2个试验因素,灌水水质设计为低、中、高矿化度微咸水和再生水,清水作为对照;灌水量设计为田间持水量的95%、85%、70%、55%。试验结果表明:微咸水和再生水处理增加土壤含盐量,微咸水处理的土壤含盐量随着矿化度的升高而增加;再生水处理提高土壤有机质和硝态氮的含量;微咸水和再生水促进棉花根系的生长,在盐分累积严重的情况下根系生长最快。  相似文献   

9.
为了分析不同间歇时间和矿化度对黄河三角洲粉壤土水分入渗特征及盐分分布的影响,进行了咸淡水交替灌溉的室内土柱试验,设置4种间歇时间(0, 30, 60, 90 min)和3种咸水矿化度(3,6,9 g/L),分析了累积入渗量、入渗历时、土壤水盐分布等参数变化.结果表明:相同入渗水量下,咸淡水交替灌溉的入渗历时随间歇时间的增加而显著增大.当咸水矿化度为3,6,9 g/L时,咸淡水交替灌溉处理的平均土壤含水率差异不具有统计学意义,但咸水矿化度为3 g/L处理的平均土壤含盐量低于咸水矿化度为6和9 g/L处理,且间歇90 min的平均土壤含盐量远低于其他处理.因此,当咸水矿化度为3 g/L,间歇时间较长的灌溉方式有利于降低土壤盐分.  相似文献   

10.
不同矿化度咸水造墒对棉花、玉米出苗的影响   总被引:2,自引:0,他引:2  
不同矿化度咸水造墒对棉花、玉米出苗的影响崔金荣,刘辉(河北省盐山县咸水农业研究所061300)河北省沧州地区滨海近海的盐山、海兴、孟村、黄骅四县,土地总面积40万hm4,由于“天旱、水咸、地碱”的恶劣自然条件,实际为农业利用的土地只有13.33多万公...  相似文献   

11.
咸水灌溉对棉花耗水特性和水分利用效率的影响   总被引:4,自引:0,他引:4  
采用田间对比试验,连续3 a研究了1、3、5、7 g/L 4个矿化度咸水(记作S1、S2、S3、S4)灌溉对棉田土壤水盐、土壤蒸发、棉花阶段耗水量、籽棉产量和水分利用效率的影响。结果表明,棉花生育期内根系层土壤含水率和电导率有随灌溉水矿化度的增加而增大的趋势,土壤电导率增加尤为明显;年际间,各处理土壤含水率和电导率差异非常大,经过连续3 a灌溉,根系层土壤电导率均未逐年增加。S3和S4处理的平均土壤蒸发强度大于S1处理,S2与S1处理间的差异很小;7 g/L以下咸水灌溉对棉花耗水过程产生了一定影响,但对总耗水量影响并不明显。3 a的平均籽棉产量和水分利用效率由大到小顺序均为:S2、S1、S3、S4,S2比S1处理增产2.43%,水分利用效率增加1.15%,S3和S4比S1处理减产1.67%和8.88%,水分利用效率降低0.25%和7.31%,其中,S2和S3与S1处理间差异不显著,S4处理产量和水分利用效率降低显著。  相似文献   

12.
咸水灌溉对土壤水热盐变化及棉花产量和品质的影响   总被引:5,自引:0,他引:5  
为了充分利用咸水资源,采用田间对比试验,研究了1、3、5、7 g/L等4个矿化度咸水(分别用S1、S2、S3、S4表示)灌溉对棉田土壤水热盐变化特征及棉花长势、产量和纤维品质的影响。结果表明,棉花生育期内各处理0~40 cm土层土壤含水率及地下5 cm处土壤温度总体上都随着灌溉水矿化度的增加而增大,但差异不大;处理间土壤电导率差异明显,灌溉水矿化度愈高,土壤电导率愈大,棉花生育期结束后,降雨对各处理盐分的淋洗率介于29.40%~40.40%。土壤水分和盐分剖面分布受制于土壤质地、降雨和棉花蒸发蒸腾耗水;干旱时期,土壤干燥,盐分表聚,湿润时期与之相反。棉花成苗率、株高、单株最大叶面积和霜前花率均随着灌溉水矿化度的增加而降低,籽棉产量从大到小依次为S2、S1、S3和S4,其中,S4与S1处理间的差异达显著水平。咸水灌溉通过改变马克隆值对纤维品质产生了负面影响,尤其是S4处理。研究结果可为丰富棉花咸水灌溉技术体系提供理论支撑。  相似文献   

13.
新疆盐碱地长期利用盐水灌溉土壤盐分变化   总被引:3,自引:1,他引:3  
在地下水位3~5m、壤质土壤条件下,利用盐碱地时用2~5g/L盐化水灌溉,土壤1m剖面均为脱盐状况。灌溉盐化水15年后,1m土壤残留阴离子浓度较小,多点平均为3.709毫克当量/100克土。其中HCO-3相对较多,1m多点平均为0.404毫克当量/100克土。K++Na+浓度很大,1m多点平均为2.492毫克当量/100克土。这时,土壤1m全盐多点平均为0.248%,在灌溉水矿化度不直接危害作物生长时,不影响耕作和作物正常生长。由此可见,盐化水在盐碱地上无排灌溉,是可行的。  相似文献   

14.
咸水非充分灌溉对土壤盐分动态及制种玉米产量的影响   总被引:2,自引:0,他引:2  
通过田间试验,研究了咸水非充分灌溉下土壤盐分动态及其对制种玉米产量和水分利用效率的影响。结果表明,玉米播种前至收获后土壤盐分主要累积在中层土壤,尤其是灌水量越大的处理;灌水阶段,表层土壤脱盐量随着灌水量增加而增大;土壤蒸发阶段,灌水量大的处理表层土壤盐分累积明显。灌溉水量控制在390mm左右且灌水矿化度不超过3g/L,减产幅度较低且节水。  相似文献   

15.
试验研究了 7g/L咸水灌溉的可行性。结果表明 ,采用咸水灌溉能提高土壤含盐量 ,但并未超过棉花的耐盐度 ,而且经过雨季的降水淋洗 ,不会造成土壤明显积盐。同时 ,在秸秆覆盖条件下采用 7g/L咸水与淡水交替灌溉 ,棉花的产量仅比对照减产 4.2 %。这为 7g/L咸水资源的开发利用提供了理论依据和实践基础  相似文献   

16.
The field experiments were carried out in 2007 and 2008 to study the effects and strategies of drip irrigation with saline water for oleic sunflower. Five treatments of irrigation water with average salinity levels of 1.6, 3.9, 6.3, 8.6, and 10.9 dS/m were designed. For each treatment, 7 mm water was applied when the soil matric potential (SMP) 0.2 m directly underneath the drip emitters was below −20 kPa, except during the seedling stage. To ensure the seedling survival, 28 mm water was applied after sowing during the seedling stage. Results indicate that amount of applied water decreases as salinity level of irrigation water increases. The emergence will be delayed when the salinity level of irrigation water is higher than 6.3 dS/m, but these differences will be alleviated if there is rainfall during emergence period. The final emergence percentage is not changed when salinity level of irrigation is less than 6.3 dS/m, and the percentage decreases by 2.0% for every 1 dS/m increase when the salinity level of irrigation water is above 6.3 dS/m, but the decreasing rate will be reduced if there is rainfall. The plant height and yield decrease with the increase of salinity of irrigation water. The height of plants decreases by 0.6-1.0% for every 1 dS/m increase in salinity level of irrigation water. The yield decreases by 1.8% for every 1 dS/m increase in salinity level of irrigation water, and irrigation water use efficiency (IWUE) increases with increase in salinity of irrigation water. The soil salinity increases as the salinity of irrigation water increasing after drip irrigation with saline water in the beginning, but the soil salinity in soil profile from 0 to 120 cm depths can be maintained in a stable level in subsequent year irrigation with saline water. From the view points of yield and soil salt balance, it can be recognized even as the salinity level of irrigation water is as high as 10.9 dS/m, saline water can be applied to irrigate oleic sunflower using drip irrigation when the soil matric potential 0.2 m directly under drip emitter is kept above −20 kPa and the beds are mulched in semi-humid area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号