首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eamus D  O'Grady AP  Hutley L 《Tree physiology》2000,20(18):1219-1226
Daily and seasonal patterns of transpiration were measured in evergreen eucalypt trees growing at a wet (Darwin), intermediate (Katherine) and dry site (Newcastle Waters) along a steep rainfall gradient in a north Australian savanna. Relationships between tree size and tree water use were also determined. Diameter at breast height (DBH) was an excellent predictor of sapwood area in the five eucalypt species sampled along the rainfall gradient. A single relationship existed for all species at all sites. Mean daily water use was also correlated to DBH in both wet and dry seasons. There were no significant differences in the relationship between DBH and tree water use at Darwin or Katherine. Among the sites, tree water use was lowest at Newcastle Waters at all DBHs. The relationship between DBH and tree leaf area was similar between species and locations, but the slope of the relationship was less at the end of the dry season than at the end of the wet season at all locations. There was a strong relationship between sapwood area and leaf area that was similar at all sites along the gradient. Transpiration rates were significantly lower in trees at the driest site than at the other sites, but there were no significant differences in transpiration rates between trees growing at Darwin and Katherine. Transpiration rates did not vary significantly between seasons at any site. At all sites, there was only a 10% decline in water use per tree between the wet and dry seasons. A monthly aridity index (pan evaporation/rainfall) and predawn leaf water potential showed strong seasonal patterns. It is proposed that dry season conditions exert control on tree water use during the wet season, possibly through an effect on xylem structure.  相似文献   

2.
Water use by mature trees of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan var. raddiana growing in the northern Sahel was continuously recorded over 4 years. Water use was estimated from xylem sap flow measured by transient heat dissipation. Concurrently, cambial growth, canopy phenology, leaf water potential, climatic conditions and soil water availability (SWA) were monitored. In addition to the variation attributable to interannual variation in rainfall, SWA was increased by irrigation during one wet season. The wet season lasted from July to September, and annual rainfall ranged between 146 and 367 mm. The annual amount and pattern of tree water use were stable from year-to-year despite interannual and seasonal variations in SWA in the upper soil layers. Acacia tortilis transpired readily throughout the year, except for one month during the dry season when defoliation was at a maximum. Maximum water use of about 23 l (dm sapwood area)(-2) day(-1) was recorded at the end of the wet season. While trees retained foliage in the dry season, the decline in water use was modest at around 30%. Variation in predawn leaf water potential indicated that the trees were subject to soil water constraint. The rapid depletion of water in the uppermost soil layers after the wet season implies that there was extensive use of water from deep soil layers. The deep soil profile revealed (1) the existence of living roots at 25 m and (2) that the availability of soil water was low (-1.6 MPa) down to the water table at a depth of 31 m. However, transpiration was recorded at a predawn leaf water potential of -2.0 MPa, indicating that the trees used water from both intermediary soil layers and the water table. During the full canopy stage, mean values of whole-tree hydraulic conductance were similar in the wet and dry seasons. We propose that the stability of water use at the seasonal and annual scales resulted from a combination of features, including an extensive rooting habit related to deep water availability and an effective regulation of canopy conductance. Despite a limited effect on tree water use, irrigation during the wet season sharply increased predawn leaf water potential and cambial growth of trunks and branches.  相似文献   

3.
Water is the most limiting factor for plant production in arid to semiarid regions. In order to overcome this limitation surface runoff water can be used to supplement seasonal rainfall. During 1996 we conducted a runoff irrigated agroforestry field trial in the Turkana district of Northern Kenya. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop: Sorghum bicolor (L.) Moench during the first season and Vigna unguiculata (L.) Walp. during the second season) on water use were investigated. The annual crops were also grown as monocrops. Water consumption ranged from 585 to 840 mm during the first season (only treatments including trees). During the second season, which was shorter and the plants relied solely on stored water in the soil profile, water consumption was less than half of that during the first season. Highest water consumptions were found for non-pruned trees at high density and the lowest were found for the annual crops grown as monocrops. Tree pruning decreased water uptake compared to non-pruned trees but soil moisture depletion pattern showed complementarity in water uptake between pruned trees and annual intercrops. The highest values of water use efficiency for an individual treatment were achieved when the pruned trees at high density were intercropped with sorghum (1.59 kg m–3) and cowpea (1.21 kg m–3). Intercropping and high tree density increased water use efficiency in our runoff agroforestry trial. We ascribe the observed improvement in water use efficiency to the reduction of unproductive water loss from the bare soil.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
Dry, dehiscent fruits ofAcacia tortilis provide important fodder for pastoral livestock in dry seasons on the central Borana Plateau, fruits ofA. nilotica may also be useful during drought. Information was needed on fruit yield to assess what these species could contribute to improved calf feeding systems based on local resources. Fruit production of 10 mature trees per species was measured at five sites for seven months during 1988–9 (n=50 per species). Fruit yields varied according to site, season and species x site (each atP<0.001), but there was no main effect of species (P=0.13). Yields were not correlated with trunk diameter at breast height (DBH) or canopy area within or across species (P>0.05 in all cases). Yields ranged from 0 to 40 kg DM per tree overall, with an average of 5.3 kg DM per tree (or 65 g DM/m2 of canopy area). This average tree had a DBH of 26 cm and a canopy area of 81 m2. Low and highly variable fruit yields appear to constrain enhanced use of these species here. These species warrant further attention in research and development, however, given their strategic value as forage resources in pastoral systems and their ability to persist in variable environments.  相似文献   

5.
Selected tropical Acacia species are used extensively for short-rotation plantation forestry in many parts of Asia and, to a limited degree, in Australia. We explored leaf-level photosynthetic activity and leaf water potential (Ψleaf) of three field-grown Acacia tree species (aged between 7 and 18 months) in contrasting wet–dry tropical plantations in southern Vietnam and northern Australia. Light-saturated photosynthetic rate (A1500) declined throughout the morning and early afternoon in the dry season; in the wet season, levels remained high and relatively constant throughout most of the day. Maximum daily A1500 at 09:00 ranged from 22.2 μmol?m?2?s?1 in the wet to 10.4 μmol?m?2?s?1 in the dry season. At both locations, trees were able to extract soil water such that pre-dawn leaf water potential (Ψpd) remained>?1.5?MPa even at the end of the dry season. Stomatal conductance to water vapour (gs) did not respond to decreasing Ψleaf during the wet season but was sensitive to changes in Ψleaf in the dry season. Species comparisons of the relationships between A1500 and Ψleaf revealed different strategies to balance carbon uptake and water loss in a wet–dry environment. Acacia crassicarpa and A. mangium regulated Ψleaf to a greater extent than the A. mangium×A. auriculiformis hybrid such that ?Ψleaf (determined as Ψpd?midday Ψleaf) was unaffected by season. This result suggests that the hydraulic regulation of tree water status varies amongst young tropical Acacia species. From a management perspective, for Acacia species that tend to strongly regulate water loss in environments with an extended dry season, overall productivity at the end of a rotation may be less than for species that prioritise carbon gain.  相似文献   

6.
We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.  相似文献   

7.
The water dynamics of cropping systems containing mixtures of Gliricidia sepium (Jacq.) Walp trees with maize (Zea mays L.) and/or pigeonpea (Cajanus cajan L.) were examined during three consecutive cropping seasons. The trees were pruned before and during each cropping season, but were left unpruned after harvesting the maize; prunings were returned to the cropping area in all agroforestry systems to provide green leaf manure. The hypothesis was that regular severe pruning of the trees would minimise competition with crops for soil moisture and enhance their growth by providing additional nutrients. Neutron probe measurements were used to determine spatial and temporal changes in soil moisture content during the 1997/98, 1998/99 and 1999/00 cropping seasons for various cropping systems. These included gliricidia intercropped with maize, with and without pigeonpea, a maize + pigeonpea intercrop, sole maize, sole pigeonpea and sole gliricidia. Soil water content was measured to a depth of 150 cm in all treatments at 4–6 week intervals during the main cropping season and less frequently at other times. Competition for water was apparently not a critical factor in determining crop performance as rainfall exceeded potential evaporation during the cropping season in all years. The distribution of water in the soil profile was generally comparable in all cropping systems, implying there was no spatial complementarity in water abstraction by tree and crop roots. However, available soil water content at the beginning of the cropping season was generally lower in the tree-based systems, suggesting that the trees continued to deplete available soil water during the dry season. The results show that, under rainfall conditions typical of southern Malawi, the soil profile contains sufficient stored water during the dry season (ca. 75–125 mm) to support the growth of gliricidia and pigeonpea, and that gliricidia trees pruned before and during the cropping season did not deleteriously compete for water with associated crops. Water use efficiency also appeared to be higher in the tree-based systems than in the sole maize and maize + pigeonpea treatments, subject to the proviso that the calculations were based on changes in soil water content rather than absolute measurements of water uptake by the trees and crops.  相似文献   

8.
In this research the relative importance of leaf area and microclimatic factors in determining water use of tree lines was examined in sub-humid Western Kenya. Measurements of tree water-use by a heat-balance technique, leaf area, bulk air saturation deficit, daily radiation, and soil water content were done in an experiment with tree lines within crop fields. The tree species were Eucalyptus grandis W. Hill ex Maiden, Grevillea robusta A. Cunn. and Cedrella serrata Royle, grown to produce poles on a phosphorus-fixing Oxisol/Ferralsol with (+P) or without (−P) phosphorus application. Doubling the leaf area of Cedrella and Grevillea doubled water use in a leaf area (LA) range of 1–11 m2 per tree. The response of Eucalyptus water use (W) to increases in leaf area was slightly less marked, with W = LAn, n<1. Transpiration rate per unit leaf area (Tr) was the other important determinant of water use, being affected by both tree species and phosphorus fertilization. A doubling of the saturation deficit (SD) halved the water use of all trees except for Cedrella +P, in which water use increased. A direct effect of soil water content on water use was only found in Grevillea -P, with a small increase (60%) as available water increased from 1.4 to 8.9% above wilting point (32%). This low direct response to soil water content is probably due to the extensive tree-root systems and the deep clayey soils supplying sufficient water to meet the evaporative demand. Indirect responses to soil water content via decreases in leaf area occurred in the dry season. The results showed that water use of tree lines was more determined by leaf area and transpiration rate per unit leaf area than by micro meteorological factors. The linear response of tree water use to leaf area, over a wide range leaf areas, is a specific characteristic of tree line configurations and distinguished them from forest stands. In tree lines light interception and canopy conductance increase with leaf area much more than a similar leaf area increase would have caused in a closed forest canopy.  相似文献   

9.
The objective of this study was to compare the effects of woodlots of five tree species, continuous maize (Zea mays L.) and natural fallow on soil water and nitrogen dynamics in western Tanzania. The tree species evaluated were Acacia crassicarpa (A. Cunn. ex Benth.), Acacia julifera (Berth.), Acacia leptocarpa (A. Cunn. ex Benth), Leucaena pallida (Britton and Rose), and Senna siamea (Lamarck) Irwin & Barneby). The field experiment was established in November 1996 in a completely randomized block design replicated three times. Maize was intercropped between the trees during the first three years after planting and thereafter the trees were allowed to grow as pure woodlots for another two years. Transpiration by the trees was monitored when they were 3 years old using sap flow gauges. Soil water content was measured using the neutron probe approach between November 1999 and March 2001. Soil inorganic N profiles were measured when the trees were four years old in all treatments. The results indicated that the trees transpired more water than natural fallow vegetation during the dry season. The difference was apparent at a depth of 35 cm soil, but was more pronounced in deeper horizons. The water content in the entire soil profile under woodlots and natural fallow during the dry period was 0.01 to 0.06 cm3 cm−3 lower than in the annual cropped plots. This pattern was reversed after rainfall, when woodlots of A. crassicarpa, A. leptocarpa, A. julifera, S. siamea and L. pallida contained greater quantity of stored water than natural fallow or continuous maize by as much as 0.00 to 0.02, 0.01 to 0.04, 0.01 to 0.04, 0.01 to 0.03 and 0.00 to 0.02 cm3 cm−3, respectively. Natural fallow plots contained the lowest quantity of stored water within the entire profile during this period. Transpiration was greatest in A. crassicarpa and lowest in L. pallida. All tree species examined were `scavengers' of N and retrieved inorganic N from soil horizons up to 2-m depth and increased its concentration close to their trunks. This study has provided evidence in semi-arid environments that woodlots can effectively retrieve subsoil N and store more soil water after rains than natural fallow and bare soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Mantovan  N.G. 《New Forests》2002,23(1):19-30
Early-growth differentiation among seven provenances of Prosopis flexuosa (algarrobo dulce) from the Monte phytogeographic province, Argentina, was studied by comparing their height growth; whole-seedling dry mass gain; allocation to root, stem and leaves; leaf number and leaf area in a common garden. Differentiation among provenances was detected for all the seedling characters examined except leaf number. Family variation within provenances was significant for height growth and leaf number. Variation on the provenance level was related to the elevation, geographic location, and some abiotic conditions of the seed source such as mean annual temperature and frost free period. Latitudinal clines were evident for almost all the growth traits. They were more pronounced for height and aboveground mass, and moderate for total plant mass and leaf area per plant. In addition, a good correspondence in growth traits between young seedlings and older trees of this species (studied by others authors) was also assessed. This fact would permit an early selection and genetic advances in the short term in breeding programs.  相似文献   

11.
Ngugi  Michael R.  Hunt  Mark A.  Doley  David  Ryan  Paul  Dart  Peter 《New Forests》2003,26(2):187-200
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie (humid coastal) and Hungry Hills (dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely (dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.  相似文献   

12.
Seasonal yields of wetland rice and wheat were measured under traditionally-managed field trees of five species in northwestern Bangladesh over four years. There was a variable depression of rice (Oryza sativa) and wheat (Triticum aestivum) yields under all tree species. Yield depression overall ranged from 16% for the light-canopiedAcacia catechu to a little over 40% for the dense-canopiedArtocarpus heterophyllus andMangifera indica. Percentage yield depression was independent if agroecological zones, years, and location of the trees on the margins of centrally in a field. Yield depression in the dry season extended further in area than in the wet season; and for most tree species was to some extent alleviated by availability of irrigation. Farmers were well aware of and accepted crop yield losses under different tree species in return for the tree products. Trees with greatest impact on crops yielded products of highest value, mainly fruits and leaf fodder. Previous articles 1, 2 and 3 in the series appeared in Agroforestry Systems 25: 193–216, 31: 39–57 and 33: 231–247 respectively, with slightly different main titles.  相似文献   

13.
The traditional Acacia senegal bush-fallow in North Kordofan, Sudan, was disrupted and the traditional rotational fallow cultivation cycle has been shortened or completely abandoned, causing decline in soil fertility and crop and gum yields. An agroforestry system may give reasonable crop and gum yields, and be more appealing to farmers. We studied the effect of tree density (266 or 433 trees ha−1) on two traditional crops; sorghum (Sorghum bicolor) early maturing variety and karkadeh (Hibiscus sabdariffa), with regard to physiological interactions, yields and soil water depletion. There was little evidence of complementarity of resource sharing between trees and crops, since both trees and field crops competed for soil water from the same depth. Intercropping significantly affected the soil water status, photosynthesis and stomatal conductance in trees and crops. Gum production per unit area increased when sorghum was intercropped with trees in low or high density. However, karkadeh reduced the gum yield significantly at high tree density. Yields of sorghum and karkadeh planted within trees of high density diminished by 44 and 55% compared to sole crops, respectively. Intercropping increased the rain use efficiency significantly compared to trees and field crops grown solely. Karkadeh appears to be more appropriate for intercropping with A. senegal than sorghum and particularly recommendable in combination with low tree density. Modification of tree density can be used as a management tool to mitigate competitive interaction in the intercropping system.  相似文献   

14.
Australian savannas exhibit marked seasonality in precipitation, with more than 90% of the annual total falling between October and May. The dry season is characterized by declining soil water availability and high vapor pressure deficits (up to 2.5 kPa). We used heat pulse technology to measure whole-tree transpiration rates on a daily and seasonal basis for the two dominant eucalypts at a site near Darwin, Australia. Contrary to expectations, transpiration rates were higher during the dry season than during the wet season, largely because of increased evaporative demand and the exploitation of groundwater reserves by the trees. Transpiration rates exhibited a marked hysteresis in relation to vapor pressure deficit, which was more marked in the dry season than in the wet season. This result may be attributable to low soil hydraulic conductivity, or the use of stored stem water, or both. Tree water use was strongly correlated with leaf area and diameter at breast height and there were no differences in transpiration between the species studied. These results are discussed in relation to scaling tree water use to stand water use.  相似文献   

15.
This paper describes a study into the influences of spacing on the early performance and biomass production of Gliricidia sepium in an alley cropping system in southern Sierra Leone. Four between-row spacings of 2, 4, 6 and 8 m were combined with three within-row spacings (0.25, 0.50 and 1.00m) in a split plot experimental design.Survival, tree height and leaf nitrogen content were not affected by between- or within-row spacings. For the other parameters measured, namely root-collar diameter, branch production, total biomass and nitrogen yields per hectare, it was found that for equivalent tree densities, the lower the rectangularity of planting, the better the performance of the individual trees, and consequently the greater the yields per hectare.Total biomass production per unit area was, expectedly, greatest where the spacings between hedgerows were closest, while production per plant decreased with closer within-row spacings. The total fresh and dry weights of leaves and stems, as well as leaf nitrogen yields per unit area were strongly influenced by between-row spacing and less so by within-row spacing.  相似文献   

16.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

17.
We tested the hypothesis that shallow-rooted crops and deep-rooted trees will share the available water in a complementary manner, when grown together, in a field trail in the Turkana district of northern Kenya during 1994 to 1996. Such studies have been few in dryland agroforestry. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop) on total biomass production and their interactions were tested. In 1996 Sorghum bicolor (L.) Moench was used during the first vegetation period and Vigna unguiculata (L.) Walp. during the second. We used naturally generated runoff water for irrigation to supplement low rainfall amounts typical for the area. High biomass production (> 13 t ha–1 over a two year period) was observed irrespective of intercropping of pruned trees or sole tree stands. Although the pruning treatment reduced total tree biomass yields by a quarter, the introduction of annual intercrops after the pruning of trees outweighed this loss. The yields of the intercrops in the pruned tree treatments were similar to their yields when grown as monocrops. The calculation of land equivalent ratios showed overyielding for intercropped, pruned systems. The high values for LER (1.36 at low and 1.47 at high density of trees) indicate that there is complementarity in resource use between the different species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Forage and wood yield of Acacia cyanophylla, also known as Acacia saligna, was studied in a 300–400 mm precipitation zone in Tunisia. Yields were measured during and after drought. This short (2–8 m) evergreen leguminous tree is used as a forage drought reserve in frost free regions where mean annual precipitation exceeds 250 mm. The standing crop of leafy forage builds up year after year for at least four years or until the tree is cut. It rapidly regrows after cutting from coppice shoots. The leaves provide high protein forage for sheep and goats during the long dry summer season typical of the Mediterranean climate as well as emergency forage during drought. The tree is used to stabilize moving sand dunes, and as a windbreak to protect cropland. It also provides fuelwood and increasaes soil nitrogen by fixation. The need for supplemental irrigation during establishment is a major constraint. Research in the 350 mm precipitation zone of Tunisia found 3.2 year old trees to yield over 1400 kg of forage standing crop per hectare after a severe drought. Trees harvested at 2.5 years of age in May, during the worst drought in over 30 years, yielded a standing forage crop of 724 kg per hectare. Forage regrowth 8 months after cutting and 4 months after rains returned was 700 kg/ha. The forage standing crop for trees harvested only once during the 3.2 year period was double the amount of forage regrowth from trees harvested the previous year, but mean annual forage yield similar. This demonstrates that it is possible for forage to be conserved as a living forage reserve for later use during drought. Total wood yield was only 1621 kg/ha for trees cut twice compared to 3683 kg/ha for trees cut only once. Annual cutting will substantially reduce the amount of forage available during drought and reduce the production of fuelwood. It may also reduce the vigor, productivity and life of the tree. Acacia cyanophylla alley cropped on cereal farmland can protect the soil from erosion, protect the associated crop from wind damage, fix nitrogen, provide fuelwood and provide a reserve of high quality forage for use during drought. This work was supported by the Government of Tunisia and the U.S.A.I.D. Tunisia Range Development and Management Project (664-0312.8).  相似文献   

19.
We examined sources of water and daily and seasonal water use patterns in two riparian tree species occupying contrasting niches within riparian zones throughout the wet-dry tropics of northern Australia: Corymbia bella Hill and Johnson is found along the top of the levee banks and Melaleuca argentea W. Fitzg. is restricted to riversides. Patterns of tree water use (sap flow) and leaf water potential were examined in four trees of each species at three locations along the Daly River in the Northern Territory. Predawn leaf water potential was higher than -0.5 MPa throughout the dry season in both species, but was lower at the end of the dry season than at the beginning of the dry season. Contrary to expectations, predawn leaf water potential was lower in M. argentea trees along the river than in C. bella trees along the levees. In contrast, midday leaf water potential was lower in the C. bella trees than in M. argentea trees. There were no seasonal differences in tree water use in either species. Daily water use was lower in M. argentea trees than in C. bella trees. Whole-tree hydraulic conductance, estimated from the slope of the relationship between leaf water potential and sap flow, did not differ between species. Xylem deuterium concentrations indicated that M. argentea trees along the riverbank were principally reliant on river water or shallow groundwater, whereas C. bella trees along the levee were reliant solely on soil water reserves. This study demonstrated strong gradients of tree water use within tropical riparian communities, with implications for estimating riparian water use requirements and for the management of groundwater resources.  相似文献   

20.
对金沙江干热河谷区8个造林树种的有关生理生态特性进行了研究。结果表明:相思类树种在旱季水分自然饱和亏缺较大,乡土树种坡柳和3种桉树则是雨季水分亏缺较大,具有WSD高而RWC低的植物同样具有很强的抗旱能力;比叶面积增大是植物提高抗旱能力的一个表现方面,但增加干物质积累、提高细胞质浓度也是途径之一;干热逆境可造成叶绿素含量降低,雨季叶绿素含量有较大提高,叶绿素a/b值也随之得到提高;参试树种的糖分含量旱季比雨季高,除马占相思外,其它树种淀粉与糖的比率则旱季比雨季低;在干热逆境胁迫下,7个树种(除尾叶桉)的游离脯氨酸含量有不同程度增加,旱季植株易出现萎蔫现象,有部分或较多叶片脱落的树种积累的游离脯氨酸较多。除造林效果较差的马占相思与其它7个树种有较多差异外,造林效果较好的7个树种在生理生态变化方面有较多相似性;同时,同类树种间有明显的一致性;乡土树种坡柳则在某些方面更近似于相思类树种,在某些方面又近似于桉树类树种;除马占相思外,3个相思类、3个桉树类树种与乡土树种坡柳同样在金沙江干热河谷区表现出较强的生态适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号