首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions.  相似文献   

2.
The chemical composition, main physicochemical properties and thermal stability of oil extracted from Acacia senegal seeds were evaluated. The oil, moisture and the ash contents of the seeds were 9.80%, 6.92% and 3.82%, respectively. Physicochemical properties of the oil were iodine value, 106.56 g/100 g of oil; saponification value, 190.23 mg KOH/g of oil; refractive index (25 °C), 1.471; unsaponifiable matter, 0.93%; acidity, 6.41% and peroxide value, 5.43 meq. O2/kg of oil. The main fatty acids in the oil were oleic acid (43.62%) followed by linoleic acid (30.66%) and palmitic acid (11.04%). The triacylglycerols (TAGs) with equivalent carbon number ECN 44 (34.90%) were dominant, followed by TAGs ECN 46 (28.19%), TAGs ECN 42 (16.48%) and TAGs ECN 48 (11.23%). The thermal stability analysed in a normal oxidizing atmosphere showed that the oil decomposition began at 268.6 °C and ended at 618.5 °C, with two stages of decomposition at 401.5 °C and 576.3 °C. According to these results, A. senegal seed oil has physicochemical properties, fatty acids composition and thermal characteristics that may become interesting for specific applications in several segments of food and non-food industries.  相似文献   

3.
The marine oleaginous diatom Fistulifera solaris JPCC DA0580 is a candidate for biodiesel production because of its high lipid productivity. However, the substantial eicosapentaenoic acid (EPA) content in this strain would affect the biodiesel quality. On the other hand, EPA is also known as the essential health supplement for humans. EPAs are mainly incorporated into glycerolipids in the microalgal cell instead of the presence as free fatty acids. Therefore, the understanding of the EPA biosynthesis including the incorporation of the EPA into glycerolipids especially triacylglycerol (TAG) is fundamental for regulating EPA content for different purposes. In this study, in order to identify the biosynthesis pathway for the EPA-containing TAG species, a lipidomic characterization of the EPA-enriched polar lipids was performed by using direct infusion electrospray ionization (ESI)-Q-TRAP-MS and MS/MS analyses. The determination of the fatty acid positional distribution showed that the sn-2 position of all the chloroplast lipids and part of phosphatidylcholine (PC) species was occupied by C16 fatty acids. This result suggested the critical role of the chloroplast on the lipid synthesis in F. solaris. Furthermore, the exclusive presence of C18 fatty acids in PC highly indicated the biosynthesis of EPA on PC. Finally, the PC-based acyl-editing and head group exchange processes were proposed to be essential for the incorporation of EPA into TAG and chloroplast lipids.  相似文献   

4.
Triacylglycerol-estolides are components of the storage oil of certain plant and fungal species and are generally associated with the presence of fatty acids containing hydroxyl groups. These unusual acyl-glycerols can easily go undetected when oils are analyzed by gas chromatography of fatty acid methyl esters, or by thin layer chromatography if the TAG-estolides and TAG have similar polarity. We describe the detection of TAG-estolides in intact seeds of Lesquerella lyrata and whole sclerotia of the ergot fungus Claviceps purpurea using 1H MAS-NMR for nondestructive analysis. We also conducted analysis of small amounts of oil by MALDI-TOF MS to clearly show the presence of TAG-estolides and to rapidly characterize their acyl composition. The matrix used in this work was 2,4,6-trihydroxyacetophenone (THAP) made up in sodium chloride-saturated solvent. We were able to confirm the presence of TAG-estolides with no free hydroxyl groups in the fungal oil, and TAG-estolides with free hydroxyl groups in the oil of L. lyrata. The development of a technique for the rapid identification of TAG-estolides in oil samples will simplify the detection of these novel lipids in plant and fungal species.  相似文献   

5.
Ocean warming and acidification are current global environmental challenges impacting aquatic organisms. A shift in conditions outside the optimal environmental range for marine species is likely to generate stress that could impact metabolic activity, with consequences for the biosynthesis of marine lipids. The aim of this study was to investigate differences in the lipid content of Dicathais orbita exposed to current and predicted future climate change scenarios. The whelks were exposed to a combination of temperature and CO2-induced acidification treatments in controlled flowthrough seawater mesocosms for 35 days. Under current conditions, D. orbita foot tissue has an average of 6 mg lipid/g tissue, but at predicted future ocean temperatures, the total lipid content dropped significantly, to almost half. The fatty acid composition is dominated by polyunsaturated fatty acids (PUFA 52%) with an n-3:6 fatty acid ratio of almost 2, which remains unchanged under future ocean conditions. However, we detected an interactive effect of temperature and pCO2 on the % PUFAs and n-3 and n-6 fatty acids were significantly reduced by elevated water temperature, while both the saturated and monounsaturated fatty acids were significantly reduced under increased pCO2 acidifying conditions. The present study indicates the potential for relatively small predicted changes in ocean conditions to reduce lipid reserves and alter the fatty acid composition of a predatory marine mollusc. This has potential implications for the growth and survivorship of whelks under future conditions, but only minimal implications for human consumption of D. orbita as nutritional seafood are predicted.  相似文献   

6.
In most microalgal species, triacyglycerols (TAG) contain mostly saturated and monounsaturated fatty acids, rather than PUFA, while PUFA-enriched oil is the form most desirable for dietary intake. The ability of some species to produce LC-PUFA-enriched oil is currently of specific interest. In this work, we investigated the role of sodium bicarbonate availability on lipid accumulation and n-3 LC-PUFA partitioning into TAG during batch cultivation of Pavlova lutheri. Maximum growth and nitrate uptake exhibit an optimum concentration and threshold tolerance to bicarbonate addition (~9 mM) above which both parameters decreased. Nonetheless, the transient highest cellular lipid and TAG contents were obtained at 18 mM bicarbonate, immediately after combined alkaline pH stress and nitrate depletion (day nine), while oil body and TAG accumulation were highly repressed with low carbon supply (2 mM). Despite decreases in the proportions of EPA and DHA, maximum volumetric and cellular EPA and DHA contents were obtained at this stage due to accumulation of TAG containing EPA/DHA. TAG accounted for 74% of the total fatty acid per cell, containing 55% and 67% of the overall cellular EPA and DHA contents, respectively. These results clearly demonstrate that inorganic carbon availability and elevated pH represent two limiting factors for lipid and TAG accumulation, as well as n-3 LC-PUFA partitioning into TAG, under nutrient-depleted P. lutheri cultures.  相似文献   

7.
Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.  相似文献   

8.
Bacterial endotoxin lipopolysaccharide (LPS)-induced sepsis is a critical medical condition, characterized by a severe systemic inflammation and rapid loss of muscle mass. Preventive and therapeutic strategies for this complex disease are still lacking. Here, we evaluated the effect of omega-3 (n-3) polyunsaturated fatty acid (PUFA) intervention on LPS-challenged mice with respect to inflammation, body weight and the expression of Toll-like receptor 4 (TLR4) pathway components. LPS administration induced a dramatic loss of body weight within two days. Treatment with n-3 PUFA not only stopped loss of body weight but also gradually reversed it back to baseline levels within one week. Accordingly, the animals treated with n-3 PUFA exhibited markedly lower levels of inflammatory cytokines or markers in plasma and tissues, as well as down-regulation of TLR4 pathway components compared to animals without n-3 PUFA treatment or those treated with omega-6 PUFA. Our data demonstrate that n-3 PUFA intervention can suppress LPS-induced inflammation and weight loss via, at least in part, down-regulation of pro-inflammatory targets of the TLR4 signaling pathway, and highlight the therapeutic potential of n-3 PUFA in the management of sepsis.  相似文献   

9.
The utilization of Hura crepitans seed oil in the formulation of alkyd resins was investigated using a two-stage alcoholysis-polyesterification method. The percentage yield of the oil was 36.4%; and the physicochemical characterization revealed that the seed oil is an unsaturated semi-drying oil. The fatty acid profile of the oil showed that it contains linoleic acid (81.6%) as the most abundant fatty acid, and two other fatty acids: palmitic acid (16.92%) and stearic acid (1.76%). Short (I), medium (II) and long (III) oil alkyds were synthesized using the oil, glycerol and phthalic anhydride in different ratios. Properties of the three prepared samples of H. crepitans seed oil alkyds having oil content of 30% (I), 50% (II), and 65% (III) were evaluated. The alkyd resins synthesized compared favourably with the commercially available alkyd resin. The presence of unsaturation in the oil was confirmed by infra-red peak at 2930 cm−1 attributed to CC stretch. The infra-red peaks of the sample also compared well with that of the commercial sample indicating that H. crepitans seed oil has been successfully converted to alkyd resin. Evaluation of prepared alkyds by determination of acid values, solubility in butanol and toluene, resistance of dry film to acid, alkali and water, and drying time revealed that H. crepitans seed oil is a potential raw material for the coating industry.  相似文献   

10.
Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p < 0.05) and IL-8 (p < 0.05) while that of P. lutheri inhibited IL-6 (p < 0.01) production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1) by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.  相似文献   

11.
In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae.  相似文献   

12.
The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.  相似文献   

13.
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.  相似文献   

14.
Osteoarthritis (OA) typically generates pain, reduced mobility and reduced quality of life. Most conventional treatments for osteoarthritis, such as non-steroidal anti-inflammatory drugs (NSAIDs) and simple analgesics, have side effects. PCSO-524™, a non polar lipid extract from the New Zealand Green Lipped Mussel, is rich in omega-3 fatty acids and has been shown to reduce inflammation in both animal studies and patient trials. This OA trial examined pain relief changes in relation to quality of life and safety of use for OA patients who took PCSO-524™ compared with patients who took fish oil (containing an industry standard EPA-18% and DHA-12% blend). PCSO-524™ patients showed a statistically significant improvement compared with patients who took fish oil. There was an 89% decrease in their pain symptoms and 91% reported an improved quality of life. Patients treated with fish oil showed significantly less improvement and a greater level of physical discomfort during the study. These results suggest that PCSO-524™ might offer a potential alternative complementary therapy with no side effects for OA patients.  相似文献   

15.
Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) are recommended for management of patients with wide-ranging chronic diseases, including coronary heart disease, rheumatoid arthritis, dementia, and depression. Increased consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended by many health authorities to prevent (up to 0.5 g/day) or treat chronic disease (1.0 g/day for coronary heart disease; 1.2–4 g/day for elevated triglyceride levels). Recommendations for dietary intake of LC n-3 PUFAs are often provided for α-linolenic acid, and for the combination of EPA and DHA. However, many studies have also reported differential effects of EPA, DHA and their metabolites in the clinic and at the laboratory bench. The aim of this article is to review studies that have identified divergent responses to EPA and DHA, and to explore reasons for these differences. In particular, we review potential contributing factors such as differential membrane incorporation, modulation of gene expression, activation of signaling pathways and metabolite formation. We suggest that there may be future opportunity to refine recommendations for intake of individual LC n-3 PUFAs.  相似文献   

16.
The diatom Phaeodactylum is rich in very long chain polyunsaturated fatty acids (PUFAs). Fatty acid (FA) synthesis, elongation, and desaturation have been studied in depth in plants including Arabidopsis, but for secondary endosymbionts the full picture remains unclear. FAs are synthesized up to a chain length of 18 carbons inside chloroplasts, where they can be incorporated into glycerolipids. They are also exported to the ER for phospho- and betaine lipid syntheses. Elongation of FAs up to 22 carbons occurs in the ER. PUFAs can be reimported into plastids to serve as precursors for glycerolipids. In both organelles, FA desaturases are present, introducing double bonds between carbon atoms and giving rise to a variety of molecular species. In addition to the four desaturases characterized in Phaeodactylum (FAD2, FAD6, PtD5, PtD6), we identified eight putative desaturase genes. Combining subcellular localization predictions and comparisons with desaturases from other organisms like Arabidopsis, we propose a scheme at the whole cell level, including features that are likely specific to secondary endosymbionts.  相似文献   

17.
Some secondary metabolites of plants function as antimicrobial products against phytopathogens and constitute an increasingly important class of pesticides. In the present study, the essential oil of Asarum heterotropoides var. mandshuricum was analyzed by GC/MS and its antimicrobial activity was evaluated against five phytopathogenic fungi. Major components of the oil were methyleugenol (59.42%), eucarvone (24.10%), 5-allyl-1,2,3-trimethoxybenzene (5.72%), and 3,7,7-trimethylbicyclo(4.1.0)hept-3-ene (4.93%). The essential oil and the most abundant component, methyleugenol, were separately assayed for inhibition of 5 pathogens: Alternaria humicola, Colletotrichum gloeosporioides, Rhizoctonia solani, Phytophthora cactorum and Fusarium solani. Both the oil and methyleugenol strongly inhibited the growth of the test pathogens (IC50 values <0.42 μg ml−1) except F. solani, with the best activity against P. cactorum (IC50 values = 0.073 and 0.052 μg ml−1, respectively). It is concluded that the essential oil of A. heterotropoides var. mandshuricum has a broad antiphytopathogenic spectrum, and that methyleugenol is largely responsible for the bioactivity of the oil. The mode of action of methyleugenol against P. cactorum is discussed based on changes in the mycelial ultrastructure.  相似文献   

18.
The chemical composition of the lipophilic extracts of the inner and outer bark fractions of Eucalyptus grandis and Eucalyptus urograndis (E. grandis × Eucalyptus urophylla) cultivated in Brazil and Eucalyptus maidenii, cultivated in Portugal was studied by gas chromatography-mass spectrometry. The extracts were shown to be mainly composed of triterpenic compounds (along with mono and sesquiterpenes in E. maidenii) followed smaller amounts of fatty acids, fatty alcohols, and aromatic compounds.Triterpenic acids (mainly ursolic, betulinic and oleanolic acids), are particularly abundant in outer barks representing 5.2 g/kg, 5.7 g/kg and 9.3 g/kg in E. urograndis, E. grandis and E. maidenii outer barks, respectively. Although these compounds were found in considerably smaller amounts than those previously reported for Eucalyptus globulus, the total amounts of bark generated every year in South American pulp mills using E. urograndis and E. grandis, as well as the growth potential of E. maidenii plantations, the bark residues from these species are obvious candidates for the extraction of valuable triterpenic compounds.  相似文献   

19.
Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.  相似文献   

20.
The potential of near-infrared reflectance spectroscopy (NIRS) to estimate the oil content, fatty acid composition, and protein content of Jatropha curcas seeds was studied. Seventy-four intact kernels from various sources were scanned by NIRS. All samples were analyzed for oil content (hexane extractions), fatty acid composition (gas chromatography), and protein content (Kjeldahl). Calibration equations were developed for oil content, individual fatty acids (oleic C18:1, linoleic C18:2, stearic C18:0 and palmitic C16:0), and protein content. The performance of the calibration equations was evaluated through external and cross-validation. The results showed that NIRS was a reliable, accurate and nondestructive technique to estimate oil and protein contents, as well as oleic and linoleic fatty acid concentrations in J. curcas kernels; NIRS provides a rapid, simple, and cost-effective alternative method for screening intact J. curcas kernels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号