首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The influence of weighting agents and sucrose on gravitational separation in 1 wt % oil-in-water emulsions was studied by measuring changes in the intensity of backscattered light from the emulsions with height. Emulsions with different droplet densities were prepared by mixing weighting agents [brominated vegetable oil (BVO), ester gum (EG), damar gum (DG), or sucrose acetate isobutyrate (SAIB)] with soybean oil prior to homogenization. Sedimentation or creaming occurred when the droplet density was greater than or lower than the aqueous phase density, respectively. The weighting agent concentrations required to match the oil and aqueous phase densities were 25 wt % BVO, 55 wt % EG, 55 wt % DG, and 45 wt % SAIB. The efficiency of droplet reduction during homogenization also depended on weighting agent type (BVO > SAIB > DG, EG) due to differences in oil phase viscosity. The influence of sucrose (0-13 wt %) on the creaming stability of 1 wt % soybean oil-in-water emulsions was also examined. Sucrose increased the aqueous phase viscosity (retarding creaming) and increased the density contrast between droplets and aqueous phase (accelerating creaming). These two effects largely canceled one another so that the creaming stability was relatively insensitive to sucrose concentration.  相似文献   

2.
The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0-0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0-0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (≤0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel-Bulkley model; the Herschel-Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion.  相似文献   

3.
Recently we reported that the release profile of cinnamaldehyde from a sugar-free chewing gum was correlated to the release of the sugar alcohol phase or was not in agreement with the log P model. The objective of this study was therefore to investigate mechanisms of cinnamaldehyde release from a sugar-free chewing gum; p-cresol (similar log P value) was also analyzed for comparison. Breath analysis of the chewing gum samples over an 8 min consumption period reported that the maximum concentration of cinnamaldehyde was 2- to 3-fold higher during the initial phase of mastication in comparison to the later phase, whereas the concentration of p-cresol was relatively constant over these two time periods. By contrast the release profile of cinnamaldehyde from a flavored gum base (no sugar alcohol phase) was constant over the 8 min consumption period and similar to the release of cresol from the flavored gum base. On the basis of tandem mass spectrometry, cinnamaldehyde was reported to react with sorbitol and generate hemiacetal reaction products that were not stable under slight alkaline conditions; it was suggested to revert back to free cinnamaldehyde and sugar alcohol in the oral cavity. The increased polarity of these transient cinnamaldehyde-sorbitol hemiacetal reaction products would result in a more rapid release rate of cinnamaldehyde than would be typically predicted based on the affinity of cinnamaldehyde for the gum base.  相似文献   

4.
Waxy maize and potato starches were dispersed in pH 6.0 and 8.0 aqueous solutions (1%) of an ionic gum (sodium alginate, sodium carboxymethylcellulose, and xanthan). The mixture was dried at 45°C overnight and then heat‐treated 2 hr at 130°C. Effects on the paste viscosity of the products in a pH 7.0 buffer were examined. Heating with sodium alginate or sodium carboxymethylcellulose (CMC) increased the paste viscosity of waxy maize starch but reduced that of potato starch. In both starches, xanthan effected greater viscogram changes than did sodium alginate or CMC. Use of xanthan in the treatment produced products with restricted granular swelling and increased shear stability of the pastes. The pH of the starch‐gum mixtures affected the thermally induced viscosity changes. Mild acidity (pH 6.0) effected a viscosity decrease for the heat‐treated starch product, whereas alkalinity (pH 8.0) raised the viscosity regardless of the presence of gum. But pH 6 before heat treatment was favored for viscosity increase by sodium alginate, whereas pH 8 gave a greater increase in viscosity when xanthan was used. By using gum mixtures such as xanthan‐alginate and xanthan‐CMC, both viscosity increase and good shear‐stability were achieved.  相似文献   

5.
The structural characteristics of the gum exudate of Acacia senegal (gum arabic) have been investigated by monitoring the composition and physicochemical properties before and after treatment with proteolytic enzyme and various alkaline systems. Molecular mass ( M w) and radius of gyration ( R g) measurements were performed using gel permeation chromatography (GPC) coupled to refractive index, UV absorbance, and multiangle light scattering detectors and indicated that the macromolecules present have a compact structure. It was found that treatment with proteolytic enzyme caused the arabinogalactan-protein component (AGP) with average molecular mass approximately 2 x 10 (6) Da to degrade, yielding material of molecular mass approximately 4 x 10 (5) Da, whereas the bulk of the material corresponding to the protein-deficient arabinogalactan component (AG) with molecular mass 4 x 10 (5) remained unaffected. Barium hydroxide was found to hydrolyze the polysaccharide component (AG) itself in addition to the proteinaceous component as demonstrated in control experiments using dextran. However, sodium borohydride/sodium hydroxide treatments were unable to hydrolyze dextran and were assumed to hydrolyze only the proteinaceous component of gum arabic. The AGP component was completely degraded, yielding material of molecular mass approximately 4.5 x 10 (4) Da. It has been concluded, therefore, that the enzyme did not fully hydrolyze all of the protein present and that the AGP component of gum arabic consists of carbohydrate blocks of approximately 4.5 x 10 (4) Da linked to a polypeptide chain consistent with the wattle blossom structure. Because the AGP was degraded to differing extents using a mild and more severe sodium borohydride/sodium hydroxide treatment, it was concluded that the polysaccharide moieties were linked through both O-serine and O-hydroxyproline residues. The gum arabic sample was deglycosylated by treatment with anhydrous hydrogen fluoride and revealed the presence of two putative core proteins of approximately 3 x 10 (4) and approximately 5 x 10 (3) Da, respectively, which correspond to proteins of approximately 250 and 45 amino acids in length. A new model for the structure of the AGP component has been proposed.  相似文献   

6.
The thermal and rheological properties of sago starch have been studied in the presence of various concentrations of locust bean gum and guar gum of various molecular masses. At the concentrations studied (<1%) the galactomannans gave rise to only a very slight increase in the gelatinization temperature (up to 0.6 degrees C), and the gelatinization enthalpy remained constant within experimental error. For the low molecular mass galactomannans, depending on the concentration, the storage modulus, G', of the mixtures remained constant or actually decreased, and tan delta remained very low (0.01-0.03 at 0.1 Hz), indicating strong elastic gels. For the higher molecular mass samples G' increased significantly; however, the loss modulus, G' ', increased proportionally to a greater extent, and at 1% galactomannan tan delta was approximately 0.20 at 0.1 Hz, indicating a reduction in elastic character. The systems were shown to undergo phase separation, and the variations in rheological properties have been discussed in the context of their phase behavior and the relative rates of the phase separation and gelation processes. The presence of galactomannans significantly improved the freeze-thaw stability.  相似文献   

7.
采用胶体磨湿法粉碎工艺制备得到细粒魔芋精粉,在该细粒魔芋精粉中添加10%(w/w)黄原胶制备得到复合胶。对该复合胶及细粒魔芋精粉水溶胶的流变特性以及两者在冰淇淋中的应用进行了比较研究。结果表明,与正常粒度魔芋精粉比较,细粒魔芋精粉的溶胀速度快,溶胶粘度低;相同浓度与测定条件下,复合溶胶的粘度数倍高于细粒魔芋精粉溶胶的粘度,切稀现象也比同粘度魔芋溶胶更为明显;以参考用量为0.25%的复合胶作为稳定剂应用于冰淇淋中时,也同样使冰淇淋浆料粘度显著提高,并导致其产生明显的切稀现象,相应冰淇淋制品的粘稠感明显低于以  相似文献   

8.
Barley and oat β‐glucans of low viscosity form reversible gels when prepared in sufficiently high concentrations. Solutions of three barley β‐glucan gums differing in molecular weight and thus in viscosity were prepared at 1.0, 2.5, or 5.0% (w/w) concentration levels. Medium‐ and high‐viscosity gums were prepared in a pilot plant (PP) and laboratory (LAB), respectively. Low‐viscosity (LV) gum was extracted in the laboratory at pH 7, which allowed for native enzymatic activity and decreased molecular weight. Network formation was monitored overnight through changes in storage (G′) and loss (G″) moduli. The strength of the formed network was determined from oscillatory rheological measurements by increasing the strain from 2 to 100%. Findings demonstrate that gelation of β‐glucan is molecular weight dependent and practically an instantaneous process for low‐viscosity gum solutions at concentrations of ≤5% gum (or ≤4% β‐glucan), levels lower than previously anticipated. The purity of β‐glucan also seems to affect gelation rate. Better understanding of the β‐glucan gelation behavior is important for its functionality in both food product applications and physiological mechanisms of its health benefits.  相似文献   

9.
打磨法提取亚麻籽胶粉的工艺   总被引:4,自引:2,他引:2  
为提高亚麻籽综合加工效益,解决现有亚麻籽胶生产存在问题,在对亚麻籽结构充分了解基础上,利用亚麻籽胶分布在亚麻籽外表面的结构特点,提出采用高速旋转砂辊对亚麻籽表面进行打磨提取亚麻籽胶粉的技术设想,并借助实验砂辊碾米机开展研究。结果表明:采用砂辊打磨亚麻籽在控制亚麻籽装填率在40%~80%时打磨均能够顺利获取亚麻籽胶粉,说明打磨提取亚麻籽胶粉技术可行;在装填率40%、打磨时间200 s脱脂胶粉得率最高达6.06%±0.51%;在装填率80%情况下,打磨设备提取的脱脂亚麻籽胶粉产量最高,打磨时间200 s,胶粉黏度测定值为(5 200±680) mPa.s,高于现有市售干法亚麻籽胶产品黏度而低于市售湿法亚麻籽胶产品黏度;通过对比检测打磨前后压榨亚麻籽油的色泽、气滋味、酸价和过氧化物指标,打磨提取亚麻籽胶粉过程对亚麻籽压榨油品质无明显影响。采用先打磨提取部分亚麻籽胶粉再进行压榨制油加工,将增加亚麻籽加工产品品种,提高加工效益。  相似文献   

10.
Conjugation of the milk protein sodium caseinate and a protein-containing polysaccharide, gum arabic, was achieved through the use of the cross-linking enzyme transglutaminase. The extent of conjugation was monitored by size exclusion separation coupled with a multiangle laser light scattering detector. The elution times of gum arabic solutions incubated with transglutaminase were unchanged over time, whereas incubation of sodium caseinate with transglutaminase resulted in shorter elution times as reaction time increased, indicating the formation of cross-linked caseinate polymers. However, when mixtures of caseinate and gum arabic were incubated with transglutaminase, the elution times were decreased markedly, indicating conjugation between the protein and polysaccharide. The molecular masses of the conjugates increased from approximately 950 to 1600 kDa. This method of protein-polysaccharide conjugation offers noticeable advantages over previously used methods, and the conjugates produced may exhibit unique functional properties.  相似文献   

11.
The influence of xanthan gum concentration on the physicochemical stability of model oil-in-water emulsions prepared with egg white protein at pH 3.8 and containing 150 mM NaCl was investigated by following droplet aggregate formation, rheological changes, and serum separation with storage time. Egg white emulsions were more strongly flocculated and exhibited higher stability against creaming than those of yolk, irrespective of the presence or absence of xanthan. Depletion effects, originating from the presence in the continuous phase of the emulsions of nonadsorbing xanthan molecules, intensified droplet-droplet flocculation effects and resulted in large droplet flocs. At relatively low xanthan contents, the emulsions exhibited higher stability against creaming compared to the respective control emulsions probably due to the formation of a continuous droplet aggregate network structure. At higher xanthan contents, less extensive droplet interactions, due to slowly evolving microstructure of phase-separated xanthan-rich and xanthan-depleted regions, resulted in emulsions exhibiting increased stability against creaming. The role of interactions between protein molecules adsorbed on neighboring droplets in these changes and their effect on emulsion aging are discussed.  相似文献   

12.
The possible relationships between the main emulsion components (namely, Arabic gum, xanthan gum, and orange oil) and the physicochemical properties of orange beverage emulsion were evaluated by using response surface methodology. The physicochemical emulsion property variables considered as response variables were emulsion stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility. The independent variables had the most and least significant ( p < 0.05) effect on viscosity and zeta-potential, respectively. The quadratic effect of orange oil and Arabic gum, the interaction effect of Arabic gum and xanthan gum, and the main effect of Arabic gum were the most significant ( p < 0.05) effects on turbidity loss rate, viscosity, viscosity ratio, and mobility, respectively. The main effect of Arabic gum was found to be significant ( p < 0.05) in all response variables except for turbidity loss rate. The nonlinear regression equations were significantly ( p < 0.05) fitted for all response variables with high R (2) values (>0.86), which had no indication of lack of fit. The results indicated that a combined level of 10.78% (w/w) Arabic gum, 0.56% (w/w) xanthan gum, and 15.27% (w/w) orange oil was predicted to provide the overall optimum region in terms of physicochemical properties studied. No significant ( p > 0.05) difference between the experimental and the predicted values confirmed the adequacy of response surface equations.  相似文献   

13.
Reduced fat (RF) mayonnaise was formulated by replacing part of the oil with gelatinized rice starch and xanthan gum, and the effect of their inclusion on the rheological properties was investigated. In the RF mayonnaise preparation, oil or fat was partially replaced by modified waxy rice starch paste at levels of 10, 30 (SP30), and 50% (SP50) of total oil used. Xanthan gum was added to SP30 and SP50 at the level of 0.2% each, designated SP30G and SP50G. Excellent emulsion stability was maintained until 30% of oil was replaced. The flow behavior of the RF mayonnaises was thixotropic, which indicates a decrease in viscosity with increased shear rate. Both yield stress and consistency index decreased with increasing starch paste content. The addition of xanthan gum increased the yield stress and consistency index. The elastic modulus (G′) of the RF mayonnaises was always greater than the loss modulus and decreased with increasing starch paste content. The SP30G sample exhibited a higher G′ value despite its low oil content. The SP30G mayonnaise formulated contained 23% lower total calories, compared with full‐fat mayonnaise, and exhibited similar rheological properties to that of commercial RF mayonnaise.  相似文献   

14.
Influence of fat crystallization on the stability of flocculated emulsions   总被引:1,自引:0,他引:1  
Various degrees of flocculation were induced in a 20 wt % n-hexadecane and confectionery-coating fat emulsion by adding xanthan gum (0-0.3 wt %). The emulsions were temperature cycled (40 to -10 to 40 to -10 degrees C) in a differential scanning calorimeter. The emulsified and de-emulsified fat crystallized at different temperatures, and the ratio of the two enthalpies was used to calculate the proportion of de-emulsified fat and hence the extent of breakdown of the emulsion. The n-hexadecane droplets were stable to temperature cycling, whereas the confectionery-coating fat destabilized to a greater or lesser extent. The maximum destabilization of the confectionery-coating fat occurred at those concentrations of xanthan required to induce creaming.  相似文献   

15.
Organic farming and new trends toward the use of safer insecticides for crop protection have created new opportunities for botanical insecticides in the pesticide market. In this study, the botanical insecticide nicotine was formulated as a dispersion (20 vol %) stabilized by sodium caseinate, with nicotine oleate solutions used as the dispersed phase. The formulation showed a phase transition on increasing the nicotine oleate concentration, being an emulsion at 7.5-8.2 wt %, a suspo-emulsion at 8.2-9.7 wt %, and a suspension at 9.7-10.8 wt %. Biological activity, apparent viscosity, dispersion time, and protein surface coverage were dependent on nicotine oleate concentration. The emulsion with 8.2 wt % nicotine oleate and the suspo-emulsion with 8.7 wt % nicotine oleate were found to be the most appropriate formulations for insecticide purposes due to their high bioactivity, low viscosity, and low dispersion time. Nicotine oleate formulations showed good creaming and microbiological stability for at least 4 months without losing their biological activity.  相似文献   

16.
Data from a monitoring program on precipitation at four sites in South Korea during the period from 1993 to 1998 were analyzed for determining a time trend relationship in chemical composition of precipitation. The concentrations of nss-sulphate, ammonium and calcium were found to have decreased over time at a statistically significant level in Seoul (p<0.05). The concentration of nss-sulphate had declined by a rate of 12% per year for the period from 1993 to 1998. The concentrations of ammonium and calcium decreased by 11% and 12% per year respectively for the same period. The concurrent reduction of cation offsets the change in strong acid anion, thus the annual mean pH of precipitation has been approximately constant. In contrast to the rapid change of sulphate, the second most abundant anion, nitrate, showed no statistically significant decrease. As a result, the nitrate to nss-sulphate ratio (N/S ratio) has increased rapidly; the N/S ratio in precipitation has increased from less than 0.1 in 1985 to nearly 0.5 in 1998 at Seoul. In spite of the short monitoring period, a significant upward trend in the N/S ratio was also observed at all of the other sites suggesting that the nitrogen species contribute more to precipitation acidity throughout Korea.  相似文献   

17.
The influence of pH and iota-carrageenan concentration on the properties of beta-lactoglobulin (beta-Lg)-stabilized oil-in-water emulsions was investigated by measuring the particle charge, particle size distribution, and creaming stability. Emulsions containing droplets stabilized by beta-Lg were produced by homogenization, and then, iota-carrageenan was added. At pH 3, the droplet charge did not change for iota-carrageenan concentrations 相似文献   

18.
为能更好地指导细菌纤维素作为增稠剂应用于食品工业,进一步了解细菌纤维素水悬浮液的流变学特性,该研究首先用原子力显微镜观察了细菌纤维素水悬浮液中纤维素的形态结构和直径,然后以羧甲基纤维素溶液为对照,分别从静态和动态2方面着手,用物性测定仪和流变仪测定细菌纤维素水悬浮液的稠度、黏性指数、剪切应力、表观黏度,剪切应力和表观黏度与剪切速率的关系等特性指标。分析了稠度、黏性指数、剪切应力、表观黏度与悬浮液中细菌纤维素质量分数的关系,比较了细菌纤维素水悬浮液与羧甲基纤维素溶液的差别,结果显示:细菌纤维素的直径为60~80 nm;细菌纤维素水悬浮液中的纤维素相互缠结,呈现散乱分布的网状结构,纤维素可聚集形成平行或螺旋状的纤维束;细菌纤维素水悬浮液在质量分数为0.4%~1.2%时的稠度和黏性指数远高于相同质量分数的羧甲基纤维素钠溶液,且与质量分数呈显著的正相关关系(P0.05,R20.95);在较低剪切速率0.02~10 s-1下,悬浮液的表观黏度随剪切速率的增加呈缓慢下降的趋势,出现剪切稀化现象;当剪切应力达到屈服应力时悬浮液才发生流动,且剪切应力与剪切速率呈正相关(P0.05,R20.99),流动特性指数为1,细菌纤维素悬浮液为非牛顿流体的宾汉塑性流体。因此细菌纤维素水悬浮液做为增稠剂应用于食品工业时具有宾汉塑性流体的特征。  相似文献   

19.
The ability of enzymatically synthesized structured phosphatidylcholine (PC) containing caprylic acid to form and stabilize oil-in-water emulsions prepared with different triglycerides [medium chain triglycerides (MCT), soybean oil, and enzymatically synthesized structured lipids] was examined and compared with natural soybean PC and deoiled lecithin. Emulsions were prepared with varying oil and emulsifier concentrations. The particle size distribution, creaming stability, and viscosity were measured for the evaluation of the emulsifying properties. With an increase in the oil concentration, there was an increase in particle size, viscosity, and creaming layer. With an increase in the phospholipid (PL) concentration, there was usually a decrease in particle size and an increase in viscosity, where the emulsion stability was increased. General emulsions prepared with structured lipids resulted in smaller particle sizes as compared to MCT and soybean oil. Deoiled lecithin was able to increase the viscosity more significantly and give smaller particle sizes as compared to the other emulsifiers, thus producing more stable emulsions. However, in certain cases, structured PC was superior to deoiled lecithin and soybean PC. This observation was made for emulsions prepared with soybean oil or structured lipid at an oil/water ratio of 10:90. At an oil/water ratio of 30:70, the deoiled lecithin performed better as compared to the other PLs with all oil types. However, structured PC produced more stable emulsions as compared to natural soybean PC in MCT and soybean oil.  相似文献   

20.
The principle of mixer viscometry was utilized to determine the average shear rate in the mixing system (impeller‐cup combination) of the Rapid Visco Analyser (RVA). A relationship between the impeller Reynolds number and the power number was established with Newtonian standards. Using the matching viscosity technique and non‐Newtonian fluids consisting of various aqueous solutions of guar gum and methylcellulose, the average value of the mixer viscometer constant (k′) was 20.1/rev over speeds of 1.0–3.5 rev/sec (60–210 rpm). Hence, the average shear rate in the RVA can be estimated as 20.1 multiplied by the angular velocity given in revolutions per second. Results show the RVA system has very good potential for characterizing the rheological properties of various non‐Newtonian fluid foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号