首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Prior to the discussion on approaches to combine irrigation scheduling and water application practices, several farm irrigation performance indicators are defined and analysed. These indicators concern the uniformity of water distribution along an irrigated field and the efficiency of on-farm water application. Then, the analysis focus is on three main irrigation systems: surface, sprinkler and microirrigation. For each of these systems, the analysis concerns the main characteristics and constraints of the systems, more relevant aspects influencing irrigation performances, and approaches which could lead to a more appropriate coupling of irrigation scheduling and water application methods. Conclusions point out on the need for combined improvements in irrigation scheduling and methods, for expanding field evaluation of irrigation in farmers fields, for improved design of on-farm systems, and for quality control of irrigation equipments and design.  相似文献   

2.
微地形及沟断面形状变异性对沟灌性能影响的试验研究   总被引:1,自引:0,他引:1  
针对沟灌,研究了沟底起伏状况和沟横断面形状的空间变异性对灌水质量的影响。通过分析在河北吴桥开展的棉花沟灌试验数据,描述了灌水沟断面形状和沟底高程二因素的空间分布特征。采用田面平整精度Sd值作为评价沟底高程变化程度的指标,确定其对灌水均匀度和灌水效率的影响;采用断面形状参数p2描述灌水沟断面形状,以p2的标准差反映其空间变异性对地表水流运动和灌水质量的影响。结果表明,灌水均匀度和灌水效率均随沟底高程标准差的增大而减小;水流推进速度随断面形状参数p2标准差的增大而降低,灌水均匀度和灌水效率随p2标准差的增大而减小。因此,微地形和灌水沟断面空间变异性,对灌水均匀度和灌水效率均有显著的影响。  相似文献   

3.
Several parameters that measure the irrigation performance were analyzed for their relation to surface-irrigation design variables and yield. Application efficiency (AE), requirement efficiency (RE), uniformity coefficient (UC), deficit efficiency distribution (DED) and requirement distribution efficiency (RDE) were examined with respect to surface irrigation design variables (inflow discharge, length of the run, and time of irrigation cutoff). RE, RDE and UC were correlated with relative yield. Surface-irrigation models were used to simulate furrow and border irrigation and to determine the value of the performance irrigation parameters. A linear crop-water-production function was used to estimate yield. The RE and RDE were very well correlated with the design variables in border and furrow irrigation, and they were the parameters best correlated with the relative yield. The UC was not correlated with the design variables and gave a poor correlation with the relative yield. The AE was well correlated with the design variables.  相似文献   

4.
轻小型喷灌机组是应用比较广泛的一种喷灌机具,经过40多年的发展,轻小型喷灌机组已经具有多种机组形式,可满足各种地形条件、投资水平及劳动力状况等不同场合应用。总结了轻小型喷灌机组不同配置形式的优缺点,详细分析了国内外轻小型喷灌机组的评价指标。针对不同评价指标提出,应研究轻小型喷灌机组形式的设计和管道水力计算,通过合理的能耗评价指标,优化机组配置,以降低系统能耗。还应研究室外试验条件下机组配置参数、管道布置情况及运行条件、环境因素等因素及其交互作用对喷灌系统喷洒均匀性的影响,研究适用于轻小型移动式喷灌机组的一套综合评价理论与方法。最后提出将灰色关联法应用于轻小型喷灌机组的多因素多目标评价中,为喷灌机组比选及机组性能综合分析提供了一种有效工具。  相似文献   

5.
A spreadsheet model was developed to evaluate the performance of furrow irrigation that accounts for soil variability and requires few field measurements. The model adjusts an advance trajectory to three (advance distance, advance time) points and, similarly, it adjusts a recession trajectory to three (recession distance, recession time) points. The head of the furrow (distance = 0) is one of the points used to adjust both trajectories. It then calculates the parameters of the infiltration equation using the two-point method (based on the volume balance equation with assumed surface shape parameters). The model gives the option to enter an estimate of the soil infiltration variability in order to account for this variation when calculating irrigation performance indicators. The combination of variance technique was used for this purpose. A set of irrigation performance indicators (distribution uniformity, application efficiency, tail water ratio, deep percolation ratio and deficit coefficient) is calculated, assuming that the infiltrated water follows a normal frequency distribution. To illustrate the evaluation method, it was applied to three irrigation events conducted on a sunflower field, with 234 m long furrows spaced 0.75 m apart. The evaluations were performed in two 3-furrow sets. The application efficiency was satisfactory in the first irrigation, but low in the other two. Uniformity was high in all three irrigations. The performance indicator that was most affected by soil variability was distribution uniformity. Considering soil spatial variability was important for more realistic determination of the infiltrated water distribution, and therefore of the deep percolation, but it had less importance for the determination of the application efficiency, due to the relevance of runoff in our field application.  相似文献   

6.
The effects of irrigation methods, application rates and initial moisture content on soil water storage and surface runoff were studied in soils liable to surface crust formation during 1995–1996 at the University of Jordan Research Station near Al-Muwaqqar village. Four irrigation methods were tested (sprinkler, furrow, basin and trickle) and four application rates (6.2, 14.4, 24.4 and 28.4 mm/h). Two runs were performed (soil initially dry and soil initially wet). Basin irrigation provided the highest application efficiency followed by trickle, sprinkler and furrow irrigation methods. Entrapping water by the basin borders increased soil water storage by allowing more water to infiltrate through the surface crust. Decreasing the application rate from 28.4 to 6.2 mm/h increased soil water storage significantly in all 150 mm layers to a depth of 600 mm. If the soil was already wet, soil moisture storage decreased owing to siltation during the prewetting and formation of a surface crust and low soil water storage capacity. A sedimentary crust formed at the bottom of the furrows in the furrow irrigation treatment, which reduced soil water storage and increased surface runoff significantly owing to the reduction in infiltration. Increasing the application rate from 6.2 to 28.4 mm/h in the furrow surface irrigation treatment increased the runoff discharge 10-fold. Even with the lowest application rate the runoff coefficient under sprinkler irrigation was 20.3% indicating high susceptibility of Al-Muwaqqar soils to surface crust formation.  相似文献   

7.
动态水压供水能够有效提高坡地喷灌水量分布均匀性.为优选出满足喷灌质量要求且经济投入较少双重目标的动态水压坡地喷灌技术参数,以喷头间距、布置方式和动压参数(基础水压、振幅)等需要优化的技术参数为投入指标,以喷灌强度、喷灌均匀度、初始投资和年运行费为产出指标,应用数据包络分析法(DEA)评价决策单元(DMU)有效性,并对非有效DMU进行改进;结合对抗型交叉评价对技术参数做优劣排序,构建了动态水压坡地喷灌技术参数的优化方法.以雨鸟R5000喷头为研究对象,在苜蓿种植面积为1 hm2的坡地上(坡度为10%)进行喷灌系统田间工程设计,最终优选出交叉评价效率最大的动态水压坡地喷灌技术参数:喷头宜采用间距为8 m的正方形布置,基础水压为300 kPa,振幅为50 kPa.  相似文献   

8.
Assessing whole-field uniformity of stationary sprinkler irrigation systems   总被引:2,自引:0,他引:2  
The procedure established in the literature for the evaluation of stationary sprinkler irrigation systems is limited in space and time since it is based on a sample of precipitation taken around one sprinkler during a given period of the whole irrigation event. This procedure also ignores what happens in the soil after water infiltrates. A model of the drop trajectory and of the water distribution pattern is formulated here for simulating precipitation from single sprinklers. The operating pressure determines sprinkler flow and maximum throw. Wind and evaporation distort the distribution patterns. The water distribution of individual sprinklers is overlapped to generate precipitation over the whole field and to calculate a coefficient of uniformity. Field effective uniformity is then calculated by averaging precipitation over the extension of plant roots or water redistribution within the soil profile. Application of the model has shown the impact of system management and design, field topography and wind on irrigation uniformity. Management factors such as lateral operation time or riser inclination may account for a large part of the field precipitation variations. A rough topography may also reduce uniformity significantly. Wind speed is important when it exceeds 1.8–2 m s–1. The allowable maximum pressure loss of 20% fixed as a design criterion seems an overly strict limit when other factors may overcome pressure loss as sources of non-uniformity. The sources of non-uniformity have different scales of variation. Large-scale sources, such as lateral operation time or pressure loss, are not dampened by the crop or soil. Sources of smaller-scale variation, such as wind or inclination of the sprinkler riser, are better compensated by the crop and soil. The application of this kind of model to the design and management of sprinkler irrigation systems is discussed. Received: 9 May 1997  相似文献   

9.
【目的】研究工作压力,喷头组合间距、组合斱式和旋转速度对射流式喷头及多喷头组合喷灌均匀性系数(CU)和分布均匀系数(DU)的影响。【斱法】采用不同工作条件下单喷头和多喷头组合喷灌水量分布的动态仿真代码,对射流式喷头开展了水力性能试验;研究了射流式喷头在不同工作压力及安装高度条件下对喷灌强度、水量分布的影响;建立了水量峰值强度与工作压力的回归关系式;模拟了单喷头在正斱形和三角形组合喷灌下的空间水量分布。【结果】喷头在1.5 m安装高度、100~300 kPa压力条件下,水量峰值集中在5 mm/h附近,标准偏差(STD)为0.23。喷头在100 kPa工作压力,安装高度为1.1、1.3 m的水量峰值强度分别可高达8.9、10.5mm/h。不同工作压力下的单喷头喷灌的DU和CU标准偏差分别为15.5%、9.3%,且DU对压力的变化相对更为敏感。【结论】在实际喷灌工程中正斱形组合喷灌的间距应小于8m,三角形组合喷头之间的间距应布置在8m附近,此时的喷灌均匀度最高,单个喷灌设备覆盖范围最广,成本最低。  相似文献   

10.
针对现有灌溉系统只能实现大田经验均一灌溉、缺乏决策指导的问题,基于田间ZigBee无线网络实时采集的田间预埋水分传感器信息,提出一种基于二次平滑预测算法的变量灌溉指导数据处理方法,根据理论设定值自行调整平滑权重,使其预测数据达到最优,得到变量作业处方图;研制了基于PLC的喷灌机变量控制系统,通过模拟百分率计时器对喷灌机逐跨调节,并实时调整行走步长与速度,实现变量灌溉。田间对比试验结果表明,变量灌溉效率及节水方面均优于传统灌溉。  相似文献   

11.
为了探究射流脉冲喷头驱动板不同倾角及其对喷头水力性能的影响并找出水力性能最优驱动板倾角,采用正交试验法设计了6种不同倾角α(7°,10°,13°,16°,19°,22°)的驱动板,与副喷嘴整体加工实物,分别进行了在不同进口压力下的水力性能试验.试验采用多因素分析法,将喷头射程、喷灌均匀度、喷灌强度作为评价指标,对6组驱动板的试验结果进行分析.结果表明:在0.15~0.30 MPa的进口压力下,喷头射程(13.0~15.0 m)、进口流量(1.27~1.77 m3/h)、喷灌强度(2.38~2.51 mm/h)与驱动板倾角无关.随着驱动板倾角增大,副喷嘴喷洒水量向近处集中,喷灌均匀系数呈先增加后减小的趋势;当α为16°时,喷灌均匀系数最大,喷头的水力性能最优.  相似文献   

12.
Evaluation procedures for determining water application uniformity under center-pivot sprinkler systems have been documented in various technical publications. The so-called “catch cans” (open containers) are placed along one or more radial legs from the center of the field to obtain sample water application measurements, from which standard performance indices can be calculated. All of the published procedures for calculating indices such as the coefficient of uniformity (CU) and distribution uniformity (DU) are based on equal radial spacing of the containers, but in practice some evaluators choose to decrease the spacing toward the outer end of the leg, whereby more measurement samples are taken at locations which represent larger relative fractions of the total irrigated area. It is also common to have inadvertently non-uniform container spacing when one or more tip over during the test, or when avoiding placing a container along a wheel track at a tower. Modified equations and procedures are presented herein to correctly account for variable container spacing, along with spreadsheet macros to perform the calculations.  相似文献   

13.
The results of a 2 year study of the effect of trickle and furrow irrigation methods on hop production in a desert region in northwest United States are presented. Also discussed are the implications to hop production in areas with higher rainfall.Trickle, furrow, and cutback furrow irrigation systems and their associated methods of fertilization were evaluated in a commercial hop yard. Leaf diffusive resistance, leaf water potential, alpha and beta acid content, and yield were measured. Also monitored was the efficiency of irrigation water use and the intregration of these irrigation methods with commercial crop production practices. Trickle irrigation with fertilizer injection provided several crop management advantages but required changes in cultivation practices. In the 2nd year of study, the highest yield and quality of hop was obtained from trickle irrigated plots which received the least amounts of water, fertilizer and labor inputs.  相似文献   

14.
Zero tillage and controlled traffic have been proposed as means for more productive and sustainable irrigated farming. Both practices affect soil infiltration characteristics and, therefore, should have effects on sprinkler irrigation performance. This study compared water infiltration and runoff in three sprinkler irrigation tests performed on an alluvial loam soil at different times during a maize (Zea mays L.)–cotton (Gossypium hirstium L.) rotation under two soil managements: permanent beds with crop residue retention (PB: planting beds maintained unaltered from year to year) and conventional beds with residues incorporated with tillage (CB: disc and chisel ploughing followed by rotavator pass and bed forming every year). Traffic was controlled and two types of furrows were distinguished in both tillage systems: with (+T) and without (−T) wheel traffic. The irrigation tests were performed on maize at full cover, on bare soil just before cotton sowing and on cotton with 50% ground cover. Infiltration and runoff were affected notably by both traffic and soil management. The soil under PB infiltrated more water than under CB, and −T furrows more than +T furrows. Considering the combined treatments, −T furrows in the CB system infiltrated more water than +T furrows in the PB system. A sprinkler irrigation model for simulating water application and soil infiltration and runoff was formulated. The model was used to analyse irrigation performance under infiltration characteristic of the CB and PB systems in trafficked and non-trafficked furrows. Five irrigation performance indicators were used to assess the various combinations of tillage and traffic: Wilkox–Swailes coefficient of uniformity; application efficiency; deep percolation ratio; tail water ratio; and adequacy. The model was used to develop operation diagrams and provided guidelines for making irrigation decisions in the new controlled traffic/permanent bed system and in a standard conventional system.  相似文献   

15.
20PY2掺气喷头是以20PY2摇臂喷头结构为基础,引入气液两相流理论得到的一种喷头.以20PY2掺气喷头为研究对象,研究其低压下的喷灌效果,并对比摇臂喷头的喷灌效果.试验评价指标:平均喷灌强度、蒸发漂移量、喷灌均匀系数及分布均匀系数;变量:工作压力和组合间距.试验结果表明:与摇臂喷头相比,掺气喷头的射程变化不大,但掺气喷头的平均喷灌强度随工作压力递增,随着组合间距递减;低压下,掺气喷头在风速为1 m/s时的蒸发漂移量约为5%,其组合喷灌的最佳工作压力和组合间距分别为300 kPa和1.1R.掺气喷头喷灌强度峰值与谷值的阶梯性较好,同等数量测点的喷灌强度峰值区间和谷值区间平均值趋向于平均喷灌强度,峰值区间和谷值区间喷灌强度在灌溉总强度中的占比分别低于和高于摇臂喷头.因此,喷灌效果优于摇臂喷头.  相似文献   

16.
土壤入渗特性和田面糙率的变异性对沟灌性能的影响   总被引:2,自引:0,他引:2  
以杨凌区粘壤土和砂壤土区域进行的大田沟灌试验为基础,在假定各灌水沟内部土壤入渗特性和糙率均一的条件下,重点分析各灌水沟之间土壤入渗参数和田面糙率的不同组合对沟灌水流运动过程和灌水质量的影响,结果表明土壤入渗特性的变异性对沟灌水流推进过程和灌水质量指标影响较大,在模拟时必须充分考虑;而田面糙率的变异性对沟灌水流推进过程和灌水质量指标影响较小,可采用田块糙率均值代替各灌水沟的糙率。经实例验证,水流推进过程相对误差为7.28%,灌水效率、灌水均匀度和储水效率模拟值与实测值误差分别为5.74%、6.18%和4.07%,结果表明其模拟效果较好。  相似文献   

17.
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress.  相似文献   

18.
One of the most appropriate sprinkler systems for arid or semi-arid areas – where a great deal of irrigating water is required – are the permanent set systems and the continuous-move laterals. To know the reality of water application in this type of areas, many field evaluations of solid set systems and centre pivot irrigation were conducted in Castilla-La Mancha region (Spain). The main factors affecting water application and evaporation and drift losses with these systems (pressure, wind speed, sprinkler type, etc.) were analysed. A set of performance guidelines and recommendations for the design and management of sprinkle irrigation is presented to attain the highest uniformity and efficiency in water application in semi-arid areas. To use working pressure as low as possible, but with sprinklers that produce a great deal of middle size water drops along with night irrigation for minimising evaporation and drift losses are important aspects.  相似文献   

19.
喷头水力性能评价的属性识别模型及应用   总被引:2,自引:1,他引:2  
本文根据属性识别理论 ,探讨了喷头水力性能的综合评价模型 ,应用实例说明建模过程 ,评价结果与模糊综合评判法的评价结果基本相同 ,比较符合实际情况 ,该方法简单、易懂 ,更适合于有标准的系统质量评价问题。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号