首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We studied the suitability of empirical crop water stress index (CWSI) averaged over daylight hours (CWSId) for continuous monitoring of water status in apple trees. The relationships between a midday CWSI (CWSIm) and the CWSId and stem water potential (ψ stem), and soil water deficit (SWD) were investigated. The treatments were: (1) non-stressed where the soil water was close to field capacity and (2) mildly stressed where SWD fluctuated between 0 and a maximum allowable depletion (MAD of 50 %). The linear relationship between canopy and air temperature difference (ΔT) and air vapor pressure deficit (VPD) averaged over daylight hours resulted in a non-water-stressed baseline (NWSBL) with higher correlation (?T = ?0.97 VPD – 0.46, R 2 = 0.78, p < 0.001) compared with the conventional midday approach (?T = ?0.59 VPD – 0.67, R 2 = 0.51, p < 0.001). Wind speed and solar radiation showed no significant effect on the daylight NWSBL. There was no statistically meaningful relationship between midday ψ stem and CWSIm. The CWSId agreed well with SWD (R 2 = 0.70, p < 0.001), while the correlation between SWD and CWSIm was substantially weaker (R 2 = 0.38, p = 0.033). The CWSId exhibited high sensitivity to mild variations in the soil water content, suggesting it as a promising indicator of water availability in the root zone. The CWSId is stable under transitional weather conditions as it reflects the daily activity of an apple crop.  相似文献   

2.
A tool named DOPIR (Dimensioning Of Pressurized IRrigation) was developed to optimize the process of water abstraction from an aquifer for pressurized irrigation systems. This tool integrates the main factors throughout the irrigation process, from the water source to the emitter. The objective is to minimize the total cost of water abstraction and application (C T) (investment (C a) + operation (C op) per unit of irrigated area according to the type of aquifer, crop water requirement and electricity rate periods. To highlight the usefulness of this tool, DOPIR has been applied to a corn crop in Spain with a permanent sprinkler irrigation system, considering two types of aquifer: confined and unconfined. The effects of parameters such as the static water table in the aquifer (SWT), irrigated area (S), number of subunits in the plot (NS), sprinkler and lateral pipe spacing, and average application rate (ARa) on C T have been analyzed. Results show that energy cost (C e) is the most important component of C T (50–72 % in the case studies). Thus, it is very important to adapt the design and management of the irrigation and pumping system throughout the irrigation season to the energy rate periods.  相似文献   

3.
The objectives of this study were to: (1) to evaluate the effects of subsurface drip irrigation amount and frequency on maize production and water use efficiency, (2) develop production functions and quantify water use efficiency, and (3) develop and analyze crop yield response factors (Ky) for field maize (Zea mays L.). Five irrigation treatments were imposed: fully irrigated treatment (FIT), 25 % FIT, 50 % FIT, 75 % FIT, rainfed and an over-irrigation treatment (125 % FIT). There was no significant (P > 0.05) difference between irrigation frequencies regarding the maximum grain yield; however, at lower deficit irrigation regime, medium irrigation frequency resulted in lower grain yield. There was a decrease in grain yield with the 125 % FIT as compared to the FIT, which had statistically similar yield as 75 % FIT. Irrigation rate significantly impacted grain yield in 2005, 2006 and 2007, while irrigation frequency was only significant during the 2005 and 2006 growing seasons (two dry years) and the interacting effect was only significant in the driest year of 2005 (P = 0.006). For the pooled data from 2005 to 2008, irrigation rate was significant (P = 0.001) and irrigation frequency was also significant (P = 0.015), but their interaction was not significant (P = 0.207). Overall, there were no significant differences between irrigation frequencies in terms of grain yield. Ky had interannual variation and average seasonal Ky values were 1.65, 0.91, 0.91 and 0.83 in 2005, 2006, 2007 and 2008, respectively, and the pooled data (2005–2008) Ky value were 1.14.  相似文献   

4.
New cultivars of sorghum for biomass energy production are currently available. This crop has a positive energy balance being irrigation water the largest energy consumer during the growing cycle. Thence, it is important to know the biomass sorghum water requirements, in order to minimize irrigation losses, thus saving water and energy. The objective of this study was to quantify the water use and crop coefficients of irrigated biomass sorghum without soil water limitations during two growing seasons. A weighing lysimeter located in Albacete (Central Spain) was used to measure the daily biomass sorghum evapotranspiration (ETc) throughout the growing season under sprinkler irrigation. Seasonal lysimeter ETc was 721 mm in 2007 and 691 mm in 2010. The 4 % higher ETc value in 2007 was due to an 8 % higher evaporative demand in that year. Maximum average K c values of 1.17 in 2007 and 1.21 in 2010 were reached during the mid-season stage. The average K c values for the 2 years of study were K c-ini: 0.64 and K c-mid: 1.19. The seasonal evaporation component was estimated to be about 18 % of ETc. The average basal K c (K cb) values for the two study years were K cb-ini: 0.11 and K cb-mid: 1.17. The good linear relationship found between K cb values and the fraction of ground cover (f c) and the excellent agreement found between Normalized Difference Vegetation Index and different biophysical parameters, such as K cb and f c, will allow monitoring and estimating the spatially distributed water requirements of biomass sorghum at field and regional scales.  相似文献   

5.
The sensitivity to water stress of different plant water status indicators was evaluated during two consecutive years in early nectarine trees grown in a semi-arid region. Measurements were made post-harvest and two irrigation treatments were applied: a control treatment (CTL), irrigated at 120 % of crop evapotranspiration demand to achieve non-limiting water conditions, and a deficit irrigation treatment, that applied around 37 % less water than CTL during late postharvest. The plant water status indicators evaluated were midday stem water potential (Ψ stem) and indices derived from trunk diameter fluctuations: maximum daily shrinkage (MDS), trunk daily growth rate, early daily shrinkage measured between 0900 and 1200 hours solar time (EDS), and late daily shrinkage that occurred between 1200 hours solar time and the moment that minimum trunk diameter was reached (typically 1600 hours solar time). The most sensitive [highest ratio of signal intensity (SI) to noise] indices to water stress were Ψ stem and EDS. The SI of EDS was greater than that of Ψ stem, although with greater variability. EDS was a better index than MDS, with higher SI and similar variability. Although MDS was linearly related to Ψ stem down to ?1.5 MPa, it decreased thereafter with increasing water stress. In contrast, EDS was linearly related to Ψ stem, although the slope of the regression decreased as the season progressed, as in the case of MDS. Further studies are needed to determine whether EDS is a sensitive index of water stress in a range of species.  相似文献   

6.
The level of irrigation restriction to apply in a deficit irrigation (DI) programme for sustainable peach (‘Baby gold 6’) production was investigated. The experiment involved four irrigation treatments over five consecutive seasons (2007–2011). They were full irrigation (control), reducing irrigation by 20 % during the first half of stage III (DI-80 %), withholding irrigation until reaching a light stress level (DI-L) and withholding irrigation until reaching a moderate stress level (DI-M). The withholding of irrigation in both DI-L and DI-M was applied only during stage II and postharvest periods and was based on midday stem water potential thresholds (Ψ stem). For the DI-L treatment ?1.5 MPa was used in both periods, and for DI-M ?1.8 and ?2.0 MPa were used during stage II and postharvest, respectively. Average Ψ stem values during DI periods were approximately ?1.4 and ?1.2 MPa for DI-M and DI-L, respectively. The pre-defined thresholds required to trigger irrigation were rarely reached. No significant differences between treatments were found in terms of yield in any experimental year. However, DI-M and to a lesser extent DI-L had lower final fruit fresh mass at harvest related to lower Ψ stem after three consecutive years of the experiment (during 2010 and 2011). Therefore, in terms of fruit size, DI was not sustainable. Rather than lowering Ψ stem thresholds, we recommend discontinuing DI after 3-year application.  相似文献   

7.
The implementation of nutrient management plans for confined animal feeding operations requires recording N and P loads from land-applied manure, including nutrients applied in irrigation water from manure treatment lagoons. By regulation, lagoon irrigation water nutrient records in Mississippi must be based on at least one lagoon water nutrient analysis annually. Research in Mississippi has shown that N and P levels in lagoon water, and the N:P ratio, vary significantly through the year. Nutrient estimates based on one annual analysis do not account for this variability and may overestimate or underestimate N and P loads. The present study reports an improved method to more precisely estimate N and P loads in irrigation water from swine manure lagoons. The method is based on predictable annual cycles of N and P levels in lagoon water and employs simple curve-fitting of lagoon-specific formulas derived by analyses of historical data. Similarity of curves from analyses of Mississippi lagoons and other lagoon studies suggests that the method can be applied using the often limited nutrient data for a lagoon to more precisely estimate seasonal shifts of N and P and to improve the precision of estimates for N and P in irrigation water. Although the present study focused on swine manure lagoons in the southern US, recognition that the annual N cycle in lagoon water is temperature driven, suggests that additional research incorporating temperature into future models could extend these models to other types of waste treatment lagoons and climates.  相似文献   

8.
The effects of multiple irrigation regimes on the relationships among tree water status, vegetative growth and productivity within a super-high-density (SHD) “Arbequina” olive grove (1950 tree/ha) were studied for three seasons (2008–2010). Five different irrigation levels calculated as percentage of crop irrigation requirement using FAO procedures (Allen et al. in Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and drainage paper 56. FAO, Rome, 1998) were imposed during the growing season. Periodically during the growing season, daytime stem water potential (Ψ STEM), inflorescences per branch, fruits per inflorescence and shoot absolute growth rate were measured. Crop yield, fruit average fresh weight and oil polyphenol content were measured after harvest. The midday Ψ STEM ranged from ?7 to ?1.5 MPa and correlated well enough with yield efficiency, crop density and fruit fresh weight to demonstrate its utility as a precise method for determining water status in SHD olive orchards. The relationships between midday Ψ STEM and the horticultural parameters suggest maintaining Ψ STEM values between ?3.5 and ?2.5 MPa is optimal for moderate annual yields of good quality oil. Values below ?3.5 MPa reduced current season productivity, while values over ?2.5 MPa were less effective in increasing productivity, reduced oil quality and produced excessive crop set that strongly affected vegetative growth and fruit production the following season. On the basis of the result given here, irrigation scheduling in the new SHD orchards should be planned on a 2-year basis and corrected annually based on crop load. Collectively, these results suggest that deficit irrigation management is a viable strategy for SHD olive orchards.  相似文献   

9.
In semiarid and arid landscapes, irrigation sustains agricultural activity but because of increasing demands on water resources there is a need to make gains in efficiency. As such spatial variation of soil properties such as clay and salinity needs to be understood because they strongly influence soil moisture availability. One way is to use electromagnetic induction because apparent soil electrical conductivity (ECa) is related to volumetric soil moisture (θ), clay and salinity (ECe). However, depth-specific variation has not been explored. Our aim is to generate electromagnetic conductivity images (EMCIs) by inverting DUALEM-421 ECa and show how true electrical conductivity (σ) can be correlated with θ, clay, ECe and bulk density (ρ) on different days post-irrigation (i.e., 1, 4 and 12 days). Two-dimensional multi-resolution analysis (MRA) is used to show how spatio-temporal variation in σ is scale-specific and how soil properties influence σ at different scales. We study this beneath a pivot irrigated alfalfa crop. We found that σ on days 1 and 4 was correlated with θ (Pearson’s r = 0.79 and 0.61) and clay (0.86 and 0.80) and the dominant scale of variation occurred at 9.3–18.7 m (50.21 % of total variation), >74.7 m (23.18 %) and 4.7–9.3 m (16.29 %). Between 9.3–18.7 and 4.7–9.3 m the variation may be a function of the cutter width (8 m), while >74.7 m may be change in clay and ECe and gantry spacing (~48 m). The sprinkler spacing (1.2 and 1.6 m) explains short-scale variation at 1.2–2.3 m.  相似文献   

10.
The use of overhead trellis systems for the production of dry-on-vine (DOV) raisins and table grapes in California is expanding. Studies were conducted from 2006 to 2009 using Thompson Seedless grapevines grown in a weighing lysimeter trained to an overhead arbor trellis and farmed as DOV raisins for the first two years and for use as table grapes thereafter. Maximum canopy coverage for the two lysimeter vines across years was in excess of 80 %. Seasonal (15 March–31 October) evapotranspiration for the lysimeter vines (ETLys) was 952 mm in 2007 (farmed as DOV raisins) and 943 and 952 mm (when farmed as table grapes). The maximum crop coefficient (K cLys) across all 4 years ranged from 1.3 to 1.4. These maximum values were similar to those estimated using the relationship where K c is a function of the amount of shaded area measured beneath the canopy at solar noon (K c = 0.017 × percent shaded area). Covering the lysimeter’s soil surface with plastic (and then removing it) numerous times during the 2009 growing season (1 June–14 September) reduced ETLys from an average of 6.4 to 5.6 mm day?1 and the K c from 1.07 to 0.93. A seasonal basal K c (K cb) was calculated for grapevines using an overhead trellis system with a 13 % reduction in the K cLys across the growing season.  相似文献   

11.
In this research we explore the potential of precision surface irrigation to improve irrigation performance under the warabandi system prevalent in the Indus Basin Irrigation System. Data on field dimensions, field slopes along with characteristic soil infiltration properties and outlet discharge were collected through a survey of a sample tertiary unit of Maira Branch Canal, Khyber Pakhtunkhwa Province, Pakistan. The performance of all fields in the tertiary unit was analysed and reported in aggregate, with detailed results of one field presented for illustration. The objective is to determine the optimum field layout, defined as the number of border strips, for the observed field characteristics to maximize performance. The results indicate that performance improvement is relatively easily achievable through changes in field layout within current irrigation services. Estimated application efficiency is sensitive to the selected depth of application, and it is important that a practical depth of application is selected. We recommend a depth of application of 50 mm and show how this is achievable and leads to a low quarter distribution uniformity of 0.750 and an application efficiency of 80 %. We also explore the feasibility of a 10-day warabandi rather than the 7-day warabandi and show that there is no significant change in the performance under a 10-day warabandi.  相似文献   

12.
Advanced wireless irrigation sensor networks that can monitor and control irrigation are only recently available commercially, but on-farm research has found a number of advantages compared with current irrigation practices including reduced water application, disease incidence, production time and labor, together with increased profitability. We examined the effects of wireless sensor networks to precisely control irrigation based on substrate moisture in a 0.15-ha greenhouse producing cut-flower snapdragons (Antirrhinum majus). We calculated changes in yield, production time, quality, cost, revenue and profit using grower data on production, expenditures and sales, which included 3 years of data before and after implementation of sensor irrigation networks. Sensor-based irrigation was associated with a 62 % ($65,173 or $434,487 ha?1) increase in revenue and a 65 % ($35,327 or $325,513 ha?1) increase in profit per year. Sensor-based irrigation was also associated with increases in the quality and the number of stems harvested per crop. The time to first harvest and time to last harvest were reduced for all cultivar groups, indicating that the plants grew faster using sensor networks. Production time per crop was decreased, allowing 2.5 additional crops per year. Electricity usage was also reduced, likely due to less frequent irrigation using sensor networks. These results are in line with other benefits we have seen by installing sensor networks in other types of ornamental operations.  相似文献   

13.
A modern computer-based simulation tool (WaterMan) in the form of a game for on-farm water management was developed for application in training events for farmers, students, and irrigators. The WaterMan game utilizes an interactive framework, thereby allowing the user to develop scenarios and test alternatives in a convenient, risk-free environment. It includes a comprehensive soil water and salt balance calculation algorithm. It also employs heuristic capabilities for modeling all of the important aspects of on-farm water management, and to provide quantitative performance evaluations and practical water management advice to the trainees. Random events (both favorable and unfavorable) and different strategic decisions are included in the game for more realism and to provide an appropriate level of challenge according to player performance. Thus, the ability to anticipate the player skill level, and to reply with random events appropriate to the anticipated level, is provided by the heuristic capabilities used in the software. These heuristic features were developed based on a combination of two artificial intelligence approaches: (1) a pattern recognition approach and (2) reinforcement learning based on a Markov decision processes approach, specifically the Q-learning method. These two approaches were combined in a new way to account for the difference in the effect of actions taken by the player and action taken by the system in the game world. The reward function for the Q-learning method was modified to reflect the suggested classification of the WaterMan game as what is referred to as a partially competitive and partially cooperative game.  相似文献   

14.
Improving water use efficiency is a key element of water management in irrigated viticulture, especially in arid or semi-arid areas. In this study, the micrometeorological technique “Eddy Covariance” was used to directly quantify the crop evapotranspiration (ET) and to analyze the complex relationships between evapotranspiration, energy fluxes, and meteorological conditions. Both observed Direct measurements (DIR) of latent heat flux (LE) and observed from the residual of the energy balance (REB) equation were used for crop evapotranspiration calculations. Observed crop coefficients (K cms) were then determined using the standardized reference evapotranspiration (ETo) equation for short canopies. In addition, linear approximations from observations were used to model the seasonal trend lines for crop coefficients and K cs values were parameterized by first identifying the beginning and end of each growth stage. The modeled K cs values were used to predict daily ET from ETo measurements and compared with values from literature. The daily observed DIR ET values (ETdo) were lower than REB ET (ETro) during periods with precipitation, but they were similar during dry periods, which implies that energy balance closure is better when the surface is drier. Comparisons between modeled ET and crop ET estimated using K c values from best agreement was observed between the modeled REB and FAO 56 and the local K c values provided by the Regional Agency ARPAS showed good agreement with observed ET (from DIR and REB data) than the FAO 56 ones. The study confirmed that the availability of locally driven K c could be relevant to quantify the crop water requirement and represents the starting point for a sustainable management of water resources.  相似文献   

15.
We used sap flow and trunk diameter measurements for assessing water stress in a high-density ‘Arbequina’ olive orchard with control trees irrigated to replace 100 % of the crop water needs, and 60RDI and 30RDI trees, in which irrigation replaced ca. 60 and 30 % of the control, respectively. We calculated the daily difference for both tree water consumption ( $ D_{{E_{\text{p}} }} $ ) and maximum trunk diameter (D MXTD) between RDI trees and control trees. The seasonal dynamics of $ D_{{E_{\text{p}} }} $ agreed reasonably well with that of the stem water potential. We identified peculiarities on the response $ D_{{E_{\text{p}} }} $ to changes in water stressing conditions, which must be taken into account when using the index. An analysis of the water stress variability in the orchard is required for choosing the instrumented trees. The reliability of the D MXTD index was poorer than that of $ D_{{E_{\text{p}} }} $ . The maximum daily shrinkage (MDS) was not a reliable water stress indicator.  相似文献   

16.
Agriculture is a big consumer of fresh water in competition with other sectors of the society. Within the EU-project SAFIR new water-saving irrigation strategies were developed based on pot, semi-field and field experiments with potatoes (Solanum tuberosum L.), fresh tomatoes (Lycopersicon esculentum Mill.) and processing tomatoes as model plants. From the pot and semi-field experiments an ABA production model was developed for potatoes to optimize the ABA signalling; this was obtained by modelling the optimal level of soil drying for ABA production before re-irrigation in a crop growth model. The field irrigation guidelines were developed under temperate (Denmark), Mediterranean (Greece, Italy) and continental (Serbia, China) climatic conditions during summer. The field investigations on processing tomatoes were undertaken only in the Po valley (North Italy) on fine, textured soil. The investigations from several studies showed that gradual soil drying imposed by deficit irrigation (DI) or partial root zone drying irrigation (PRD) induced hydraulic and chemical signals from the root system resulting in partial stomatal closure, an increase in photosynthetic water use efficiency, and a slight reduction in top vegetative growth. Further PRD increased N-mineralization significantly beyond that from DI, causing a stay-green effect late in the growing season. In field potato and tomato experiments the water-saving irrigation strategies DI and PRD were able to save about 20-30% of the water used in fully irrigated plants. PRD increased marketable yield in potatoes significantly by 15% due to improved tuber size distribution. PRD increased antioxidant content significantly by approximately 10% in both potatoes and fresh tomatoes. Under a high temperature regime, full irrigation (FI) should be undertaken, as was clear from field observations in tomatoes. For tomatoes full irrigation should be undertaken for cooling effects when the night/day average temperature >26.5 °C or when air temperature >40 °C to avoid flower-dropping. The temperature threshold for potatoes is not clear. From three-year field drip irrigation experiments we found that under the establishment phase, both potatoes and tomatoes should be fully irrigated; however, during the later phases deficit irrigation might be applied as outlined below without causing significant yield reduction:
Potatoes
°
After the end of tuber initiation, DI or PRD is applied at 70% of FI. During the last 14 days of the growth period, DI or PRD is applied at 50% of FI.
Fresh tomatoes
°
From the moment the 1st truce is developed, DI is applied at 85-80% of FI for two weeks. In the middle period, DI or PRD is applied at 70% of FI. During the last 14 days of the growth period, DI or PRD is applied at 50% of FI.
Processing tomatoes
°
From transplanting to fruit setting at 4th-5th cluster, the PRD and DI threshold for re-irrigation is when the plant-available soil water content (ASWC) equals 0.7 (soil water potential, Ψsoil = −90 kPa). During the late fruit development/ripening stage, 10% of red fruits, the threshold for re-irrigation for DI is when ASWC = 0.5 (Ψsoil = −185 kPa) and for PRD when ASWC (dry side) = 0.4 (Ψsoil, dry side = −270 kPa).
The findings during the SAFIR project might be used as a framework for implementing water-saving deficit irrigation under different local soil and climatic conditions.  相似文献   

17.
Irrigation techniques that reduce water applications are increasingly applied in areas with scarce water resources. In this study, the effect of two regulated deficit irrigation (RDI) strategies on peach [Prunus persica (L.) Batsch cv. “Catherine”] performance was studied over three growing seasons. The experimental site was located in Murcia (SE Spain), a Mediterranean region. Two RDI strategies (restricting water applications at stage II of fruit development and postharvest) based on stem water potential (Ψs) thresholds (?1.5 and ?1.8 MPa during fruit growth and ?1.5 and ?2.0 MPa during postharvest) were compared to a fully irrigated control. Soil water content (θv), Ψs, gas exchange parameters, vegetative growth, crop load, yield and fruit quality were determined. RDI treatments showed significantly lower values of θv and Ψs than control trees when irrigation water was restricted, causing reductions in stomatal conductance and photosynthesis rates. Vegetative growth was reduced by RDI, as lower shoot lengths and pruning weights were observed under those treatments when compared to control. However, fruit size and yield were unaffected, and fruit quality was slightly improved by RDI. Water savings from 43 to 65 % were achieved depending on the year and the RDI strategy, and no negative carryover effect was detected during the study period. In conclusion, RDI strategies using Ψs thresholds for scheduling irrigation in mid–late maturing peach trees under Mediterranean conditions are viable options to save water without compromising yield and even improving fruit quality.  相似文献   

18.
Irrigation with treated wastewater (TWW) is gaining importance due to declining water availability in dry regions. TWW irrigation has various potential adverse effects on soil quality such as hydrophobic effects on soil surfaces, reducing initial sorptivity and promoting the formation of preferential flow paths. In May and June 2010, in situ infiltration measurements using mini disk tension infiltrometer were deployed in five different orchard plots in Israel to assess the impact of different irrigation water qualities on the soil water repellency index R. In most plantations, long-term test sites were accessed to compare adjacent plots irrigated with fresh water (FW) or TWW. Topsoil samples were analyzed for selected physical and chemical characteristics. The mean R values increased at all TWW sites, from +15 up to +55 % compared with FW sites. The water drop penetration time (WDPT) increased up to 30 fold at three of five TWW sites compared with FW sites. Subsequent U tests and multilevel analysis indicated an impact of the type of irrigation water on R and WDPT. Moreover, soil electrical conductivity and exchangeable sodium percentage were consistently higher at all TWW sites. These results show that irrigation water quality clearly influences physical and chemical properties of the soil.  相似文献   

19.
The baffle-fitted labyrinth channel is commonly used in micro-irrigation systems. The flow in this labyrinth channel has a rather low-Reynolds number. In addition, emitter clogging, which is the major drawback of the micro-irrigation technique, is significantly related to flow characteristics. In order to design an anti-clogging emitter with a good performance, the hydrodynamics must be understood and analyzed. As CFD modeling is nowadays the most efficient approach for improving emitter geometry, this paper presents assessment of several k\(\varepsilon\) turbulence models for computation of micro-irrigation emitter hydrodynamics. The objective is to determine the simplest and most efficient model to improve emitter conception, in terms of both discharge/pressure loss and limitation of the areas where low velocity is likely to generate emitter clogging. Low-Reynolds number k\(\varepsilon\) models are often assumed to be more suitable for the labyrinth-channel flow since these models have no wall functions, they can take into account low turbulence levels and they account for the effect of damped turbulence. The low-Reynolds number k\(\varepsilon\) models used in the present study are compared to high-Reynolds number k\(\varepsilon\) models. Very different trends are observed between low-Reynolds number k\(\varepsilon\) models. Some models reproduce a turbulent behavior, while others reproduce a laminar behavior. The head loss analysis reveals that, contrary to classical smooth pipe flow, the contribution of turbulent dissipation cannot be neglected since its contribution is larger than wall friction ones. This feature explains why different models can induce quite different flow behavior.  相似文献   

20.
A 2-year experiment was carried out to investigate the effects of different drip irrigation regimes on distribution and dynamics of soil water and salt in north Xinjiang, China. Five treatments—F7 (0.24 dS m?1 + Once every 7 days), B7 (4.68 dS m?1 + Once every 7 days), S7 (7.42 dS m?1 + Once every 7 days), F10 (0.24 dS m?1 + Once every 10 days) and F3 (0.24 dS m?1 + Once every 3 days)—were designed. For all treatments, additional 150-mm fresh water was applied on 10th November in 2009 (winter irrigation) to leach the accumulated salt. The results revealed that irrigation frequency and water quality had significant effects on the spatial distribution and change of soil water content, soil salt and the crop water consumption rate, but had a limited impact on the seasonal accumulative water consumption, and the cotton yield decreased with the decrease in irrigation frequency and water quality on the whole. During the cotton growing season, results showed that the salt mainly accumulated in the 0- to 60-cm soil layer, while the soil salt in 60- to 100-cm layer changed slightly, indicating that the drip irrigation could not leach the soil salt out of the root zone under the irrigation regimes. Therefore, salt leaching was necessary to maintain the soil water–salt balance and to prevent excessive salt accumulation in the root zone. After the 150-mm winter irrigation and subsequent thawing, soil salts were leached into the deeper layers (below 60 cm), and the soil salt content (SSC) (EC1:5) in root zone in the next year was about 0.2 dS m?1. Moreover, compared to 2009 season, the SSC within the root zone did not increase even the EC of the irrigation water was up to 7.42 dS m?1. Additionally, it is important to note that the results were concluded based on the data of the 2-year experiment; further studies are need to optimize winter irrigation amount and assess the sustainability of saline water irrigation since long-term utilization of saline water may lead to soil degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号