首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Supplementation of microalgae and Artemia nauplii with practical formulated feeds containing fresh or dried Artemia biomass for larval rearing of black tiger shrimp, Penaeus monodon, was assessed. Five feeding treatments were carried out in a recirculating seawater system with fifteen 30-L fiberglass tanks. Shrimp nauplii were stocked at a density of 150 L?1 for 23 days. In the control treatment, live feed was supplemented with commercial formulated feed (Inve Aquaculture NV, Belgium). In two other treatments, live feed was supplemented with a pelleted feed based on either fresh or dried Artemia. In the remaining two treatments live feed was supplemented with a combination of 50% commercial feed and 50% fresh or dried Artemia feeds. Overall, performance of PL in the combination treatments (commercial feed and Artemia diets) were equal to or better than those fed commercial feed alone as seen by the better growth rate and higher resistance to formalin stress. The results indicate that feed containing fresh or dried Artemia biomass can partially supplement live feeds for larval rearing of P. monodon.  相似文献   

2.
An 84-day feeding trial was conducted to study the effect of replacing dietary fishmeal with dried chicken viscera meal (CVM) on the growth (net biomass gain, specific growth rate, SGR), feed acceptability, feed conversion ratio (FCR), protein efficiency ratio (PER) and carcass composition of Clarias batrachus fingerlings. Triplicate groups of fingerlings with mean initial body weight of 13.35 g were fed on six iso-nitrogenous and iso-lipidic diets. The control diet (CVM0) used marine by-catch fishmeal as the sole source of animal protein. In the other five diets (CVM100–CVM500), 20–100% of fishmeal was substituted by dried CVM at 20% increments. The highest body weight gain, SGR and PER, and the lowest FCR were observed in fish fed a diet containing 300–500 g CVM kg−1. The fish accumulated increasing quantities of lipids and decreasing levels of ash in their carcasses with increasing levels of dietary CVM.  相似文献   

3.
Two experiments were conducted to examine the influence of dietary protein levels on growth and carcass proximate composition of Heterotis fingerlings. Four isoenergetic practical diets were formulated to contain dietary protein levels from 250 to 400 g kg?1 diet. Replicate groups of young Heterotis (initial live weight 3.96 and 26.40 g in experiments 1 and 2 respectively) were handfed twice daily to apparent satiation for a period of 42 and 28 days respectively. Statistical analysis revealed that growth rate was significantly affected by dietary protein level (P < 0.01). The highest weight gain was observed in fingerlings fed with 300 and 350 g protein kg?1 diet for fish size ranging between 3–15 and 26–62 g respectively. There was no significant difference between groups fed with 300, 350 and 400 g protein kg?1 diet for Heterotis fingerlings (3–15 g) in the one hand; in the other hand, significant differences were found between fish (26–62 g) fed with 350 g protein kg?1 diet and those receiving 300 and 400 g protein kg?1 diet, with no significant difference between each other. The specific growth rate varied from 2.4% to 3.1% day?1. The whole‐body protein, lipid, moisture and ash contents were not significantly affected by dietary protein levels (P > 0.05). The relationships between percentage weight gain and dietary protein levels suggested very similar dietary protein requirement (about 310 g crude protein kg?1 diet) for Heterotis ranging from 3 to 62 g. The maximum growth occurred at about 345 g protein kg?1 diet.  相似文献   

4.
An experiment was conducted to evaluate the effect of different forms of Artemia biomass as a food source on survival, molting and growth rate of mud crab Scylla paramamosain. Instar 1 crablets with a mean weight of 0.0082 ± 0.0007 g were reared both individually and communally and fed with different diets consisting of fresh shrimp meat (control feed), live Artemia biomass, frozen Artemia biomass and a dried Artemia‐based formulated feed for 40 days. The highest survival was obtained for crablets receiving live Artemia (92.5% and 75.8%) followed by the groups fed with frozen biomass (90.0% and 47.5%), the control feed (72.5% and 24.2%) and the dried Artemia‐based diet (60.0% and 21.7%) for individual and communal cultures, respectively. The intermolt period, the total number of moltings and the growth rate, which were determined on individually reared crabs, showed the same pattern as for survival. The results suggest that crab performance decreased in the following order: live Artemia>frozen Artemia > fresh shrimp meat > dried Artemia‐based formulated feed. Live Artemia biomass proved an ideal feed for nursery of Scylla paramamosain crabs. Frozen Artemia biomass may be an alternative in times of shortage. Our findings illustrate the high potential for local utilization of Artemia biomass in Vietnam for reliable production of mud crab juveniles.  相似文献   

5.
Two experiments were conducted to examine critical thresholds to fishmeal inclusion in diets for barramundi and also the suitability of a range of different raw materials as alternative protein sources for this species. The first experiment used two diets formulated to the same digestible protein and energy specifications, which were then used to create a series of blended experimental diets that varied in fishmeal content from 0 to 770 g kg?1. An additional diet containing sodium sulfamerazine was used as a negative control. Feed intake was unaffected with diets containing as little as 11% fishmeal, although broken‐line regression suggests that an inclusion of ~150 g kg?1 fishmeal is a more likely threshold value. In a second experiment, a further series of diets was formulated for juvenile barramundi according to digestible protein and energy specifications predicted by existing bio‐energetic models. Each of the test raw materials was substituted for fishmeal at either 200 or 300 g kg?1 (dependent on formulation or extrusion limitations), and two additional diets were included to examine two practical formulations. A diet with only fishmeal as the protein source was included as a reference. Each diet was produced using an APV19 twin‐screw extruder and then vacuum infused with the specified fish oil allocation. Each of the diet pellets produced was also characterized for a range of physical parameters. Fish of an initial weight of 70 ± 0.6 g fish?1 were randomly allocated across 24 tanks with three replicates per treatment. After 6 weeks, average weight gain across all treatments was 73 ± 12.7 g fish?1 and feed conversion across all treatments averaged 0.94 ± 0.08 g fish?1. None of the diets using alternative raw materials had poorer growth or feed conversion than the fishmeal‐based reference diet. The inclusion of either the lupin kernel meals or canola meal significantly improved both weight gain and feed conversion compared to the reference diet. The results from this study demonstrate that there is clear potential to replace the fishmeal content of diets for barramundi without loss of fish performance, up to and including diets with as little as 150 g kg?1 fishmeal inclusion.  相似文献   

6.
A digestibility and a growth trial were conducted in this study respectively. Firstly, the apparent digestibility coefficients (ADC) of nutrients and energy in meat and bone meal, porcine meal (PM), hydrolysed feather meal, poultry by‐products meal, fishmeal (FM), soybean meal and spray‐dried blood meal were determined. In experiment 2, an 8‐week growth trial was conducted to evaluate the effects of the substitution of FM by PM under the digestible ideal protein concept at two protein levels in the diets of Japanese seabass, Lateolabrax japonicus. A FM‐based control diet (FM diet; FM: 320 g kg?1, crude protein: 434.9 g kg?1, crude lipid: 124.6 g kg?1) and three other diets were formulated to contain 115 g kg?1 PM and only 160 g kg?1 FM. Two diets were formulated on a crude protein basis without (PM diet) or with (PMA diet) essential amino acid (EAA) supplementation respectively. A low‐protein diet was designed (LPMA diet, crude protein: 400.9 g kg?1, crude lipid: 96.3 g kg?1) with the same level of FM and PM but with the same digestible protein/ digestible energy and EAA profile as the FM diet. The results showed that nitrogen and total amino acid digestibility of the tested ingredients were ranged from 85.6% to 95.5% and from 87.6% to 95.5% respectively. Apparent digestibility coefficients of protein for FM and PM were 91.2% and 95.9% respectively. In the growth trial, the weight gain rate and feed conversion ratio of fish fed the PMA diet did not show a significant difference from those of the control group, but were significantly higher than those of the PM and LPMA groups (P<0.05). Growth was related linearly to lysine and methionine intakes. It was shown that PM could be utilized in the Japanese seabass diet up to 115 g kg?1 to replace about 160 g kg?1 of FM protein under an ideal protein profile. Essential amino acid deficiency (diet PM) or a lower protein level despite having an ideal amino acid profile (diet LPMA) could not support the optimal growth of Japanese seabass.  相似文献   

7.
The effect of replacing fishmeal with simple or complex mixtures of plant proteins in tilapia diets was examined. Diet formulations were arranged in a 2 × 4 factorial design with two types of plant protein mixtures used to replace fishmeal (simple: soybean meal and maize gluten meal or complex: soybean meal, maize gluten meal, dehulled flax, pea protein concentrate and canola protein concentrate) and four levels of protein originating from fishmeal (1000 g kg?1, 670 g kg?1, 330 g kg?1 and 0 g kg?1). Diets contained equal digestible protein (380 g kg?1) and digestible energy (17.6 MJ kg?1). The average daily gains, specific growth rates and feed efficiencies of fish fed diets with 0 g kg?1 fishmeal were significantly lower than fish fed diets with the 330 g kg?1, 670 g kg?1 or 1000 g kg?1 fishmeal levels. Fish fed the complex diets had significantly higher average daily gains, specific growth rates, feed : gain ratios and protein efficiency ratios than those fed the simple diets. Intestinal villus length decreased with decreasing levels of fishmeal and increased with increased diet complexity but the effects were not significant. Replacement of fishmeal with a complex mixture of plant ingredients may allow a greater replacement of fishmeal in diets fed to Nile tilapia.  相似文献   

8.
The current study evaluated transgenic cotton lines with normal levels of gossypol/terpenoids in the vegetative and floral tissues, but with ultra‐low gossypol in the seeds as a replacement for glandless cottonseed meal (GCSM) and fishmeal. A 64‐day growth trial evaluated the ability of cottonseed meals from a natural glandless cotton variety/mutant, two transgenic Ultra‐low Gossypol Cottonseed (ULGCS) lines, a non‐transgenic parental control and a commercial variety, to replace 355 g kg?1 fishmeal in a diet containing 350 g kg?1 crude protein. Juvenile Litopenaeus vannamei (1.48 ± 0.29 g) were stocked (40 shrimp m?3) with six replicates. No significant differences were found between all formulated diets in terms of final weight, survival and feed conversion ratio. The commercial cottonseed variety displayed a significantly lower feed efficiency ratio and protein efficiency ratio than one of the ULGCS diets. These results suggest that GCSM and/or transgenic ULGCS meals can be used to replace fishmeal in commercial shrimp diets.  相似文献   

9.
Three approximately isoenergetic (17 kJ g?1) diets were formulated with dietary protein levels of 270, 360 and 480 g kg?1 (DM basis) providing protein-to-energy ratios of 15.69, 20.48 and 27.16 mg crude protein (CP) kJ?1, respectively. The effects of these diets on several growth and nutritional parameters were evaluated for the fry (2.50 ± 0.184 g) and fingerlings (11.53 ± 0.023 g) of Siganus canaliculatus (Park). Maximum growth and best feed utilization efficiency of fry were obtained using the diet containing 480 g kg?1 protein and P:E ratio of 27.16 mg CP kJ?1. For fingerlings the best results were obtained with the diet containing 360 g kg?1 protein and P:E ratio of 20.48 mg CP kJ. Body composition of the fry was not affected by the feeding regime whilst the effect was evident in the fingerling groups. The carcass protein content of the fingerling was observed to increase with increasing P:E ratios while lipid content decreased as P:E increased.  相似文献   

10.
An 84‐day feeding trial was conducted to study the effect of different levels of dietary protein, 250 (P25), 300 (P30), 350 (P35), 400 (P40) and 450 g (P45) kg?1 dry matter (DM) on growth, feed intake, feed utilization and carcass composition of bagrid catfish Horabagrus brachysoma fingerlings. Triplicate groups of fingerlings with mean initial body weight of 2.2 g were fed the experimental diets twice daily, till satiation, in 150‐L tanks supplied with flow‐through freshwater. Daily dry matter intake by the fingerlings decreased significantly (P < 0.05) when fed P25 diet, containing 250 g protein kg?1. The highest body weight gain, specific growth rate (SGR) and protein efficiency ratio (PER), and the lowest feed conversion ratio (FCR) were observed in fish fed 350 g protein kg?1 diet. The fish fed with P45 diet had the lowest (P < 0.05) carcass lipid content. The polynomial regression analysis indicates that H. brachysoma fingerlings require 391 g dietary crude protein kg?1 diet.  相似文献   

11.
Two feeding trials were conducted to determine the minimum dietary protein level producing maximum growth, and the optimum protein to energy ratio in diets for red porgy (Pagrus pagrus) fingerlings, respectively. In the first trial, six isoenergetic diets were formulated with protein levels ranging from 400 to 650 g kg?1 in increments of 50 g kg?1, and fed for 11 weeks to 2.8 g average initial weight fish. Weight gain, specific growth rate and feed efficiency were significantly higher with diets containing higher protein levels, when compared with dietary levels below 500 g kg?1. The highest protein efficiency ratios were obtained in fish fed 500 g kg?1 dietary protein. The minimum dietary protein level producing maximum fish growth was found to be 500 g kg?1. In the second trial, 15 g average initial weight fish were fed for 12 weeks, six diets containing three different lipid levels (100, 150 and 200 g kg?1) combined with two protein levels (450 and 500 g kg?1). Weight gain values increased when dietary lipids increased from 100 to 150 g kg?1, with a further decrease for 200 g kg?1 lipids in diets; the lowest fish growth being supported by 200 g kg?1 dietary lipids. Fish growth was significantly higher when dietary protein increased from 450 to 500 g kg?1. There was no evidence of a protein‐sparing effect of dietary lipids. Liver protein and lipid contents were low when compared with other fish species. All diet assayed produced high liver glycogen accumulation. The recommended protein and lipid levels in diets for red porgy fingerlings were 500 and 150 g kg?1, respectively.  相似文献   

12.
An 8‐week growth trial was conducted using a 2 × 3 factorial design to evaluate the effect of substitution of fishmeal (FM) by rendered animal protein blend [APB, comprised of 400 g kg?1 poultry by‐product meal, 350 g kg?1 meat and bone meal, 200 g kg?1 hydrolysed feather meal (HFM) and 50 g kg?1 spray‐dried blood meal] in diets of Siberian sturgeon, Acipenser baerii Brandt. Two isoenergetic control diets were formulated to contain two different protein levels [high‐protein control (400 g kg?1), with 483 g kg?1 of FM] and [low‐protein control (360 g kg?1), with 400 g kg?1 of FM]. At each protein level, dietary FM protein was replaced by APB at 75% and 100% levels and supplemented with crystallized essential amino acid under ideal protein concept. The six diets were named as HC, HAPB75, HAPB100, LC, LAPB75 and LAPB100, respectively. No significant differences were found in weight gain rate (WGR) and specific growth rate (SGR), but fish fed with the low‐protein diets showed higher feed intake and feed conversion ratio. Plasma growth hormone and insulin‐like growth factors I of each group were not significantly different (P > 0.05). The whole‐body composition and liver composition were not affected by dietary protein levels, replacement or their interaction. Muscle protein and lipid contents of fish fed with diet LAPB100 were significantly lower than those of HC group. Digestibility of nitrogen (N) and phosphorus (P) were reduced with higher APB inclusion levels, but productive N and P values of all groups were not different. Lower N and P intake induced lower nutrients losses (P < 0.05). The results suggested that dietary protein level could be reduced to 360 g kg?1 from 400 g kg?1 without affecting WGR or SGR and significantly reduced nutrients lose. Furthermore, dietary FM protein can be totally replaced by APB in feed formulation either at 400 g kg?1 or at 360 g kg?1 protein level.  相似文献   

13.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

14.
Five isocaloric‐isonitrogenous diets containing 0, 150, 300, 450 and 600 g kg?1 of fungi Trichoderma reesei‐degraded date pits (DDP), as a replacement for dietary corn, were fed to triplicate groups of Nile tilapia Oreochromis niloticus L. fingerlings (1.88 g initial weight), for 9 weeks, in 70 L fibreglass tanks. Each tank was considered as an experimental unit and was part of a water recirculating system utilizing filtered and aerated ground well water (24 ± 3 °C). Tilapia growth performance, namely, weight gain, feed conversion, specific growth rate and protein efficiency ratio were similar and superior in fish fed diets containing 150 and 300 g kg?1 DDP, when compared with those fish fed the other diets. Fish fed the control diet with 450 g kg?1 DDP had better growth efficiency performance than those fed diets containing 0 and 600 g kg?1. Fish fed the diet with 600 g kg?1 DDP were inferior to all other groups. Tilapia body composition was affected by increasing DDP level in the diets as body fat was decreased, while body moisture was increased. In conclusion, DDP could replace 300 g kg?1 of dietary corn with better growth results. Further increase of date pits replacements to 450 g kg?1 will affect growth performance, when compared with the control.  相似文献   

15.
A 3 × 5 factorial design including three lipid levels (100, 130 and 180 g kg?1 diet, based on dry matter) and five dietary protein levels (370, 420, 470, 520 and 570 g kg?1 diet, based on dry matter) was conducted to investigate the optimum dietary lipid and protein requirements for Rutilus frisii kutum fingerlings. Triplicate groups of 80 kutum (500 ± 60 mg initial weight) were stocked in 250‐l tanks and fed to apparent satiation thrice daily for 8 weeks. The results showed that the growth performance and feed utilization were significantly (P < 0.05) affected by dietary protein and lipid levels. Weight gain, specific growth rate and feed conversion ratio of kutum improved significantly with increasing protein level from 370 to 470 g protein kg?1 diet, but there was a significant decrease in growth parameters with increasing protein level from 470 to 570 g protein kg?1 diet. Also, the higher values of weight gain, specific growth rate and better feed conversion ratio were observed for fish fed diets containing 130 g kg?1 lipid diet. The results of this study showed that diet containing 420 g kg?1 protein and 130 g kg?1 lipid with a P:E ratio of 19.22 mg protein kJ?1 of gross energy is optimal for kutum fingerlings.  相似文献   

16.
This study was undertaken to determine the replacement value of Cassia fistula seed meal (CFM) for soybean meal (SBM) in practical diets of Oreochromis niloticus fingerlings. Five practical diets (350 g kg?1 crude protein) containing 0 g kg?1 (control), 170 g kg?1 (diet II), 340 g kg?1 (diet III), 509 g kg?1 (diet IV) and 670 g kg?1 (diet V) substitution levels of CFM for SBM were formulated and fed to triplicate groups of O. niloticus fingerlings (mean initial weight of 10.22 ± 0.03 g) for 70 days. Fish mortality increased linearly with increase in inclusion levels of CFM in the diet. Growth and diet utilization efficiency were depressed in fish fed diets containing CFM at varying inclusion levels. Feed conversion ratio, specific growth rate and protein efficiency ratio of O. niloticus fed on diet containing 170 g kg?1 substitution level of CFM were similar (P > 0.05) to the control diet. Digestibility of the different diets decreased with increase in inclusion levels of CFM. Fish fed diet containing 670 g kg?1 CFM had significantly lower carcass protein. However, no significant differences were observed in carcass protein and lipid contents between fish fed the control diets and diet containing 170 g kg?1 CFM. The most efficient diet in terms of cost per unit weight gain of fish was obtained in 170 g kg?1 CFM dietary substitution.  相似文献   

17.
A dephytinized protein concentrate prepared from canola seed (CPC) was assessed for nutrient digestibility and performance in rainbow trout (Oncorhynchus mykiss). The apparent digestibility coefficients of CPC were: dry matter, 817 g kg?1; crude protein, 899 g kg?1; gross energy, 861 g kg?1; arginine, 945 g kg?1; lysine, 935 g kg?1; methionine, 954 g kg?1; threonine, 893 g kg?1. A 9‐week performance trial assessed 7 diets. Fishmeal provided 940 g kg?1 of the protein in the control diet. Test diets consisted of CPC or water‐washed CPC replacing 500 and 750 g kg?1 of fishmeal protein; and CPC plus an attractant replacing 500 and 750 g kg?1 of fishmeal protein. No significant differences in performance were observed (P > 0.05). A subsequent 9‐week performance trial evaluated the effect of adding CPC into compound diets containing fishmeal/soybean meal/corn gluten meal. Five diets were prepared: fishmeal provided 670 g kg?1 of the protein in the control diet, in the remaining diets CPC was incorporated into commercial‐like trout diets at 100, 200 and 300 g kg?1 replacement of fishmeal protein, the fifth diet included an attractant in the 300 g kg?1 replacement diet. No significant differences in performance were obtained (P > 0.05). These studies show that dephytinized canola protein concentrate has potential to replace substantial levels of fishmeal in diets for carnivorous fish without compromising performance.  相似文献   

18.
An 8‐week feeding trial was conducted to determine the effects of replacing of soybean meal (SBM) with sesame meal (SM) in the diets of Oreochromis niloticus fingerlings. Seven practical diets (33 g kg?1 crude protein, 19.2 MJ kg?1 dry diet) containing substitution levels of 0%, 8%, 16%, 24%, 32%, 40% and 48% SM for SBM protein were formulated and fed to triplicate groups of O. niloticus fingerlings (mean initial weight of 8.74 ± 0.12 g). The fish survival rate, hepatosomatic index, viscerosomatic index and condition factor were not significantly affected by the contents of SM in the diets (P>0.05). The final body weight, weight gain (WG), specific growth ratio, feed conversion ratio and protein efficiency ratio of the fish fed the diet containing 16% SM were similar (P>0.05) to that of the fish fed the control diet. Except lipid, digestible contents of dry matter, crude protein, ash, gross energy and individual amino acids decreased while phosphorous increased with increasing SM levels. No significant differences were observed in whole‐body dry matter, ash and lipid contents among all the treatments (P>0.05); crude protein contents between fish fed the control diet and a diet containing 24% SM were also not affected significantly (P>0.05), and the phosphorus content was not significantly different when the SM level was increased to 32% (P>0.05). No significant negative differences were observed in the liver composition between fish fed the control diet and the diet containing 24% SM. The most efficient diet in terms of cost per unit WG of fish was obtained in 8% SM dietary substitution, while no significant differences were found among the 0%, 8% and 16% levels. It was indicated that SM can be utilized in the juvenile Nile tilapia diet to replace about 16% of SBM protein without causing negative effects on growth performance, body composition, liver composition and feed utilization.  相似文献   

19.
Atlantic salmon fed diets devoid of fishmeal but added 0.5 g  kg?1 fish protein concentrate (FPC) showed reduced growth and lipid deposition without affecting protein accretion as compared to fish fed a fishmeal‐based control diet. The aim of the current study was to assess whether higher inclusion of FPC improved the growth and lipid deposition of Atlantic salmon (initial body weight 380 g) fed high plant protein diets. Quadruplicate groups of fish were fed diets containing 200 g kg?1 fishmeal of which was replaced with FPC (150, 112, 75, 38 and 0 g kg?1) for a period of 79 days. The rest of the diet protein was a mixture of plant proteins. The lipid source used was fish oil. A fishmeal‐based diet was included as a positive control for growth performance. None of the test diets differed from the positive control‐fed fish in voluntary feed intake, growth performance or nutrient accretion. Thus, the test diets were found appropriate to assess the effect of FPC inclusion. Replacement of fishmeal with increasing concentration of FPC did not affect voluntary feed intake (P = 0.56), but growth performance decreased (P = 0.02) resulting in an increased feed conversion ratio (P = 0.003). Viscerosomatic index decreased as diet FPC inclusion increased (P = 0.012) without affecting the dress out weight (P = 0.08). Thus, the apparently improved growth in fish fed the diets with the low FPC inclusion was because of a higher visceral mass. Possible reasons for the reduced visceral mass following addition of FPC to high plant protein diets are discussed.  相似文献   

20.
This study shows that alternatives for fishmeal in a fish diet affect not only fish growth but also faeces stability and nitrogen (N) and phosphorus (P) waste production. Wheat gluten diet (WGD), soybean meal extract diet (SBE), soybean meal diet (SBM), duckweed diet (DWD) and single‐cell protein diet (SCP) were evaluated as a fishmeal replacement on a 15% weight weight?1 basis in tilapia diets. Fishmeal replacement affected dry matter (dm), protein, ash and P digestibility significantly. Faeces recovery (6.8–11.2%) was not significantly affected, although the amount of non‐recovered faeces and total faeces showed significant differences. Duckweed diet and SCP resulted in the largest amounts of non‐recovered and total faeces (199–210, 224–225 g dm kg?1 feed dm). Compared with fishmeal diet (FMD), the WGD and SBE resulted in similar growth, but higher non‐faecal N losses (471–495 vs. 416 g N kg?1 N). Soybean meal diet, DWD and SCP resulted in lower growth but less non‐faecal loss (409–450 g N kg?1 N). The DWD and FMD had the highest N retention (480 g N kg?1 N) compared with the other diets (431–451 g N kg?1 N). Carbon retention, faecal and non‐faecal losses and P retention were similar for all diets (302–358, 142–176 and 489–523g C kg?1 C, 606–704 g P kg?1 P). Phosphorus faecal loss was lower for all diets (329–381 g P kg?1 P) than for the FMD (401 g P kg?1 P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号