首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
The nutritive value of pasture is an important determinant of the performance of grazing livestock. Proximal sensing of in situ pasture is a potential technique for rapid prediction of nutritive value. In this study, multispectral radiometry was used to obtain pasture spectral reflectance during different seasons (autumn, spring and summer) in 2009–2010 from commercial farms throughout New Zealand. The analytical data set (n = 420) was analysed to develop season‐specific and combined models for predicting pasture nutritive‐value parameters. The predicted parameters included crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, lignin, lipid, metabolizable energy (ME) and organic matter digestibility (OMD) using a partial least squares regression analysis. The calibration models were tested by internal and external validation. The results suggested that the global models can predict the pasture nutritive value parameters (CP, ADF, NDF, lignin, ME and OMD) with moderate accuracy (0·64 ≤ r2 ≤ 0·70) while ash and lipid are poorly predicted (0·33 ≤ r2 ≤ 0·40). However, the season‐specific models improved the prediction accuracy, in autumn (0·73 ≤ r2 ≤ 0·83) for CP, ADF, NDF and lignin; in spring (0·61 ≤ r2 ≤ 0·78) for CP and ash; in summer (0·77 ≤ r2 ≤ 0·80) for CP and ash, indicating a seasonal impact on spectral response.  相似文献   

2.
In vitro ruminal fermentation techniques rely on the availability of fistulated ruminants for rumen fluid (RF), a major constraint for resource‐poor institutions. An alternative would be to use faecal microbes. This study was therefore designed to compare the potency of fresh bovine faeces against RF as sources of microbial inocula for fermenting six contrasting tropical forages using the Tilley and Terry (Journal of British Grassland Society, 18 , 104–111) technique. Faecal inocula were prepared at concentrations of 250 g (Faec250), 300 g (Faec300), 350 g (Faec350), 400 g (Faec400) and 450 g (Faec450) fresh cow faeces per litre bicarbonate buffer. In vitro organic matter digestibility (IVOMD) increased with increasing concentration of faeces at 12‐, 24‐ and 48‐h incubation intervals. All faecal inocula except Faec450 had lower potency when compared with RF at all incubation intervals. Digestibility of forage substrates with Faec450 (533 ± 23 g kg?1 DM IVOMD) was comparable to RF (566 ± 5 g kg?1 DM IVOMD) after 48‐h incubation. Faec450 showed greater potency on more fibrous and low‐protein substrates than RF. The coefficient of determination of the regression models for predicting 12‐, 24‐ and 48‐h RF IVOMD from Faec450 were 0·914, 0·75 and 0·756 respectively. It was concluded that inocula prepared from 450 g cow faeces demonstrated great potential as a substitute and predictor for RF in 48‐h IVOMD assays of tropical forages.  相似文献   

3.
A field experiment was conducted in 2006 and 2007 to determine the agronomic performance and nutritive value of Sorghum almum for introduction in the derived savannah area of Nigeria. The experiment was arranged in a 2 × 4 factorial design with 2 plant spacings (0·5 × 0·5 m and 1·0 × 1·0 m) and 4 nitrogen (N) fertilizer levels (0, 60, 120 and 180 kg N ha?1). Plant height, tiller number, leaf proportion, biomass yield and nutritive value of the herbage were evaluated as part of the search for alternatives (especially drought tolerant) to local forages for dry season feeding of ruminants. Herbage yield data were tested for linear, quadratic and cubic trends to identify the optimal fertilizer levels for both spacings. Spacing × N interactions (P < 0·05) were observed for plant height and tiller number in both years. Agronomic performance was marginally better in 2007 compared with 2006. The maximum dry‐matter (DM) yield of 3500 and 3740 kg ha?1 for the more dense row spacing (0·5 × 0·5 m) was achieved at N fertilizer levels of 144 and 149 kg N ha?1 for 2006 and 2007 respectively. For the less dense (1·0 × 1·0 m) row spacing, the maximum DM yield of 3020 and 3240 kg ha?1 was achieved at 51 and 97 kg N ha?1 for 2006 and 2007 respectively. The crude protein content of the grass ranged from 61 to 89 g kg?1 DM, while the neutral detergent fibre (NDF) content ranged from 700 to 734 g kg?1 DM. The ability of S. almum to persist into the second year in this region is seen as a promising index as persistence is one of the characteristics of a good forage plant. Considering the exorbitant price of N fertilizer, less dense row spacing with N fertilizer rate in the range of 50–100 kg N ha?1 is hereby recommended for this region.  相似文献   

4.
The experiment was conducted in 2005–2007 to evaluate weight performance, blood parameters associated with forage nutrient‐use and anaemia from gastrointestinal nematode (GIN) infection, and faecal egg count (FEC) patterns of meat‐goat kids finished on alfalfa (Medicago sativa L.; ALF); red clover/grass mixture (Trifolium pratense L.; RCG); and orchardgrass (Dactylis glomerata L; OGR) pastures. Forage mass, crude protein (CP) and total digestible nutrients (TDN) displayed complex interactions between treatment and time (< 0·001) across the grazing seasons. Final body weight was greater for goats finished on ALF and RCG than on OGR, except in 2006 when ALF was greater than RCG or OGR. The TDN/CP ratios in forages and blood urea nitrogen concentrations in grazing goats were highly correlated (r = 0·99; = 0·02) and suggested that animals were wasting forage protein. Faecal egg count was variable over the grazing season each year (date and treatment × date interaction; < 0·001), but in general, FEC indicated that goat kids grazing ALF were less affected by GIN than kids grazing RCG or OGR. Research is needed to determine whether strategic energy supplementation would improve protein‐use efficiency and resilience to parasite infection when finishing meat goats on pastures managed for high forage nutritive value.  相似文献   

5.
The selection and feeding of perennial ryegrass (Lolium perenne L.) varieties (PRV) or perennial grass species (PGS) may affect enteric methane (CH4) output because of changes in the fermentation dynamics in the rumen as a result of differences in herbage chemical composition. The objective of this study was to determine the effects of PRV and PGS harvested throughout the growing season on herbage chemical composition, and in vitro rumen fermentation variables and CH4 output per unit of feed using a batch culture technique. Seven PRV (Experiment 1: Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella) and six perennial grasses [Experiment 2: perennial ryegrass (Navan), perennial ryegrass (Portstewart), cocksfoot, meadow fescue, tall fescue, timothy; defined as PGS], managed under a simulated grazing regime, were incubated for 24 h with buffered rumen fluid in two separate experiments. The CH4 output per unit of feed dry‐matter (DM) incubated was not affected (P > 0·05) by PRV (range of mean values across PRV of 23·9–25·3 (SEM 0·41) mL g?1 DM) or by PGS (25·6–26·6 (SEM 0·37) mL g?1 DM). The CH4 output per unit feed DM disappearing during the in vitro rumen incubation was not affected by PRV (33·9–35·1 (SEM 0·70) mL g?1 DM), and although there was an overall PGS effect (P < 0·05; 37·2–40·3 (SEM 0·71) mL g?1 DM), none of the paired contrasts between PGS were significant when analysed using Tukey adjusted comparisons. This outcome reflected either small‐scale or a lack of treatment effects on individual herbage chemical composition (e.g. 454–483 g NDF kg?1 DM, 215–224 g CP kg?1 DM and 94–122 g water‐soluble carbohydrate (WSC) kg?1 DM across PRV; 452–506 g NDF kg?1 DM, 208–243 g CP kg?1 DM and 73–131 g WSC kg?1 DM across PGS) and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the grasses examined, produced within the management regimes operated, would reduce enteric CH4 output per unit of feed in vivo. However, the technique utilized did not take account of animal × PRV or PGS interactions, such as potential differences in intake between animals, that may occur under farm conditions.  相似文献   

6.
A 6 × 6 Latin square experiment with a 2 × 3 factorial arrangement of treatments was used to study forage preservation method and level of concentrate in a diet on organic matter (OM) and N digestion and rumen fermentation. Six bulls, each fitted with ruminal and duodenal cannulae, were given unwilted silage (S) or barndried grass (G) prepared simultaneously from the same timothy sward. The forages were fed together with 250 (L), 500 (M) or 750(H)g concentrate dry matter (DM)kg-1 total diet DM. The concentrate consisted of barley (875 gkg-1) and rapeseed meal (125g kg-1). The feeding level was 80g DMkg-1 live weight0·75. The apparent digestibility of OM was similar for S and G diets, and increased linearly (P < 0·001) with increasing level of concentrate. The flow of microbial N at the duodenum and the apparent efficiency of microbial protein synthesis in the rumen were higher (P < 0·05) with S than with G diets. Increasing the concentrate level increased linearly (P < 0·05) the amounts of total N and microbial N at the duodenum, whereas the synthetic efficiency was not significantly affected. The mean rumen pH decreased linearly (P < 0·001) from 6·43 to 6·03 with increasing concentrate level. The molar proportion of acetate (Ac) in the rumen volatile fatty acids (VFA) showed a linear (P < 0·001) and quadratic (P < 0·01) decrease, and that of butyrate (Bu) a linear (P < 0·001) increase when the level of concentrate was increased. The proportion of propionate decreased slightly with both forages when the amount of concentrate was increased from level L to M. A further increase to level H increased propionate from 157 to 170 mmol mol-1 of total VFA with S and from 157 to 188 mmol mol-1 with G, the effect of concentrate level being not significant. The number of protozoa increased linearly (P < 0·001) as the level of concentrate increased. The changes in the rumen fermentation patterns during the feeding cycle were greater for S than for G diets.  相似文献   

7.
A randomized block design experiment involving thirty beef cattle (mean initial live weight 462 kg) was carried out to evaluate a bacterial inoculant based on a single strain of Lactobacillus plantarum as a silage additive and to provide further information in relation to its mode of action. Three herbages were harvested on 10 August 1989 using three double-chop forage harvesters from the first regrowth of a perennial ryegrass sward which had received 170 kg N, 25 kg P2O5, and 42 kg K2O ha?1. They received either no additive (silage C), formic acid at 2·91 (t grass)?1(silage F) or the inoculant at 3·21 (t grass)?1 (silage I). Mean dry-matter (DM), water-soluble carbohydrate and crude protein concentrations in the untreated herbages were 158g kg?1, 88 g (kg DM)? and 183g (kg DM)?1 respectively. For silages C, F and I respectively, pH values were 4·01, 3·57 and 3·62; ammonia N concentrations 117, 55 and 77 g (kg total N)?1; and butyrate concentrations 2·18, 0·50 and l·24g (kg DM)?1. The silages were offered ad libitum and supplemented with 2·5 kg concentrates per head daily for 77 days. For treatments C, F and I, silage DM intakes were 6·59, 7·25 and 6·80 (s.e. 0·074)kg d?1; metabolizable energy (ME) intakes 86,99 and 94 (s.e. 0·8) MJ d?1; liveweight gains 0·90, 0·97 and 1·02(s.e.0·066) kg d?1; carcass gains 541,656 and 680 (s.e. 34·0) g d?1. Inoculant treatment increased DM (P < 0·01), organic matter (P < 0·01), crude fibre (P < 0·05), neutral detergent fibre (NDF) (P < 0·05) and energy (P < 0·05) digestibilities, the digestible organic matter concentration (P < 0·01) and the ME concentration (P < 0·05) of the total diets. Additive treatment altered rumen fermentation patterns but had little effect on the rumen degradability of silage DM, modified acid detergent (MAD) fibre, NDF or hemicellulose. It is concluded that treatment with the inoculant improved silage fermentation and increased digestibility, had little effect on silage DM intake but significantly increased carcass gain to a level similar to that sustained by a well-preserved formic acid-treated silage  相似文献   

8.
The objectives of this study were to determine the proportion of indigestible neutral detergent fibre (iNDF) in the neutral detergent fibre (NDF) fraction of sugarcane, to estimate changes in NDF digestibility (NDFD) during the harvesting window and to predict sugarcane digestibility based on its fibre fractions. Whole plants of the IAC86‐2480 and IAC93‐3046 varieties were collected during the harvesting windows in 2007 and 2009, respectively. The in vitro true dry matter digestibility (IVTDMD) and fibre contents (NDF, iNDF, acid detergent fibre) were determined by near infrared reflectance spectroscopy (NIRS). The NDFD and potentially digestible NDF digestibility (pdNDFD) were estimated, and the fractional digestion rate of pdNDF was calculated. There was no relationship between growing days and iNDF as a proportion of NDF (= 0·28) or with the fractional digestion rate of pdNDF (= 0·30). Therefore, NDFD (mean = 335 g kg?1) and pdNDFD (mean = 657 g kg?1) remained almost constant during the harvesting window (= 0·70 and = 0·32 respectively). Acid detergent fibre and NDF were the best predictors of sugarcane dry matter (DM) digestibility. In conclusion, NDFD seems to be unchanged during crop growth. The point at which to harvest sugarcane as a forage source should therefore be decided based on NDF concentration, which is greatly influenced by sucrose accumulation.  相似文献   

9.
A first cut of timothy, treated with water (untreated), formic acid (FA), cellulase + lactic acid bacteria (CB), cellulase + hemicellulase (CH) or cellulase + hemicellulase + a lignin-modifying enzyme (CHL), was ensiled in pilot-scale silos. Silages, except CB, were fed to four male cattle, each equipped with a rumen and duodenal cannula, in a digestibility trial designed as a 4 × 4 Latin square. The animals were fed a diet of 400 g of concentrate and 600 g of silage at a level of 70 g DM kg?1 live weight (LW0·75). All enzyme-treated silages were well-preserved with a more extensive fermentation than in FA silage. The quality of untreated silage was poorer as indicated by higher pH and ammonia-N content. The amount of effluent from enzyme-treated silages ranged from 116 to 127 g kg?1; for FA and untreated silages values were 101 g kg?1 and 80 g kg?1, respectively. Total DM losses from enzyme-treated silages were higher than from FA silage (P < 0·05). No significant differences were noticed between silages in the apparent digestibility of organic matter (OM), neutral-detergent fibre (NDF), acid-detergent fibre (ADF) or nitrogen (N). The apparent digestibility of cellulose was higher with enzyme-treated silages than with FA silage (P < 0·05). The values for microbial N flow at the duodenum were 80·0, 91·9, 80·7 and 70·5g N d?1, and for the efficiency of rumen microbial N synthesis 38·6, 47·6, 36·9 and 32·5 g N kg?1 OM apparently digested in the rumen for untreated, FA, CH and CHL silages, respectively. In the rumen the molar proportion of propionate was higher (P < 0·01) and that of butyrate lower (P < 0·01) with enzyme-treated silages when compared with FA silage. The proportion of butyrate was also lower with untreated than with other silages (P < 0·01). The rumen residence time of NDF and ADF was longer (P < 0·05) with enzyme-treated silages than with FA silage.  相似文献   

10.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

11.
Intensive grazing of pastures may cause drastic and rapid changes in swards which have major effects on ingestive behaviour and diet. Twelve adult Angus cows (Bos Taurus), mean live weight of 482±19 kg, were allowed to graze on swards of lucerne (Medicago sativa L.) that were not grazed (TO), or had been grazed previously for 1 h (T1), or 2 h (T2) in a balanced changeover design. Herbage dry ma er (DM) masses (>5 cm) were 2611, 1895 and 1441 kg ha?1; leaf fractions were 0-48, 0-29 and 0-14; and herbage DM allowances per animal were 10·6, 7·9 and 6·0 kg h?1 for TO, T1 and T2, respectively. During a 1 h measured grazing session that followed an overnight fast, cows ingested 2-93, 1·71 and 0·66 kg DM h?1 with herbage DM intakes per bite of 1·6, 0·9 and 0·4 g for T0, T1. and T2, respectively. Rates of biting did not respond to sward treatment and averaged 30 bites min?1. Intake of leaf DM was estimated at 98, 70 and 6% of total DM intake for the same treatment sequence. Utilization of herbage allowance was 0·29, 0·23 and 0·12, for TO, T1 and T2, respectively. Metabolzable energy (ME) intake per animal was 30, 17 and 5 MJ h?1 and ME intake per bite was 16, 9 and 3 KJ for TO, T1 and T2, respectively. Data show that grazing-induced differences in sward characteristics moderate both ingestive behaviour and diet.  相似文献   

12.
Six bulls with ruminal and duodenal cannulae were used in a 6 × 6 Latin square design with a 2 × 3 factorial arrangement of treatments. Barn-dried grass (G) and direct-cut silage (S) from the same sward were fed together with 250 (L), 500 (M) and 750 (H) g kg-1 total dry matter (DM) of a barley-based concentrate (barley 875 and rape-seed meal 125 g kg-1) at the level of 80 g DM kg-1 live weight0·75. Rumen and total digestibility of cell wall constituents were measured by a double marker and total collection method. Rumen pool sizes of dietary constituents were estimated by emptying the rumen. Particle-associated enzyme activities were measured from rumen particulate material and feed particles incubated in nylon bags in the rumen. Neutral detergent fibre (NDF) and hemicellulose digestibility were higher (P<0·05) for G diets than for S diets while no differences were observed between the forages in acid detergent fibre (ADF) and cellulose digestibility. Both rumen and total digestibility of cell wall constituents decreased with increasing level of concentrate. The proportion of total cell wall digestion in the rumen was unaffected by the forage preservation method and the proportion of concentrate. NDF, and especially cellulose digestibility, declined quadratically with increasing level of concentrate. Dietary effects on particle-associated carboxymethylcellulase and xylanase activity were consistent with those observed in cell wall digestion. There were no differences between the forages in rumen pool size of total ingesta or any dietary constituent. Rumen pool size of total ingesta decreased with increasing level of concentrate. On the other hand, DM content of ingesta increased with the level of concentrate, while the pool size of DM, NDF and ADF declined quadratically reaching a minimum on M level of concentrate. The differences in rumen NDF pool size were mainly in the digestible fraction. Calculation of digestion kinetic parameters showed that both the rate of passage and especially the rate of digestion were markedly depressed in animals fed on the highest level of concentrate. The results suggest that a reduced fate of digestion of NDF with high concentrate diets can be partially compensated for by an increased NDF retention time in the rumen of animals fed at a restricted level of feeding.  相似文献   

13.
In recent years, dairy farmers in semi‐arid regions have shifted from maize (Zea mays L.) as their primary source of feed to drought‐tolerant crops, such as millet (Pennisetum glaucum L.), due to lack of water for irrigation. However, millet alone may not provide feed of sufficient quality and crude protein content for dairy cows. A field experiment was conducted in 2 years to evaluate (i) whether intercropping millet with a relatively drought‐tolerant soya bean cultivar (Glycine max Merr, cv. Williams) could improve silage quality with minimum yield penalty, and (ii) if the application of molasses could further enhance the nutritive value of silage of millet–soya bean intercrops. There were three intercropping ratios (60% millet with 40% soya bean, 50% millet with 50% soya bean, 40% millet with 60% soya bean) and monocultures of millet and soya bean. Mixed forages were treated with three levels of molasses: M0 (without molasses), M1, and M2 (2·5 and 5% fresh matter respectively). Inclusion of soya bean in millet crops resulted in decreased silage yield compared with millet alone. The highest yield was obtained from the ratio of 60% millet with 40% soya bean. Molasses‐treated silage had higher lactic acid, lower pH, and lower acid detergent fibre (ADF) and neutral detergent fibre (NDF). Silage produced from millet–soya bean intercrops exhibited enhanced fermentation, indicated by lower pH (3·64) and higher lactic acid (16·63 g kg?1 DM) than silage from monocultures. Intercropping ratios had lower water‐soluble carbohydrate, ADF and NDF than millet monoculture. Overall, an intercropping ratio of 60% millet with 40% soya bean was advantageous over other ratios in terms of higher yield, nutritive value and economic value.  相似文献   

14.
Laboratory experiments with lucerne (Medicago sativa) have shown that maceration at cutting improves silage fermentation. Samples taken during wilting and after various ensiling periods were analysed for lactic acid bacteria (LAB) numbers and indices of silage fermentation. In Experiment 1, in which maceration was tested in unwilted and wilted lucerne, there was an additive effect of maceration and wilting on LAB numbers at ensiling, thus LAB numbers were approximately 108 colony-forming units (cfu) g?1 fresh crop for wilted, macerated forage compared with 103 cfu g?1 fresh crop for unwilted, unmacerated forage at ensiling. Initially, maceration reduced pH (P < 0·001) and increased lactic acid (unwilted comparison only; P < 0·001) and insoluble N (wilted comparison only; P < 0·001) concentrations. After 70 d ensiling, beneficial effects of maceration were associated only with the wilted silage. In Experiment 2, macerated lucerne was compared with unmacerated material, which was either ensiled after a wilting period of similar length or after wilting had proceeded to the same DM concentration as in the macerated forage. During wilting, LAB numbers were significantly higher in macerated than unmacerated forage (P < 0·05). This was also the case during the first 16 h of ensiling (P < 0·01). A decline in pH was observed earlier in macerated silage. Two days after ensiling, lactic acid concentration was higher in macerated silage (P < 0·05), but insoluble N concentration was not different. In a third experiment, unconditioned forage was compared with forages ensiled after regular conditioning or maceration. Although drying rate over 30 h was not influenced by degree of conditioning, LAB numbers during wilting increased with the degree of conditioning. In silages made from these treatments after 6 h wilting, there were no major effects on fermentation characteristics. In a fourth experiment, digestibility and voluntary intake of precision-chopped silage were measured in sheep and found not to be increased by maceration. It was concluded that maceration per se resulted in marginal improvements in fermentation; however, when maceration also increased DM concentration, fermentation was markedly improved. In these precision-chopped silages, maceration had no effect on intake or digestibility.  相似文献   

15.
The dry matter (DM) yield and degradability of 6‐week‐old harvests of tropical forages were measured over a season. The forages were nitrogen‐fertilized Guinea grass (Panicum maximum, NFG), unfertilized Guinea grass (UFG), Verano stylo (Stylosanthes hamata,VS), a Guinea grass–Verano stylo mixture (GSM) and Guinea grass in the grass–Verano stylo mixture (GGSM). Six‐week‐old forages were made possible through a cutting regime, which produced four harvests in the growing season. The DM yields of the forages differed significantly (P < 0·001) and showed a significant reduction (P < 0·01) across the season. Crude protein and neutral‐detergent fibre concentrations were significantly (P < 0·01) different between the forages but there was no difference between harvests. The DM degradability of the forages at all harvests were significantly (P < 0·001) different with differences in the soluble fraction (a), degradable fraction (b), potential degradability (PD) and effective degradability (ED), but rate of degradability (c) did not show any significant difference between the forages. Significant (P < 0·01) differences were found between harvests for b and PD, and for the interaction between forage and harvest for b, PD and ED but were not found for the a and c fractions. Both the PD and ED values of all the forages fell with advancing harvests. Although the 6‐week‐old harvests of forage were found not to influence the characteristic reduction in yield of tropical grasses over time, it is concluded that such a management system could be used to obtain forage of relatively high nutritive value during the growing season.  相似文献   

16.
Abstract Cerastium holosteoides is a short‐lived plant often found in small proportions on dry and mesotropic semi‐natural, species‐rich grassland communities. To obtain more information about its nutritive value, two experiments on Arrhenatheretum elatioris grassland were carried out to examine the effect of harvest date on in vitro organic matter digestibility (IVOMD), neutral‐detergent fibre (NDF), acid‐detergent fibre (ADF), acid‐detergent lignin (ADL), estimated net energy for lactation (NEL) and crude protein (CP) concentrations of C. holosteoides, and selection of this plant by dairy cows grazing on semi‐natural grassland. C. holosteoides starts flowering in spring and continuously develops new flowers on new branches throughout the summer. Harvests were made in relation to particular growth stages of Dactylis glomerata present in the sward: (A) tillering; (B) stem elongation; (C) ear emergence; (D) flowering; and (E) ripening. Chemical composition and nutritive value were evaluated in 1998 and 1999. With advancing maturity, IVOMD of C. holosteoides decreased from 0·771 at growth stage A to 0·485 at growth stage E. At the same time, CP concentration decreased from 153 to 69 g kg?1 dry matter (DM) and estimated NEL concentration from 6·00 to 4·07 MJ kg?1 DM. With advancing maturity, there was a significant increase in NDF, ADF and ADL concentrations. In the summer harvest season, C. holosteoides contained significantly higher NDF, ADF and ADL concentrations, lower NEL concentration and had a lower IVOMD value than in the spring. Differences between years were also found for IVOMD and for NDF, ADF, ADL and NEL concentrations. In a grazing experiment in the year 1999, at growth stage B, Simmental cows grazed an A. elatioris sward in which the main species was D. glomerata (0·092), and the proportion of C. holosteoides was 0·034. C. holosteoides was, on average, grazed by cows to the same relative extent as other species in the sward.  相似文献   

17.
When describing the methods of analysis of neutral‐detergent fibre (NDF) it is valuable to know if different modifications of the standard method of analysis give the same absolute results or if the analysing method has to be specified. In this study two modifications of the standard method were compared, a 16‐h oven technique and a filter‐bag technique. The comparisons were conducted using thirty‐two timothy (Phleum pratense L.) and thirty‐two red clover (Trifolium pratense L.) samples. The study showed that both methods ranked the forage samples in the same relative order and had good accuracy. However, the NDF concentrations for the filter‐bag system were on average 7·8 g kg?1 DM higher for the red clover samples and 39·7 g kg?1 DM higher for the timothy samples. The difference in concentration of NDF for the red clover samples was smaller than the field variation and the daily change in NDF concentration, but in timothy the difference was four to five times larger than the field variation and the mean daily changes in NDF concentration. The study shows that it is important to specify the method of analysis for NDF when analysing timothy samples but not red clover samples, and that for this dataset it was possible to use a correction constant to recalculate the results from one method to the other.  相似文献   

18.
Maize and amaranth forages, produced during the wet season, have the potential to bridge the gap in forage supply to ruminants during the dry season in Nigeria. In two growing seasons (2006 and 2007), effects of intercropping and fertilizer application on dry matter (DM) yield and chemical composition of forages, and land use efficiency, were studied in two experiments. The digestibility of sun‐dried or ensiled maize, amaranth or maize–amaranth mixtures was measured using West African dwarf sheep in a third experiment. Maize showed a higher response to fertilizer application than amaranth or maize–amaranth mixtures. With fertilizer application, DM yield varied significantly (P < 0·05) between species and intercropped mixtures. Dry matter yield ranged from 7·1 (amaranth) to 12·6 t ha?1 (maize) in 2006 and 6·9 (amaranth) to 11·3 t ha?1 (70:30 maize–amaranth population mixture) in 2007. Crude protein (CP) concentration of whole plants ranged from 99·0 (maize) to 227·0 g kg?1 DM (amaranth). Dry matter digestibility values of sun‐dried maize, sun‐dried maize:amaranth 50:50 mixture, sun‐dried amaranth, ensiled maize, ensiled maize:amaranth 50:50 mixture and ensiled amaranth were 0·718, 0·607, 0·573, 0·737, 0·553 and 0·526 respectively. Intercropping increased forage yield and land use efficiency compared to amaranth but had no yield advantage over maize. Although DM digestibility of maize was higher than that of amaranth or the maize:amaranth mixture, digestible CP yield ha?1 was higher with amaranth in the cropping mixture, showing that amaranth could complement maize in systems where CP is the limiting factor to livestock production.  相似文献   

19.
Herbage allowance is one of the important pasture factors in the determination of intake by grazing livestock. Ingestive behaviour of 12 adult Angus cows (Bos taurus) was measured over a range of allowances (0·25 to 0·72 kg dry matter (DM) per 100 kg live weight (LW) for a 1-h period) of vegetative tall fescue (Festuca arundinacea Schreb.). A balanced change-over design was used to estimate direct, residual and permanent effects of herbage allowance on rate of DM intake, rate of biting and herbage DM intake per bite. In Experiment 1, herbage DM intake per meal increased linearly from 0·68 to 1·72 kg (100 kg LW)?1 as DM allowance increased from 0·25 to 0·72 kg (100 kg LW)?1 h?1. Cows grazed at ·30 kg (100 kg LW)?1 h?1 and stopped grazing when the sward was reduced to a height about 10 to 12 cm above the soil surface, approximately defined by the tops of pseudostems. In Experiment 2, herbage DM intake rates of 0·29, 0·47 and 0·42 kg (100 kg LW)?1 h?1 were recorded as cows grazed allowances of 0·43, 0·70 and 0·90 kg (100 kg LW)?1 h?1 for most of the 1-h grazing period. Limiting herbage DM allowances in Experiment 2 were associated with small reductions in rate of biting and herbage DM intake per bite as allowance declined. Sward DM density (>5 cm) was an important variable in the determination of herbage DM intake rates at lower herbage allowances.  相似文献   

20.
The effect of the structure of a tropical pasture, based on Dichanthium spp., on the ingestive behaviour, in vivo digestibility of the diet and herbage intake by eight Creole tethered heifers was studied. Two levels of nitrogen fertilizer (0 and 50 kg ha?1) were applied to plots after each grazing cycle and there were 28 d between each of the three grazing cycles. Four heifers grazed individual subplots daily on each plot for 14 d in each of the successive grazing cycles. Simultaneous measurements of bite depth, bite mass, biting rate, short‐term intake rate and daily grazing time were made in two 4‐d periods at the end of each 14‐d period. The in vivo organic matter digestibility (OMD) and daily herbage organic matter intake (OMI, expressed on a kg LW0·75 basis) were also measured at the same times. Relationships among pasture characteristics and ingestive behaviour were similar to those reported in other short‐term studies: pasture height was highly correlated with bite depth, bite mass and biting rate (r = 0·91, r =0·79 and r = ?0·68, respectively, P < 0·001). Pasture variables had lower correlations with grazing time and short‐term intake rate than with bite depth, bite mass and biting rate. Pasture structure was more highly correlated with OMD than OMI: leaf mass and length and also the extended tiller length were highly correlated with OMD (r = 0·77, r = 0·76 and r = 0·72, respectively, P < 0·001) whereas the crude protein concentration of the herbage was correlated with OMI and digestible OMI (r = 0·50 and r = 0·69, respectively, P < 0·001). Ingestive behaviour variables, as well as OMD, were correlated more with pasture characteristics than was OMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号