首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For sustainable management of scab‐resistant apple cultivars, it is necessary to understand the role of aggressiveness in the adaptation of Venturia inaequalis populations and particularly the costs to the organism of acquiring additional virulence. The aims of the present study were (i) to identify the quantitative variables that are most important in determining the differences in aggressiveness among groups of V. inaequalis isolates, and (ii) to ascertain whether virulent and avirulent isolates of V. inaequalis differ significantly in aggressiveness. The aggressiveness of eight isolates that differed in their virulence to the major resistance gene Rvi6 was compared on the non‐Rvi6 apple cv. Gala. Three components of aggressiveness, namely lesion density, the number of spores per square centimetre of leaf area, and the number of spores per lesion, were evaluated 21 days after inoculation, and the kinetics of lesion density over time were analysed in terms of maximum lesion density, length of latent period and rate of lesion appearance. On the second youngest but fully developed leaf at the time of inoculation, maximum lesion density in the virulent group was 20% lower and the latent period 7% longer, than in the avirulent group. However, the alternative hypothesis, namely that isolates had adapted to quantitative resistance present in cv. Gala depending on their cultivar of origin, could not be rejected. The analysis of the kinetics of lesion density by a non‐linear mixed‐effect model proved useful in the assessment of aggressiveness.  相似文献   

2.
The ascomycete Venturia inaequalis causes annual epidemics of apple scab worldwide. Scab development is reduced in mixed cultivar orchards compared with monocultures. In order to use mixtures in commercial production, how the population of scab changes in a mixed orchard needs to be understood, together with how likely a super race, with virulence factors overcoming multiple resistance factors in the mixed orchard, is to emerge and become dominant. This study used simple sequence repeat (SSR) markers to investigate the temporal change of scab populations in two mixed cultivar orchards in the UK to infer the likelihood of emergence of a scab super race. There were no significant differences between the populations at the two sampling times (6 or 7 years apart) in either of the two mixed orchards. In one of the orchards, apple scab populations on different cultivars were significantly different and the differences did not diminish over time. These results suggest that it is not inevitable that a super race of V. inaequalis will become dominant during the lifetime of a commercial apple orchard.  相似文献   

3.
Apple scab caused by Venturia inaequalis is a major disease in apple production. Epidemics in spring are initiated by ascospores produced on overwintering leaves whereas epidemics during summer are driven by conidia produced on apple leaves by biotrophic mycelium. Fungal colonisers of sporulating colonies of V. inaequalis were isolated and their potential to reduce the production of conidia of V. inaequalis was evaluated on apple seedlings under controlled conditions. The four most effective isolates of the 63 screened isolates were tested subsequently under Dutch orchard conditions in 2006. Repeated applications of conidial suspensions of Cladosporium cladosporioides H39 resulted in an average reduction of conidial production by V. inaequalis of approximately 40%. In 2007, applications of conidial suspensions of C. cladosporioides H39 reduced conidial production by V. inaequalis by 69% on August 6 and by 51% on August 16, but no effect was found on August 20. However, viability of available conidia of C. cladosporioides H39 was low at the end of the experiment. Epiphytic and endophytic colonisation by Cladosporium spp. of leaves treated during the experiment with C. cladosporioides H39 was significantly higher than on control leaves sampled 6 weeks after the last application. It is concluded that C. cladosporioides H39 has promising potential as a biological control agent for apple scab control. More information is needed on the effect of C. cladosporioides H39 on apple scab epidemics as well as on mass production, formulation and shelf life of conidia of the antagonist.  相似文献   

4.
Leaves of apple (Malus domestica cv. Elstar) were infected with a cloned isolate of the apple scab Venturia inaequalis. The intercellular washing fluid (IWF) of these plants was collected and the variation in the composition of proteins in the IWF was analysed by SDS-PAGE and two-dimensional gel electrophoresis during and after the infection with V. inaequalis, the causal agent of apple scab. The subsequent analysis of induced proteins by electron spray ionization quadrupole time of flight mass spectroscopy revealed the presence of -1,3-glucanase, chitinase, thaumatin-like protein and a cysteine-like protease in M. domestica leaves infected by V. inaequalis. These results were confirmed by immunoblotting with antibodies against some of these proteins. Moreover, a non-specific lipid transfer protein was identified in uninfected leaves: the amount declined to a non-detectable level within the first week after infection by V. inaequalis. The analysis of the IWF of M. domestica cv. Remo, bearing resistances to apple scab, powdery mildew and fire blight, showed a protein pattern comparable to that of the IWF from V. inaequalis infected leaves from cultivar Elstar indicating the constitutive production at least of some of the pathogenesis-related proteins in the resistant cultivar.  相似文献   

5.
The effect of an extract of Yucca schidigera on the control and infection process of the apple scab pathogen, Venturia inaequalis, was examined and compared with the chemical resistance inducer, acibenzolar-S-methyl (ASM). In seedling assays, both materials significantly reduced apple scab symptoms and pathogen sporulation on leaves and both showed similar control efficacies as the reference treatment, sulphur. Whereas yucca extract and sulphur gave significant inhibition of conidial germination in vitro, ASM did not inhibit germination. Histopathological studies of the infection process of V. inaequalis in apple leaves showed that the yucca extract primarily acted by inhibiting pre-penetration events and penetration itself. In contrast, the ASM treatment significantly inhibited more stages of the infection process (pre-penetration, penetration and post-penetration events). These observations suggest that the yucca extract acted mainly by a direct fungitoxic effect whereas ASM, as expected, acted as a resistance inducer. However, expression studies of two genes encoding the PR proteins, PR1 and PR8, in apple seedlings indicated that yucca extract may also affect plant defence as expression of both genes was up-regulated following yucca treatment, to a level similar to that observed after treatment with ASM. The fungitoxic effect of sulphur on V. inaequalis was also confirmed in this study.  相似文献   

6.
BACKGROUND: Myclobutanil, a demethylation inhibitor (DMI) fungicide, is an important fungicide for controlling apple scab and powdery mildew. Overuse of this fungicide has led to establishment of scab isolates with reduced sensitivity to this fungicide in several countries. Experiments were conducted to determine the sensitivity of the causal agent of apple scab, Venturia inaequalis (Cooke) Winter, to myclobutanil in the UK, in order to assess whether there is a relationship between fungal insensitivity and the number of DMI applications, and establishing whether fungal sensitivity varied greatly within an orchard. RESULTS: Reduced sensitivity of V. inaequalis to myclobutanil was positively related linearly to the number of DMI applications. ED50 values ranged from 0.028 to 1.017 mg L?1 (average = 0.292) for the baseline population, whereas isolates from two other orchards had much greater ED50 values, ranging from 0.085 to 5.213 mg L?1 (average = 1.852). There was significant variation in fungal sensitivity to myclobutanil among fungal isolates from different locations within a single orchard. CONCLUSIONS: Spatial spread of insensitive isolates of V. inaequalis to myclobutanil is likely to be limited in distance. Conidia may be an important source of primary inoculum. Myclobutanil should still be effective for most field isolates, but its use should be strategically integrated with other groups of fungicides. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
Quantitative plant resistance is supposed to be more durable than qualitative resistance for the control of plant diseases. However, it has been experimentally shown that erosion of quantitative resistance can occur. Cumulation of quantitative resistance loci (QRLs) in the same cultivar is considered to improve the efficiency and durability of quantitative resistance, but the choice of QRLs to be combined is of crucial importance. This study investigated whether the combination of QRLs acting on different stages of pathogen development could improve the efficiency of resistance in the apple scab pathosystem. The efficiencies of three QRLs were evaluated against 10 isolates of Venturia inaequalis and the stages of pathogen development that were affected by the QRLs were defined microscopically. A gain in the efficiency of resistance was observed when QRLs were pyramided compared to when they acted alone. Thanks to the combined effects of the individual QRLs, the pyramiding of the three QRLs hindered fungal development at different stages: before the penetration of the plant cuticule, after the penetration with hypersensitivity reaction, and during the colonization and asexual reproduction. These effects were dependent on the V. inaequalis isolates. These results suggest that the gain in efficiency of resistance by pyramiding may derive from the combination of different and complementary molecular mechanisms underlying QRLs. Thus, the resistance achieved from pyramiding such a combination of QRLs should be durable.  相似文献   

8.
Colletotrichum isolates (457) were collected from strawberry plant tissues with and without typical anthracnose symptoms and from symptomless weeds in 19 Belgian strawberry fields. The isolates were characterized based on genetic, morphological and pathological features. Isolates were classified according to rDNA‐ITS sequencing: 97% of 211 representative isolates were C. acutatum, 2%C. gloeosporioides and 1%C. coccodes. The C. acutatum isolates belonged to the intraspecific groups A2 (33%), A3 (5%), A4 (50%), A5 (3%) and A7 (6%). Differences in spore morphology, growth rate and colony colour of a selection of 146 isolates confirmed the genetic grouping. Multiple Colletotrichum genotypes were detected in the same field. There was no association between the most common genotypes and geographic origin, presence or absence of symptoms, nor plant species or plant part. Representative Belgian Colletotrichum isolates were used in pathogenicity tests, together with European and American reference isolates. The C. acutatum A2 and the Belgian C. gloeosporioides isolates were the most aggressive on fruits, followed by C. acutatum A3, A4, A5, A7 and C. coccodes isolates. When inoculated into crowns, C. acutatum A2, A5 and American C. gloeosporioides isolates were the most aggressive, followed by C. acutatum A3 isolates. The A4 and A7 isolates and all European C. gloeosporioides isolates were non‐pathogenic on crowns. These data indicate that an unusually diverse Colletotrichum population is present in Belgium. The traditional differentiation between C. acutatum and C. gloeosporioides as causal agents of fruit and crown rot, respectively, proved not to be valid in Belgian strawberry fields.  相似文献   

9.
Apple scab is one of the most economically important diseases of apples worldwide. The disease is caused by the haploid ascomycete Venturia inaequalis. Growing apples in cultivar mixtures may reduce disease severity. To determine how the pathogen population structure is affected by host mixtures we studied 24 V. inaequalis isolates sampled from three different apple cultivars (Bramley, Cox, and Worcester) growing in a mixed orchard approximately 50 years old. The isolates were aligned against a reference genome and single nucleotide polymorphisms (SNPs) were called between the isolates. The populations isolated from Bramley and Worcester were distinct, while Cox isolates were an admixture. This supports previous tests of the ability of isolates to cross-infect hosts, and molecular comparisons using simple sequence repeats (SSRs). Genotype-specific allele (GSA) loci were not distributed randomly across contigs in proportion to contig length, but were clustered. Clustered GSA loci were observed in almost all contigs. This indicates population differentiation across the whole genome, presumably due to lack of crossing-over events between Bramley and Worcester isolates. This lack is probably due to physical separation effects: sexual mating is more likely to take place and succeed between isolates from lesions on the same leaf than from contact between independently infected leaves in leaf litter on the orchard floor. This would especially be the case if sexual reproduction is initiated before leaf-fall.  相似文献   

10.
Sclerotinia soft rot, caused by Sclerotinia sclerotiorum, is a severe disease of cultivated carrots (Daucus carota ssp. sativus) in storage. It is not known whether Sclerotinia soft rot also affects wild carrots (D. carota ssp. carota), which hybridise and exchange genes, among them resistance genes, with the cultivated carrot. We investigated the susceptibility of wild carrots to S. sclerotiorum isolates from cultivated carrot under controlled and outdoor conditions. Inoculated roots from both wild and cultivated plants produced sclerotia and soft rot in a growth chamber test. Two isolates differed significantly in the ability to produce lesions and sclerotia on roots of both wild carrots and cv. Bolero. Flowering stems of wild carrots produced dry, pale lesions after inoculation with the pathogen, and above-ground plant weight was significantly reduced 4 weeks after inoculation in a greenhouse test. Wild and cultivar rosette plants died earlier and fewer plants survived when inoculated with the pathogen under outdoor test conditions. Cultivar plants died earlier than wild plants, but survived as frequently. Plants inoculated in the crown died earlier and at a lower frequency than plants inoculated on leaves. Wild carrots may thus serve as a host of S. sclerotiorum and thus eventually benefit from any uptake of resistance genes, among them transgenes, via introgression from cultivated carrots.  相似文献   

11.
Large‐scale virulence tests using trees or saplings are expensive, time‐consuming and require a considerable amount of space. The suitability of using ‘Golden Delicious’ apples as a rapid screen for identifying Ophiostoma novo‐ulmi transformants with reduced virulence was thus evaluated. When a collection of O. novo‐ulmi field isolates belonging to subspecies novo‐ulmi or americana was inoculated to apples, members of subsp. novo‐ulmi induced, on average, larger necrotic lesions than subsp. americana isolates. The size of the lesions on apples was not correlated with mycelial growth rate of isolates on nutrient agar. Insertional mutants from O. novo‐ulmi subsp. novo‐ulmi isolate H327 were inoculated to ‘Golden Delicious’ apples and Ulmus parvifolia × U. americana saplings in parallel experiments. Results clearly indicated that the O. novo‐ulmi transformants included several exhibiting significantly altered levels of virulence. Variability among replicates within a treatment was reduced in apple inoculation data compared to elm sapling data. Overall, the ‘Golden Delicious’ apple assay was found to be an excellent means for rapidly assessing the virulence level of O. novo‐ulmi isolates.  相似文献   

12.
A screening system for apple proliferation resistance was developed, based on in vitro graft‐inoculation with the causal agent ‘Candidatus Phytoplasma mali’. For this, in vitro cultures of the field‐resistant apomictic genotypes Malus sieboldii, H0909, D2212 and the susceptible Malus × domestica genotypes Golden Delicious and rootstock M9 were established, as well as in vitro cultures of Rubinette and Golden Delicious infected with ‘Ca. P. mali’ strains PM4 and PM6, respectively. Healthy in vitro shoots were inoculated by micrografting with infected shoots used as graft tip. After 6 weeks graft contact no significant differences for graft quality were observed between healthy and infected grafts. Mortality of grafts and transmission rates were not significantly different among the different genotypes. The phytoplasma concentration in inoculated shoots was determined at different times post‐inoculation (p.i.) by quantitative real‐time PCR. Infected M. sieboldii and D2212 had lower phytoplasma concentration than the susceptible controls and showed no symptoms. H0909 showed an intermediate behaviour exhibiting lower phytoplasma concentrations with strain PM4 but growth was affected. The dynamics of phytoplasma concentration reached a maximum at 6–8 months p.i. for all genotypes but the values for 3–5 and 10–12 months p.i. were similar. The resistance of M. sieboldii and D2212 was confirmed in vitro. A significant difference in phytoplasma concentration was observed between strains PM4 and PM6.  相似文献   

13.
为了解新疆天山野果林中塞威士苹果Malus sieversii与其林下伴生植物短距凤仙花Impatiens brachycentra两种植物叶斑病病原菌的多样性及同源性,采用组织分离法获得病原菌,基于rDNA-ITS序列构建系统发育树,并进行ITS序列BLAST同源性比对,对病原菌进行鉴定分类,并依据科赫氏法则测定致病性。结果显示,从新疆新源县天山野果林中的塞威士苹果及短距凤仙花病叶上共分离得到18株菌落形态各异的病原菌,分属于2属4种,绝大多数属于半知菌亚门。其中,链格孢属Alternaria sp.为塞威士苹果和短距凤仙花叶斑病病原真菌中的优势菌群。致病性测定结果显示,其中11株病原真菌对塞威士苹果具有致病性,7株病原真菌对短距凤仙花具有致病性;塞威士苹果所有的病原真菌对短距凤仙花均有致病性,而且短距凤仙花所有的病原真菌对塞威士苹果也有致病性。推测2种植物叶斑病可能由相同来源的病原真菌引发,短距凤仙花染病加剧了塞威士苹果叶斑病暴发,可能是野果林退化的重要原因。  相似文献   

14.
Atypical scab‐like symptoms were reported for the first time in 2007 in the south of France on fruits of apple cultivars carrying the Rvi6 (=Vf) major resistance gene to Venturia inaequalis. With microscopic observations, nucleotide sequence data and pathological tests, it was shown that the causal agent was Venturia asperata. Scanning electron microscopy was used to compare its infection process and conidiogenesis to those of Venturia inaequalis on apple and Venturia pirina on pear. Venturia asperata produced fewer hyphae and fewer spores than the two other Venturia species, and resulted in weaker symptoms. This fungal species was previously described as a saprotroph on apple leaf litter. This is the first report of damage on apple fruits caused by V. asperata. Changes in host and cultural practices may have created a new context favourable for the emergence of this pathogen. It was also detected on symptomless leaves and on overwintered leaves on the ground. Pseudothecia developed on overwintered leaves and released ascospores over a 2‐month period from the end of March until the end of May, suggesting that the fungus is able to survive from season to season. However, it is not yet known if this new disease will establish over coming years and become an emergent disease.  相似文献   

15.
The aim of this study was to confirm the presence of races in populations of the fungus Venturia inaequalis that are able to overcome specific apple scab resistance gene(s) within the major apple-growing areas of Poland. The monitoring was conducted in six orchards located in the north, centre and south of Poland. The study involved the use of 16 differential genotypes for pathogenicity testing conducted under both greenhouse and orchard conditions. In addition, the occurrence of apple scab on 10 apple cultivars containing the Rvi6 gene was assessed in four organic orchards in central Poland. Apple scab was found on their leaves for the first time in Poland in 2010. The use of differential genotypes containing specific resistance genes suggested that 10 apple scab resistance genes had been overcome by V. inaequalis in the orchards monitored in this study.  相似文献   

16.
The aggressiveness of Alternaria dauci isolates was investigated in greenhouse conditions. Twenty‐seven isolates were pre‐selected from a large collection to represent high diversity according to geographic or host origins and intergenic spacer (IGS) polymorphism. IGS sequence analysis revealed that isolates were grouped within three different clusters. Eleven isolates were selected and inoculated on a susceptible carrot cultivar. Three criteria (mean lesion number, mean necrotic leaf area and mean disease index) were used to assess the aggressiveness of isolates. Continuous variation in aggressiveness was shown and no clear division into isolate classes was evident. For the host range study, two isolates were inoculated under greenhouse conditions onto nine cultivated Apiaceae species, two wild Daucus species and six cultivated non‐Apiaceae species representing six botanical families. Lesions varying in severity were observed on all dicot species (Apiaceae and non‐Apiaceae), but no symptoms developed on the two monocots studied (leek and sweetcorn). Plant species were also differentiated on the basis of expanding lesions (cultivated and wild carrot, dill and fennel) or non‐expanding lesions (other dicot species). Typical A. dauci conidia were observed after in vitro incubation of leaves with symptoms. Fungal structures were isolated from lesions and A. dauci was confirmed on the basis of conidial morphology and specific conventional PCR results. Genotyping of individual isolates performed with microsatellite markers confirmed the presence of the inoculated isolate. The results clearly showed that, in controlled conditions, the host range of A. dauci is not restricted to carrot.  相似文献   

17.
Apple scab, caused by Venturia inaequalis, can lead to large losses of marketable fruit if left uncontrolled. The disease appears in orchards during spring as lesions on leaves. These primary lesions are caused by spores released at bud burst from overwintering sources; these spores can be sexually produced ascospores from the leaf litter or asexual conidia from mycelium in wood scab or within buds. The relative importance of conidia and ascospores as primary inoculum were investigated in an orchard in southeast England, UK. Potted trees not previously exposed to apple scab were placed next to (c. 1 m) orchard trees to trap air‐dispersed ascospores. Number and position of scab lesions were assessed on the leaves of shoots from both the potted trees (infection by airborne ascospores) and neighbouring orchard trees (infection by both ascospores and splash‐dispersed, overwintered conidia). The distribution and population similarity of scab lesions were compared in the two tree types by molecular analysis and through modelling of scab incidence and count data. Molecular analysis was inconclusive. Statistical modelling of results suggested that conidia may have contributed approximately 20–50% of the primary inoculum in early spring within this orchard: incidence was estimated to be reduced by 20% on potted trees, and lesion number by 50%. These results indicate that, although conidia are still a minority contributor to primary inoculum, their contribution in this orchard is sufficient to require current management to be reviewed. This might also be true of other orchards with a similar climate.  相似文献   

18.
BACKGROUND: Venturia inaequalis (Cooke) Winter with reduced sensitivity to strobilurins has been reported in several countries, including Italy. This study aimed to characterise the sensitivity to strobilurins of three different types of V. inaequalis population: (a) wild types; (b) from commercial orchards satisfactorily managed with strobilurins; (c) from an experimental orchard with control failures by trifloxystrobin and kresoxim‐methyl. In vitro sensitivity tests included antigerminative activity on population conidia and mycelial growth inhibition on monoconidial isolates. Cleaved amplified polymorphic sequence (CAPS) analysis was used for the detection of G143A substitution. RESULTS: Wild‐type populations showed EC50 values lower than 0.031 mg L?1, while those of orchards with good performance by strobilurins presented EC50 values never higher than 0.063 mg L?1. Samples with scab control failures showed a strongly reduced population sensitivity. Similar differences were confirmed in monoconidial isolates. The G143A substitution was always detected in low‐sensitivity populations, only sometimes in well‐controlled populations and generally not in wild types. CONCLUSIONS: In vitro sensitivity assays were able to discriminate the three population types with different scab management, while the qualitative PCR analysis (CAPS) was only partially reliable. High sensitivity differences among V. inaequalis populations with good and poor field control by strobilurins were observed. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
A large‐scale survey was carried out to assess the occurrence, natural host range and genetic diversity of Blackcurrant reversion virus (BRV) in cultivated and wild Ribes in Latvia using RT‐PCR and sequence analyses of 3′ NTR of BRV RNA2. The virus was detected in all surveyed habitats in most of the studied Ribes, except gooseberries, Ribes sanguineum, Ribes laxiflorum and crossbreeds between blackcurrants and gooseberries. The overall occurrence of BRV was 27%, although it varied significantly among the surveyed Ribes habitats, exceeding 40% in home gardens and germplasm collections. Among cultivated Ribes, blackcurrants were the most infected and BRV was detected in all commonly grown cultivars. The virus was detected for the first time in Ribes aureum, Ribes fragrans, Ribes nigrum var. pauciflorum and Ribes fasciculatum var. chinense. The sequence identities of the studied fragments of RNA2 3′ NTR varied from 92.8% to 99.7% among 26 BRV isolates from various cultivated, ornamental and wild hosts from Latvia and from 91.1% to 97.1% when they were compared with 27 corresponding sequences from GenBank. Phylogenetic analyses revealed that the major clustering of isolates was not related to host, origin or symptoms. Grouping of BRV isolates based on host or location was identified within the phylogenetic subclusters. Several well‐supported clades were formed within the subclusters, including a group of BRV isolates from redcurrants that had unique nucleotide substitutions. Five putative recombinants were identified for the first time among BRV isolates from Latvia, Finland, Scotland and the Czech Republic.  相似文献   

20.
苹果黑星病是辽宁省植物检疫对象。目前主要分布于小苹果栽植区及大、小苹果混栽区,已接近辽宁南部的大苹果主产区。经自然感病和人工接种证明,大、小苹果上的黑星病菌可以交互侵染,目前一些主栽的大苹果品种均能感染此病。辽宁地区苹果黑星病的初次侵染来源是落地越冬病叶上于翌春产生的子囊孢子。分生孢子不能越冬成活。苹果枝条及芽鳞不带菌。黑星病菌的两种孢子随气流传播,使病害逐步扩大蔓延。经过6年的观察,苹果黑星病发生始期早晚及发病轻重,与早春和夏季的降水量多少成正相关。田间药剂防治试验结果,以托布津、乙磷铝、多菌灵、特克多等药剂防治效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号