首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

Stem form and taper changes after thinning and thinning combined with N fertilization were studied in 23 Norway spruce [Picea abies (L.) Karst.] and 46 Scots pine (Pinus sylvestris L.) stands in Sweden observed for 5-28 yrs. Average taper was calculated for the stem section 1.3-6.0 m above ground level and as the ratio between the diameter at breast height and total tree height for periods of 5-10 yrs. At the start of the experiment, before the first thinning, the dominant height was 12-15 m. Once 65% of the basal area had been removed in a single thinning from below, the remaining trees showed a strong increase in taper compared with trees in unthinned stands. Stems in stands treated with heavily recurrent thinnings from below also increased in taper, although the increases were not always statistically significant. Trees in thinned, N-fertilized Scots pine stands in middle and northern Sweden developed a more pronounced taper compared with stems in equally thinned, unfertilized stands.  相似文献   

3.
Altogether 82 plots (261 estimations) of Picea abies (L.) Karst, and 193 plots (360 estimations) of Pinus sylvestris (L.) stands were estimated by a vertical tube. The “crown free projection”, CFP, of stands thinned in three methods with different thinning grades was measured: unthinned, heavily and very heavily thinned, heavily thinned delayed first thinning, extra heavily thinned and thinned from the top. Basal area (m2ha?1) density (stems ha?1) and diameter sum (m ha?1) were plotted against CFP. Basal area was the best practical measure of stand in this study. Generally Scots pine stands have higher CFP and the curves are steeper than in Norway spruce stands. Depending on the grade of thinning, heavily and very heavily thinned spruce stands, delayed first thinning included, have CFP values of 10–15% and stands thinned from the top, 20–40%, compared with 30–80% and 30–60% respectively in pine stands. Extra heavily thinned stands have the highest CFP, 20–80% in spruce and 50–90% in pine stands. The CFP levels after thinning are too high in pine stands for avoidance of sucker and sprout production of aspen and birch. In dense Norway spruce stands thinned from the top or heavily and very heavily thinned, the CFP values are low enough (≤30%) to diminish the production of suckers.  相似文献   

4.
In Central Europe, the conversion of pure Norway spruce stands (Picea abies [L.] Karst.) into mixed stands with beech (Fagus silvatica L.) and other species like e.g. Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) is accomplished mainly by underplanting of seedlings beneath the canopy of overstorey spruce trees after partial cutting treatments what means exposure to shade and below-ground root competition by the overstorey to the seedlings. Particularly about the second factor, our knowledge is limited. Therefore, we carried out a below-ground competition exclusion experiment by root trenching and investigated the effects on soil resources, growth, and biomass partitioning of underplanted beech and Douglas fir saplings under target diameter and strip cutting treatments. The exclusion of overstorey root competition by trenching increased the soil water potential in the second year that had a fairly dry growing season and led to significantly higher foliar concentrations of most nutrients, particularly in Douglas fir, indicating an amended nutrient supply. Both improvements were accompanied by an increase in length and diameter increment of the underplanted saplings, appearing in both species only after having surpassed a species-specific threshold light value (Douglas fir 16% of above canopy radiation, beech 22%). We also found significant interactions between trenching and light for specific fine root length and further biomass and morphological parameters. Judged by the much steeper increase in height and diameter growth with increasing light after release from below-ground competition, Douglas fir saplings appeared to be more sensitive to root competition than beech saplings what conforms to older findings for beech. According to our results, a strip cutting seems to be more appropriate than a target diameter cutting treatment to replace a pure spruce stand by a mixed stand with beech and Douglas fir.  相似文献   

5.
Development in height, diameter and basal area was studied for beeted and for originally planted Norway spruce (Picea abies (L.) Karst.) seedlings. The study was carried out as a survey in three unthinned stands in southern Sweden. Beeted seedlings were separated from those originally planted by differences observed in the number of annual rings at stump height. In all stands height and diameter were smaller and growth rates in height and basal area were lower for beeted than for originally planted seedlings. The lower growth rates for beeted seedlings may be explained as effects of inter‐tree competition. The oldest stand was thinned at the time of inventory. 40% of the thinned trees were beeted representing 18% of the thinned volume.  相似文献   

6.
VALINGER  E.; PETTERSSON  N. 《Forestry》1996,69(1):25-33
Changes in susceptibility to wind and snow damage due to thinningand fertilization were examined in even aged Norway spruce (Piceaabies (L.) Karst.) stands in southern Sweden. The stands arepart of a nationwide experiment to investigate growth and yieldfollowing different thinning and fertilization regimes establishedbetween 1966 and 1983. The material used in this study included16 replications of seven treatments. The treatments were: threelevels of thinning from below (20–70 per cent); 20 percent thinning from above; thinning from below in combinationwith N and NP fertilization (thinning percentage 25–28per cent); and unthinned control. The stands have been censusedtwice for damage during an average period of 12 years. The degree of wind and snow induced damage varied between 9and 20 per cent of the basal area increment produced duringthe observation period. For treatments with high basal arearemoval, the highest relative number of trees damaged by windoccured during the first period after thinning. The denseststands (i.e. unthinned controls and stands thinned from above)showed a high proportion of snow damage throughout the observationperiod. The block effect was in general more significant thanthe effect of treatments on damage level. When analysing theinfluence of the block effect (i.e. of site and stand characteristics)on damage level, wind damage was best predicted by stand basalarea left after thinning and stand age, while snow damage wasbest predicted by latitude, altitude, site index, and standage. On average the tested site and stand characteristics explained17 per cent of the variation in wind damage and 36 per centin snow damage.  相似文献   

7.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

8.
Aboveground and belowground biomass of 15-year-old under-planted European beech seedlings (Fagus sylvatica L.) in Norway spruce stand were studied along a light gradient in three plots, in the northern part of Slovenia. Differences in soil water content, aboveground and fine root biomass distribution were confirmed between studied plots. Light had significant effect on the total biomass, root-shoot ratio (0.388 ± 0.076 under canopy, 0.549 ± 0.042 in the edge, 0.656 ± 0.047 in the open), specific root length (SRL) of fine beech roots (561.9 ± 42.2 under canopy, 664.3 ± 51.2 in the edge, 618.2 ± 72.8 in the open) and specific leaf area in beech, indicating morphological adjustment to shade. However, SRL of beech fine roots indicated no change between plots. The correlation between total aboveground and root biomass and light below the mature stand canopy was higher in the case of diffuse light intensity. Most fine roots of spruce were concentrated in the top (0–20 cm) soil layer. Beech fine roots under canopy and edge conditions were also concentrated in top (0–20 cm) soil layer and exhibited shift downwards to deeper soil horizons in open plot. Root proportion between beech and spruce changed with light toward beech with increasing light intensity for both fine and coarse roots.  相似文献   

9.
Water use efficiency (WUE) was compared in three upland South Moravian forested microwatersheds in the light of effects of global climate change on forest ecosystems (GCC). The experimental catchments were characterized as upland headwater forested microwatersheds of similar size and morphology and silvicultural system, but each with different dominant tree species in the stands (over 50% of forest stand composition in living stock): Norway spruce, European beech and mixed forest. WUE was evaluated according to mean daily streamflow reduction, measured at the discharge points of the recipients of the individual catchments in precipitation-free periods lasting more than 5 days. During these times, streamflow dynamics are mainly influenced by evapotranspiration processes occurring in the forest stands. Four precipitation-free periods were observed, two in the middle of the growing season and two at its end. Two of these periods were long (15 days or more), and two were shorter (6 days). The results indicated that WUE of upland forested catchments can be very different, depending upon the dominant tree species and the seasonal phase. Highest WUE at the catchment scale (never decreasing below 80%) was exhibited by beech predominating site. WUE of mixed forest was high as well, never decreasing below 69%. The lowest WUE was exhibited by spruce predominating site, especially during a long precipitation-free period in the summer where it decreased down to 39%. In the context of the landscape, upland microwatersheds with pure spruce stands could cause its accelerated dry out in the summer and pose a significant threat to sustainable water and forest management of these areas. In comparison, mixed forests stands where spruce is not the dominant species or beech stands should still be a viable option even under the effects of GCC.  相似文献   

10.
On the basis of nine Norway spruce (Picea abies (L.) Karst.) and ten European beech (Fagus sylvatica L.) thinning experiments in Germany, for which both residual and removed stock had been registered first during 1870, I scrutinize how moderate and heavy thinning from below (B-, C-grade) affects the production of merchantable volume compared with light thinning (A-grade). In relation to A-grade, cumulative merchantable volume (CV) of B- and C-grade amounts in average to 103–107% in juvenile and to 97–102% in mature Norway spruce stands. The corresponding findings for European beech are 101–106% and 94–102%. CV of individual stands varies between 89% and 130% for Norway spruce and 73% and 155% for European beech (CV of A-grade = 100%). These findings are substantiated by the relation between stand density (SDI) and periodic annual increment (PAI). On the B- and C-grade plots of spruce and beech, respectively, SDI was reduced down to 41–91% and 31–83% of the A-grade. When SDI is reduced in young stands, PAI follows a unimodal curve. Norway spruce’s PAI culminates in 109% if SDI is reduced to 59%; European beech’s PAI culminates in 123% when density is reduced to 50%. Whereas Norway spruce’s growth reacts most positively on thinning under poor site conditions and with increment reduction on favourable sites, European beech behaves oppositely. With stand development the culmination point of the unimodal relation moves towards maximum density, so that in older stands PAI follows the increasing pattern, which is the left portion of a unimodal curve. A model is presented which apparently unifies contradictory patterns of stand density–growth reactions by integrating relative stand density, average tree size and site fertility effects, and makes the findings operable for forest management.  相似文献   

11.
Commercial thinning enables forest managers to meet timber production objectives. Thinning reduces tree density to alleviate competition for resources and favour growth of selected tree species. However, in doing so, thinning can homogenize the composition of mixed-species forests and raise biodiversity issues. There is increasing evidence that species richness can lead to higher productivity through a complementarity effect. Hence, thinning that would maintain species diversity of mixed-species forests could enhance stand productivity and help forest managers to reconcile timber production objectives and biodiversity issues. The objective of this study was to compare post-thinning stand production, experimentally over 10 years, in mixed and monospecific stands of black spruce (Picea mariana [Mill.] B.S.P.) and jack pine (Pinus banksiana Lamb.). The post-thinning stand production curve of the mixed stand converged toward that of the unthinned mixed stand while the production curves of the thinned and unthinned monospecific stands remained parallel. The convergent productivity of the mixed stand could be explained by a positive interaction between effects of thinning and niche complementarity. We propose that thinning that maintains species diversity of mixed stands could help forest managers who are implementing ecosystem management to reconcile timber production objectives with biodiversity issues.  相似文献   

12.
It is believed that European beech (Fagus sylvatica L.) will increase its competitive ability at its northern range margin in Scandinavia due to climate change. In mixed old-growth forests of beech and Norway spruce (Picea abies (L.) Karst.) at Siggaboda nature reserve (southern Sweden), stand structure characteristics were sequentially recorded in the years 2004, 2005 and 2007 as well as growth in stem diameter using tree-coring analyses. Using these measurements, we studied the effects on stand dynamics of an extreme storm event (2005 “Gudrun” hurricane), drought and heat (mid-summer 2006, spring 2007) and subsequent bark beetle attacks on spruce (growing season 2007), overlaid with warming tendencies. The storm, which caused disastrous damage in many stands nearby, had comparatively little impact on the structure of the spruce–beech stand. All together, only 32 trees (19 spruces, 10 beeches, 3 other species) per hectare were thrown or broken mainly in the leeward direction (NE) or impacted by secondary damage by uprooted neighbour trees; this represents 7% of the total tree number and 11% of the growing stock. Diameter and height structure did not change significantly. However, the 2006 drought and the 2007 attack of biotic agents changed the stand structure and composition strongly due to the death of about 19% of the dominating older spruce trees that accounted for 35% of total stand volume. This resulted in a considerable increase in beech’s contribution to stem number (4% increase) and wood volume of the living stand (7% increase). A comparison of diameter growth of beech and spruce during the periods 1894–1949 and 1950–2005 showed a distinct decrease in growth superiority of spruce during the last 50 years. These results support the idea of a northward migration of European beech as a nemoral tree species in Sweden, due to a higher tolerance to the abiotic and biotic threats accompanying climate change and an increased competitive ability compared to boreal tree species Norway spruce.  相似文献   

13.
Natural mortality in a 30-year period was examined in thinning and fertilisation experiments with 48 blocks in Scots pine (Pinus sylvstris L.) and 23 blocks in Norway spruce (Picea abies (L.) Karst.) with up to 12 different treatments. Of about 90,000 living trees at start of the experiments 18.7% were registered as dead by natural mortality in the 30-year observation period. In non-thinned stands about 20% of the volume growth disappeared by natural mortality, in thinned stands about 10%. In normally thinned pine stands (repeated thinning from below with moderate intensity) the annual mortality of the basal area at start of an average 7-year period was 0.34%. In spruce stands, on more fertile sites, the corresponding figure was about 0.6%. In an effort to model the mortality, severe damage not leading to final felling was identified in 1.7% of the observation periods. It was assumed that this part of the mortality, representing 24% of the total volume mortality, could be recovered by active thinning. The probability for severe damage increased sharply with stand top height, as shown in a logistic regression. The more sparse mortality was expressed as a function of site fertility, stand density, disturbance by thinning and form of treatment (thinned from above or below or non-thinned). The naturally dead trees were approximately of mean size in normally thinned stands while the self-thinning in non-thinned stands tended to occur amongst smaller than average trees. Diagrams were presented for basal area development and stem number reduction in the non-thinned stands.  相似文献   

14.
Carbon and nitrogen stocks and their medium-term and readily decomposable fractions in topsoils were compared in relation to soil microbial biomass and activity along sequences from coniferous to deciduous stands. The study was carried out in the Ore Mountains and the Saxonian lowland, representing two typical natural regions in Saxony, Germany. In accordance with current forest conversion practices, the investigation sites represent different stands: mature conifer stands of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) (type A); Norway Scots spruce and pine with advanced plantings of European beech (Fagus sylvatica L.) or European beech/Common oak (Quercus petreae Liebl.) (type B); and mature deciduous stands of European beech and European beech/Common oak (type C). The investigated forest sites can be grouped into three silvicultural situations according to the development from coniferous stands to advanced plantings and finally mature deciduous forests (chronosequence A–B–C). The organic layer (L, F and H horizons) and uppermost mineral soil (0–10 cm) were analysed for potential C mineralisation, microbial biomass, concentrations of total C and N (TOC and TN) and for medium-term and readily decomposable C and N fractions, obtained by hot- and cold-water extraction respectively. The results showed an increase in organic layer thickness and mass as well as TOC and TN stocks along the forest sequences in the lowland. Yet, underplanted sites with two storeys revealed higher organic layer mass as well as TOC and TN stocks as compared to coniferous and deciduous stands. Stocks of hot- and cold-water-extractable C and N in relation to microbial biomass and its activity revealed a high turnover activity in deeper organic horizons of deciduous forests compared to coniferous stands. The stand-specific differentiation is discussed in relation to microbial biomass, litter quantity and quality and forest structure, but also with respect to the site-specific climatic factors and water budget as well as liming and fly-ash impacts. Results indicate higher dynamics in deciduous stands in the lowland especially during the initial turnover phase. The elevated microbial activity in deeper organic horizons of deciduous litter-influenced sites in spring is discussed as a specific indicator for long-term C sequestration potential as besides C mineralisation organic compounds are humified and thus, can be stored in the organic layer or in deeper soil horizons. Due to liming activities, stand-specific effects on organic matter turnover dynamics have evened out today in the Ore mountain region, but will presumably occur again once base saturation decreases. Here, the stand-specific effect on microbial biomass can currently be seen again as Cmic in the L horizon increased from spruce to beech. Our study sites in the lowland revealed no significant fly-ash impact. Differences between sites were evaluated by calculating the discriminance function. TOC and TN as well as medium-term degradable C and N were defined in this study as indicators for turnover dynamics along forest conversion sites.  相似文献   

15.
We tested the effects of thinning on allometry and needle-age distribution in natural stands of Abies sachalinensis Masters by comparing a thinned stand to an unthinned, control stand. Specifically, we attempted to clarify how allometry was altered after a thinning. We assumed that the needle-age distribution of trees in the thinned stand would show a younger composition than in the control stand, given the effect of improved light conditions on needle dynamics following a thinning. These investigations were conducted in dense Abies stands located in central Hokkaido, northern Japan, 19 years post-thinning. In the thinned stand, the ratio of individual needle mass to stem mass increased significantly, as compared to the control. A difference in the H–DBH relationship between the stands was probably related to this tendency. Mean needle age of trees differed significantly between the two stands, and the thinned stand showed a younger needle age than the control. Within each stand, dominant trees showed older mean needle age than codominant or suppressed trees. These tendencies may have been caused by differential needle dynamics affected by light conditions in the stands, and by different crown positions among the trees within a stand. In summary, trees in the thinned stand showed increased growth rates after thinning, which were caused by increased needle mass, younger composition of needles, and improved light conditions.  相似文献   

16.
The three‐parameter Weibull function met specified statistical standards for goodness of fit as a model for the diameter distribution of moderately thinned Norway spruce stands in Denmark. Weibull distributions estimated by percentile estimators fit the majority of 522 observed diameter distributions (material made available by the Danish Forest Experiment Station) at the 10% level of significance in the Chi‐square and Kolmogoroff‐Smirnow tests. The Weibull distribution was less suited to describe the diameter distribution in unthinned stands and heavily thinned stands. Weibull parameter predictions were developed and used in connection with a Danish yield table for Norway spruce on clay‐rich coastal soils. The use of the Weibull distribution to predict stem frequencies in different diameter classes before and after a specified thinning of stands is demonstrated.  相似文献   

17.
The effects of thinning on plant species diversity and composition of understory herbs in a larch plantation were investigated. The relationships between plant species diversity and composition of understory herbs and light conditions were established. Twenty-five 1 m × 1 m plots and fifteen 13 m × 1 m transects were set up in unthinned and thinned stands, respectively. All the transects in the thinned stands were set across the thinned rows and unthinned rows, and each of them was divided into nine 1 m × 1 m sub-plots. The herb diversity and light conditions were observed in each plot and sub-plot. The results show that there was a significant difference in herb diversity between the thinned and unthinned stands. All biodiversity indices except for evenness index in the thinned stand were higher than those of the unthinned stand, i.e., the herb diversity increased after thinning. According to the changes in herb densities and whether one species could be found in a stand or not before and after thinning, all herb species were classed into three types: positive, neutral and negative species, which referred to a species newly appeared and having an obviously increased density after thinning, with no obvious changes in its appearance and density after thinning, and disappeared and having an obviously decreased density after thinning, respectively. Many new species were found in the thinned stand like Corydalis pallida, Prenanthes tatarinowii, Vicia unijuga and Sonchus brachyotus etc. However, most species found in both the thinned and unthinned stands were negative species. In all nine subplots, only 11 and 10 species were found in spring and in autumn respectively, accounting for 17.74% and 15.15% of all the species in the thinned stand, respectively. All biodiversity indices were the highest in the center sub-plots and most of them tended to reduce from middle to side sub-plots. There was a close correlation between most of the three types of species and light conditions which was similar to each other in the thinned and unthinned stands. __________ Translated from Chinese Journal of Ecology, 2006, 25(10): 1201–1207 [译自: 生态学杂志]  相似文献   

18.
The aim of this study is to investigate the effects of forest conversion on forest floor vegetation. ‘Ecological’ forest conversion, as defined by an interdisciplinary southern Black Forest project group, describes the transformation of even-aged spruce (Picea abies L. H. Karst.) stands to structured continuous cover forests consisting of spruce (Picea abies), silver fir (Abies alba Mill.) and beech (Fagus sylvatica L.). In order to analyse the conversion process, four conversion stages were defined in a conceptual forest development model. Four forest districts deemed to be representative of the southern Black Forest region were selected for the study. The ground vegetation was initially classified independently from the stand structures. Subsequently, the relationship between stand structures, as determined by development stage, and ground vegetation was analysed. It was revealed that forest conversion modified the ground vegetation. The main factors influencing ground vegetation were the influence of broadleaves, predominately beech (F. sylvatica), on the canopy composition and litter coverage on the one hand; and the canopy coverage of spruce, the proportion of needle litter and the associated light penetration on the other. The prevalence of moss and vascular plant species preferring acidic sites found in spruce forests decreased during the transition process, whereas, species requiring a moderate base supply increased in abundance. The continuous cover forest representing the final stage of conversion increasingly contained a mixture of ground vegetation species normally associated exclusively with either conifer or deciduous forest. Due to the fact that there is an associated ground vegetation specific to the different stages of forest conversion in stands dominated by Norway spruce or European beech and a mixture in the latest conversion stages, large-scale forest conversion should be avoided in favour of management promoting a diversity of silvicultural goals and treatments in neighbouring stands. Only a variety of treatments ensures the maintenance of floristic diversity in the long-term.  相似文献   

19.
Seasonal fluxes of CO2 from soil and the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) were estimated for a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) in Central Europe. Mature trees of each species were girdled in August 2002 to eliminate carbohydrate allocation to roots. SR was measured at distances of 0.5, 1.0, and 1.5/2.0 m from the bole of each tree at 1–2 weeks intervals throughout the fall of 2002 and monthly during the spring and summer of 2003. The contribution of roots and mycorrhizae to total SR was estimated by the decrease in SR compared to ungirdled control trees to account for seasonal patterns evident in controls. SR decreased with soil temperature in the fall 2002 and increased again in 2003 as soil warmed. During most of the study period, SR was strongly related to soil temperature. During the dry summer of 2003, however, SR appeared to be uncoupled from temperature and was strongly related to soil water content (SWC). Mean rates of SR in beech and spruce control plots as well as root densities did not show a clear pattern with distance from the bole. SR decreased to levels below controls in beech within a few days after girdling, whereas spruce did not show a significant decrease until October 2002, 6 weeks after girdling. In both beech and spruce, decreased SR in response to girdling was greatest closest to the bole, possibly reflecting increased mycorrhizal activity close to the bole. Autotrophic respiration was estimated in beech to be as much as 50% of the total SR in the stand. The contribution of autotrophic respiration was less certain for spruce, although close to the bole, the autotrophic fraction may contribute to total SR as much as in beech. The large fraction of autotrophic respiration in total SR requires better understanding of tree level stresses that affect carbon allocation below ground.  相似文献   

20.
Litterfall was investigated in three even-aged Norway spruce (Picea abies), sitka spruce (Picea sitchensis) and beech (Fagus sylvatica) stands on a nutrient poor-soil in Southern Denmark. Dry weights and N, P, K, S, Mg, Ca, Na, Al, and Fe concentrations and fluxes were examined in litterfall fractions. Foliage litter amounted to 90% of total litterfall. The tree stands showed a similar mean annual litterfall. In the spruce stands, annual litterfall was correlated negatively with the current year increment and positively with the previous year increment. Annual litterfall in beech was constant during the 6 study years whereas Norway spruce and sitka spruce showed large fluctuations between years caused by drought, spruce aphid infestations and probably sea salt stress. Norway spruce responded with a long lasting elevated needle loss. Sitka spruce responded to infestations with premature needle loss during short periods. The presence of a large syrphid (Coccinellidae) population was important in regulating aphid (Elatobium abietinum) population density. The between-year variation in element concentrations of litterfall was small whereas variations during the year were large. Interspecific levels were recognized: Norway spruce>beech>sitka spruce. High concentrations in Norway spruce were ascribed to a combination of drought, sea salt stress and elevated transpiration. In sitka spruce, aphid infestations reduced the litterfall N content. Sitka spruce showed the smallest amount of base cation fluxes with litterfall. In contrast, spruce and beech exhibited even litterfall element fluxes. Litterfall studies revealed reduced vitality in the non-native spruce stands and underlined the perception of a healthy stand of native beech.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号