首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effectiveness of the neonicotinoid insecticide imidacloprid was evaluated against four psocid pests of stored grain. This research was undertaken because of the growing importance of psocids in stored grain and the need to identify methods for their control. The mortality and reproduction of adults of Liposcelis bostrychophila Badonnel, L. entomophila (Enderlein), L. decolor (Pearman) and L. paeta Pearman in wheat treated with imidacloprid were determined. There were five application rates (0.5, 1, 2, 5 and 10 mg AI kg(-1) grain) and an untreated control. There were significant effects of application rate on both adult mortality and reproduction for all four species, but the effect of imidacloprid was sometimes more pronounced on reproduction. Imidacloprid was most effective against L. bostrychophila, with 100% adult mortality after 7 d at 5 mg AI kg(-1), 14 d at 2 mg AI kg(-1) and 28 d at 0.5 and 1 mg AI kg(-1). No live progeny were produced at 2 mg AI kg(-1). For L. decolor, there was 100% adult mortality after 28 d at 10 mg AI kg(-1) and no live progeny were produced at 2 mg AI kg(-1). For L. entomophila, there was 100% adult mortality after 14 d at 10 mg AI kg(-1) and 28 d at 2 and 5 mg AI kg(-1). No live progeny were produced at 10 mg AI kg(-1). At 10 mg AI kg(-1) there was 100% mortality of L. paeta adults after 28 d exposure and no live progeny developed. Because reproduction at some application rates occurred only in the first 14 d of exposure, it is concluded that the application rate leading to population extinction was 1 mg AI kg(-1) for L. bostrychophila, 2 mg AI kg(-1) for L. decolor and L. entomophila and 5 mg AI kg(-1) for L. paeta. This study shows that imidacloprid has potential as a grain protectant to control all four Liposcelis species in stored grain.  相似文献   

2.
BACKGROUND: Psocids are emerging pests in stored products, particularly in amylaceous commodities such as grains. Currently, their control is based on the use of fumigants and contact insecticides; however, newer data indicate that psocids are tolerant to insecticides used to control other stored‐grain species. This study evaluated the insecticides registered in the USA for use on stored maize, rice and wheat for control of the psocid species Lepinotus reticulatus, Liposcelis entomophila, L. bostrychophila and L. paeta. Mortality of exposed adult females was recorded after 7 and 14 days of exposure, while progeny production was assessed after 30 days of exposure. RESULTS: On wheat and rice, chlorpyriphos‐methyl + deltamethrin was generally more effective against exposed parental adults than spinosad or pyrethrin, while pirimiphos‐methyl was more effective on maize than spinosad or pyrethrin. In most cases, progeny production was suppressed in the treated grains. Progeny production was consistently lowest on wheat and rice treated with chlorpyriphos‐methyl + deltamethrin and maize treated with pirimiphos‐methyl. CONCLUSIONS: Chlorpyriphos‐methyl + deltamethrin and pirimiphos‐methyl were the most effective insecticides for all species and commodities. Conversely, efficacy of spinosad or pyrethrum was highly dependent on the psocid species and commodity. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

3.
磷化氢对3种储粮书虱致死浓度与时间的比较研究   总被引:1,自引:0,他引:1  
比较测定了磷化氢对嗜卷书虱Liposcelis bostrychophila(Pearman)、嗜虫书虱L.entomophila(Enderlein)和小眼书虱L.paeta(Pearman)等3种储粮书虱的毒力,并研究了在室温条件下磷化氢浓度分别为100、200、300、400和500mL/m3的完全致死时间。结果表明:磷化氢对嗜卷书虱、小眼书虱和嗜虫书虱的LD50值(95%置信限)分别为0.0039(0.0038~0.0042)、0.0804(0.0750~0.0887)和0.0815(0.0815~0.0892)mg/L,嗜虫书虱对磷化氢的耐受力比嗜卷书虱高20多倍。在试验浓度下第7d可全部致死嗜卷书虱,100mL/m3的浓度完全致死小眼书虱和嗜虫书虱则需22d多;200mL/m3完全致死小眼书虱和嗜虫书虱的时间约为19d,300mL/m3浓度完全致死小眼书虱和嗜虫书虱的时间在13d和16d,400mL/m3及以上浓度完全致死小眼书虱在7d以内,完全致死嗜虫书虱仍需13d。500mL/m3的浓度完全致死嗜虫书虱仅缩短到10d。采用磷化氢熏蒸书虱在100~500mL/m3的浓度范围内,提高浓度可以使完全致死书虱的时间明显缩短。  相似文献   

4.
BACKGROUND: Piperonyl butoxide (PB)‐synergised natural pyrethrins (pyrethrin:PB ratio 1:4) were evaluated both as a grain protectant and a disinfestant against four Liposcelidid psocids: Liposcelis bostrychophila Badonnel, L. entomophila (Enderlein), L. decolor (Pearman) and L. paeta Pearman. These are key storage pests in Australia that are difficult to control with the registered grain protectants and are increasingly being reported as pests of stored products in other countries. Firstly, mortality and reproduction of adults were determined in wheat freshly treated at 0.0, 0.75, 1.5, 3 and 6 mg kg?1 of pyrethrins + PB (1:4) at 30 ± 1 °C and 70 ± 2% RH. Next, wheat treated at 0.0, 1.5, 3 and 6 mg kg?1 of pyrethrins + PB (1:4) was stored at 30 ± 1 °C and 70 ± 2% RH and mortality and reproduction of psocids were assessed after 0, 1.5, 3 and 4.5 months of storage. Finally, the potential of synergised pyrethrins as a disinfestant was assessed by establishing time to endpoint mortality for adult psocids exposed to wheat treated at 3 and 6 mg kg?1 of synergised pyrethrins after 0, 3, 6, 9 and 12 h of exposure. RESULTS: Synergised pyrethrins at 6 mg kg?1 provided 3 months of protection against all four Liposcelis spp., and at this rate complete adult mortality of these psocids can be achieved within 6 h of exposure. CONCLUSION: Piperonyl butoxide‐synergised pyrethrins have excellent potential both as a grain protectant and as a disinfestant against Liposcelidid psocids. Copyright © State of Queensland, Department of Employment, Economic Development and Innovation, 2010. Published by John Wiley and Sons, Ltd.  相似文献   

5.
A laboratory study was undertaken to determine the persistence and efficacy of spinosad against Rhyzopertha dominica (F.) in wheat stored for 9 months at 30 degrees C and 55 and 70% relative humidity. The aim was to investigate the potential of spinosad for protecting wheat from R. dominica during long-term storage in warm climates. Wheat was treated with spinosad at 0.1, 0.5 and 1 mg kg(-1) grain and sampled after 0, 1.5, 3, 4.5, 6, 7.5 and 9 months of storage for bioassays and residue analyses. Residues were estimated to have declined by 30% during 9 months of storage at 30 degrees C and there was no effect of relative humidity. Spinosad applied at 0.5 or 1 mg kg(-1) was completely effective for 9 months, with 100% adult mortality after 14 days of exposure and no live F1 adults produced. Adult mortality was <100% in some samples of wheat treated with 0.1 mg kg(-1) of spinosad, and live progeny were produced in all samples treated at this level. The results show that spinosad is likely to be an effective grain protectant against R. dominica in wheat stored in warm climates.  相似文献   

6.
本文是“中国虱属分类研究”系列论文的第 4篇 ,主要针对 4种世界常见虱属Liposcelis昆虫进行了重新描述 ,即嗜卷虱L .bostrychophilaBadonnel、嗜虫虱L .ento mophila(Enderlein)、无色虱L .decolor(Pearman)和皮氏虱L .pearmaniLienhard。旨在为我国口岸植物检疫 ,特别是有关虱属昆虫的鉴定工作提供参考。  相似文献   

7.
Spinosad, a reduced-risk commercial insecticide derived from a bacterial fermentation product, possesses both contact and oral toxicities against insects. Contact toxicity of spinosad to adults of Rhyzopertha dominica (F), Sitophilus oryzae (L), and Tribolium castaneum (Herbst) was evaluated by exposure for 24 or 48 h to treated glass Petri dishes. Adults were exposed to different deposits (0.001-0.79 mg cm(-2)) of spinosad in 24-h tests and to deposits of 0, 0.0016 and 0.016mg cm(-2) in 48-h tests. Rhyzopertha dominica was most susceptible to spinosad in 24- and 48-h tests, followed by S. oryzae, and T. castaneum. The 24-h LD50 values were 0.0004, 0.077 and 0.189mg cm(-2) for R. dominica, S. oryzae, and T. castaneum, respectively. All R. dominica adults were dead following 48 h exposure to both spinosad deposits, whereas mortality of S. oryzae and T. castaneum ranged from 10 to 85% and 12 to 48%, respectively. Rhyzopertha dominica, T. castaneum, and O. surinamensis adults were exposed for 14 days to whole wheat, cracked wheat and wheat flour treated with 0, 0.1 and 1.0 mg kg(-1) of spinosad. Rhyzopertha dominica adults were highly susceptible to spinosad, followed by O. surinamensis and T. castaneum. Immatures (eggs and larvae) of T. castaneum and O. surinamensis exposed for 14 days were more susceptible on spinosad-treated whole wheat than on treated cracked wheat and wheat flour. This is the first report documenting contact activity of spinosad, and the effect of grain condition on spinosad toxicity, to stored-product insects.  相似文献   

8.
参照FAO推荐方法测定了磷化氢对嗜卷书虱(Liposcelis bostrychophila(Badonnel))2个品系、嗜虫书虱(L.entomophila(Enderlein))3个品系和小眼书虱(L.paeta(Pearman))3个品系等共8个不同来源书虱的毒力和抗性系数Rf,测定了磷化氢浓度为2mg/mL条件下供试各书虱品系的半数击倒时间KT50,分析了其LC50值与KT50值的相关性。结果为:3种书虱的8个品系对磷化氢的抗性差异明显,高抗性的嗜虫书虱的磷化氢抗性比敏感的嗜卷书虱高1000倍以上,各品系书虱的KT50值与Rf值呈正相关,相应LC50值之对数与KT50值的对数呈直线相关。结果表明,磷化氢对书虱成虫的半数击倒时间KT50值可以用来判断书虱抗性大小,并可用于快速判断抗性以指导现场熏蒸。  相似文献   

9.
Hard red winter wheat was treated with pirimiphos-methyl at 4, 6 and 8 mg kg(-1), synergized pyrethrins at 0.38, 0.75, 1.13 and 1.5 mg kg(-1), and combinations of the two insecticides, to conduct laboratory bioassays against four beetle pests of stored grain, red flour beetle Tribolium castaneum (Herbst), rusty grain beetle Cryptolestes ferrugineus (Stephens), lesser grain borer Rhyzopertha dominica (F), and rice weevil Sitophilus oryzae (L), and one moth pest, Indianmeal moth Plodia interpunctella (Hubner). Beetle adults and P interpunctella larvae survived well on control wheat, producing a large number of progeny (65-1037 insects per container). Kernel damage in control wheat among the insect species ranged from 9 to 99%. On pirimiphos-methyl-treated wheat, mortality of R dominica adults was > or =72%, but that of the other beetle species and P interpunctella larvae was 100%. Progeny were not produced on pirimiphos-methyl-treated wheat, and the kernel damage was negligible (< or =1%). Synergized pyrethrins were ineffective against the five insect pests. Pirimiphos-methyl combined with synergized pyrethrins was not superior to pirimiphos-methyl alone against the five insect pests. Pirimiphos-methyl is not registered in the USA for use on wheat, but our results suggest that it could be a viable grain protectant at rates of 4-8 mg kg(-1).  相似文献   

10.
Field control failures with pirimiphos-methyl against the rice moth, Corcyra cephalonica (Stainton), in Weslaco, Texas, USA, led us to investigate the susceptibility of this particular strain to pirimiphos-methyl, spinosad, pyrethrins synergized with piperonyl butoxide, and pirimiphos-methyl combined with synergized pyrethrins. In laboratory bioassays, 50 eggs of C cephalonica were exposed to untreated and insecticide-treated corn and sunflower seeds to determine larval survival after 21 days, egg-to-adult emergence after 49 days, and larval damage to seeds at both exposure periods. Pirimiphos-methyl at both 4 and 8 mg kg(-1) did not prevent larval survival or egg-to-adult emergence of C cephalonica on either corn or sunflower seeds, and seed damage was evident at both rates. The C cephalonica strain was highly susceptible to spinosad at 0.5 and 1 mg kg(-1). At both spinosad rates, reduction in larval survival, egg-to-adult emergence, and seed damage relative to the control treatment was > or = 93% on both corn and sunflower seeds. Pirimiphos-methyl and spinosad were generally more effective against C cephalonica on corn than sunflower seeds. The C cephalonica strain was completely controlled on corn treated with 1.5 mg kg(-1) of pyrethrins synergized with 15 mg kg(-1) of piperonyl butoxide. Many larvae survived and became adults on corn treated with synergized pyrethrins at < or = 0.75 mg kg(-1). Corn treated with pirimiphos-methyl at 4, 6 or 8 mg kg(-1) in combination with 0.38 to 1.5 mg kg(-1) of synergized pyrethrins reduced larval survival by > or = 95%, egg-to-adult emergence by > or = 97%, and seed damage by > or = 94%. Our results suggest that the C cephalonica strain can be controlled on corn by combining pirimiphos-methyl with synergized pyrethrins or with synergized pyrethrins at the labeled rate. Although spinosad is not currently labeled for use on stored corn and sunflower seeds, it appears to be effective against C cephalonica on both commodities at very low rates.  相似文献   

11.
3种环境友好型药剂对西花蓟马的室内毒力与田间防效   总被引:3,自引:0,他引:3  
测定了3种杀虫剂对西花蓟马的室内毒力和田间防效。室内生物测定结果表明,多杀菌素、甲氨基阿维菌素苯甲酸盐、阿维菌素对西花蓟马成虫的LC50值为0.050~2.887mg/L,对西花蓟马若虫的LC50值为0.040~0.457mg/L;田间药效试验表明,田间防治西花蓟马时推荐使用剂量(防效>80%)分别为:2.5%多杀菌素悬浮剂30~60g/667m2,1%甲氨基阿维菌素苯甲酸盐乳油30~60g/667m2,1.8%阿维菌素乳油不可低于75g/667m2。  相似文献   

12.
日光温室防治棕榈蓟马药剂筛选   总被引:1,自引:0,他引:1  
采用浸叶法开展了7种杀虫剂对温室棕榈蓟马成虫的室内毒力测定,并对效果较好的2种药剂进行田间药效试验。室内生物测定结果表明,多杀菌素、甲氨基阿维菌素苯甲酸盐对棕榈蓟马成虫的LC50分别为0.079 mg/L 和0.443 mg/L,而阿维菌素、灭多威、啶虫脒、高效氯氟氰菊酯LC50值为47.908 ~206.236 mg/L。田间药效试验结果表明,2.5%多杀菌素悬浮剂和2.2%甲氨基阿维菌素苯甲酸盐微乳剂使用剂量以80~60 g/667 m2和 30~20 g/667 m2防治效果较理想。  相似文献   

13.
Numerous strains of the psocid pest, Liposcelis decolor (Pearman) were collected from farms and central storages and interbred to form three representative strains from three major grain-growing states of Australia: Queensland, South Australia and New South Wales. These were tested against the grain protectants and structural treatments currently registered for use in Australia. Recently, L decolor has become an important pest of stored grain in Australia, particularly in the eastern and southern parts. There is no published information available on management of this pest and the current pest-management strategy, based predominantly on phosphine fumigation, has failed to control infestations of this pest in numerous grain storages in Australia. Alternative methods of control such as use of contact insecticides were explored in the present work to supplement phosphine fumigation to manage this new pest. From eight grain protectants tested as admixtures, only chlorpyrifos-methyl, bioresmethrin plus piperonyl butoxide, and fenitrothion were found to provide long term (3-9 months) protection against all three strains of L decolor. Chlorpyrifos-methyl gave the best protection, providing a minimum of 7.5 to a maximum of 9 months protection, depending on the strains tested. Three structural treatments, azamethiphos, azamethiphos plus carbaryl and permethrin provided long-term control (8-9 months) of all three strains of L decolor on galvanised steel surfaces, with permethrin delivering 9 months protection against all strains. However, all of these treatments failed to provide long-term control of any strains on concrete surfaces. We conclude that chlorpyrifos-methyl as a grain admixture can be incorporated into fumigation strategies to optimise the control of L decolor infestations. Structural treatments, such as permethrin can be used to support a fumigation strategy in storages made of galvanised steel.  相似文献   

14.
Recent developments of new families of pesticides and growing awareness of the importance of wild pollinators for crop pollination have stimulated interest in potential effects of novel pesticides on wild bees. Yet pesticide toxicity studies on wild bees remain rare, and few studies have included long-term monitoring of bumble bee colonies or testing of foraging ability after pesticide exposure. Larval bees feeding on exogenous pollen and exposed to pesticides during development may result in lethal or sub-lethal effects during the adult stage. We tested the effects of a naturally derived biopesticide, spinosad, on bumble bee (Bombus impatiens Cresson) colony health, including adult mortality, brood development, weights of emerging bees and foraging efficiency of adults that underwent larval development during exposure to spinosad. We monitored colonies from an early stage, over a 10-week period, and fed spinosad to colonies in pollen at four levels: control, 0.2, 0.8 and 8.0 mg kg(-1), during weeks 2 through 5 of the experiment. At concentrations that bees would likely encounter in pollen in the wild (0.2-0.8 mg kg(-1)) we detected minimal negative effects to bumble bee colonies. Brood and adult mortality was high at 8.0 mg kg(-1) spinosad, about twice the level that bees would be exposed to in a 'worst case' field scenario, resulting in colony death two to four weeks after initial pesticide exposure. At more realistic concentrations there were potentially important sub-lethal effects. Adult worker bees exposed to spinosad during larval development at 0.8 mg kg(-1) were slower foragers on artificial complex flower arrays than bees from low or no spinosad treated colonies. Inclusion of similar sub-lethal assays to detect effects of pesticides on pollinators would aid in development of environmentally responsible pest management strategies.  相似文献   

15.
The larvicidal and ovicidal effectiveness of twelve insecticides on Grapholita lobarzewskii Nowicki was tested by dipping apples in different concentrations of the insecticides. Emamectin was the most effective larvicidal product, with an LC(50) of 0.01 mg kg(-1), closely followed by spinosad, methoxyfenozide and chlorpyrifos-methyl, with LC(50) values between 0.2 and 0.7 mg kg(-1). Products like imidacloprid, indoxacarb, phosmet and thiacloprid gave LC(50) values between 1 and 2 mg kg(-1). Lastly, chlorpyrifos-ethyl and phosalone had LC(50) values of around 4 mg kg(-1), whereas tebufenozide and diflubenzuron had almost no larvicidal effect. Most of the products tested had low ovicidal effectiveness, and only fenoxycarb and emamectin gave LC(50) values worthy of note, close to 2 mg kg(-1).  相似文献   

16.
Every year raw tobacco and manufactured tobacco products are lost to two major storage pests, the cigarette beetle, Lasioderma serricorne (F) and the tobacco moth, Ephestia elutella (Hiibner). Post-harvest management of both insects is achieved through sanitation, insect monitoring and fumigation with phosphine. However, insect resistance to phosphine and control failures have been reported, and fumigants are under constant regulatory pressure. Here we report the evaluation of spinosad, a bioinsecticide derived from the fermentation of the soil micro-organism Saccharopolyspora spinosa Mertz & Yao. Spinosad was first registered in 1997 and is now widely used as a field pest control agent on many crops, including tobacco. The insecticidal activity of the fermentation product (technical spinosad, TS) was measured by diet incorporation assays against L serricorne and E elutella larvae. Mortality levels were determined on newly hatched larvae and over the whole insect life cycle. For both species, no emergence of adult insects was observed in cured tobacco sprayed with 50mg TS kg(-1) and inoculated with eggs or newly hatched larvae. These results indicated that spinosad has potential for the control of both species in stored tobacco, since 100% control of both pests could be achieved at 50 mg TS kg(-1), and with almost full control (90-95%) at 10 mg kg(-1). We also monitored the stability of the product on cured tobacco. The original concentration of the main active component of TS, spinosyn A, did not change significantly over 18 months, indicating no loss of spinosad during a typical leaf storage period of time. Bioassays against larvae confirmed that the bioinsecticidal activity of spinosad was retained.  相似文献   

17.
嗜卷书虱和嗜虫书虱酯酶性质的比较研究   总被引:2,自引:1,他引:2  
对嗜卷书虱Liposcelis bostrychophila和嗜虫书虱L. entomophila羧酸酯酶及乙酰胆碱酯酶(AChE)的生物化学性质进行了初步研究。结果表明:嗜虫书虱的羧酸酯酶活性明显高于嗜卷书虱,嗜卷书虱和嗜虫书虱羧酸酯酶对底物α-NA的Km值分别为0.665 7、0.285 7 mmol/L,Vmax值分别为1.672 2和2.463 1 mmol·(mg·30 min)-1。嗜卷书虱和嗜虫书虱乙酰胆碱酯酶的活性差异不显著,嗜虫书虱略高于嗜卷书虱。通过聚丙烯酰胺凝胶电泳,检测出8条嗜卷书虱、7条嗜虫书虱酯酶同工酶谱带,嗜卷书虱的酶谱分布比嗜虫书虱广。  相似文献   

18.
仓储虱在我国口岸检疫中常有截获。本文针对两种世界性仓储虱 ,即中国新记录虚伪虱LiposcelismendaxPearman和红虱L .rufaBroadhead ,进行了重新描述。 2种虱均可危害室内储藏物 ,分别属ⅡC种团和ⅠB种团 ,世界分布较广 ,我国仅发现于河南省  相似文献   

19.
Susceptibility to spinosad of western flower thrips (WFT), Frankliniella occidentalis (Pergande), from south-eastern Spain was determined. LC(50) values of the field populations without previous exposure to spinosad collected in Murcia in 2001 and 2002 ranged from 0.005 to 0.077 mg L(-1). The populations collected in Almeria in 2003 in greenhouses were resistant to spinosad (LC(50) > 54 mg L(-1)) compared with the authors' highly susceptible laboratory strain. The highly sensitive laboratory strain leads to very high resistance ratios for the field populations (>13 500), but these ratios do not necessarily mean resistance problems and control failures (spinosad field rate 90-120 mg L(-1)). The populations collected in Murcia from some greenhouses in 2004 were also resistant to spinosad (RF > 3682). Spinosad overuse, with more than ten applications per crop, produced these resistant populations in some greenhouses. Spinosad showed no cross-resistance to acrinathrin, formetanate or methiocarb in laboratory strains selected for resistance towards each insecticide. Correlation analysis indicated no cross-resistance among spinosad and the other three insecticides in 13 field populations and in nine laboratory strains. The synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM) did not enhance the toxicity of spinosad to the resistant strains, indicating that metabolic-mediated detoxification was not responsible for the spinosad resistance. These findings suggest that rotation with spinosad may be an effective resistance management strategy.  相似文献   

20.
The effects of low-volume ventilation on the persistence and biological efficacy of chlorpyrifos-methyl applied to English wheat were investigated. Four 20-tonne batches of wheat were treated with a dose of 2.5 mg kg?1 chlorpyrifos-methyl. After treatment, two of the batches were aerated continuously at a rate of 17 m3 h?1 tonne?1 (10 cfm tonne?1) for 16 weeks. The remaining two batches were not aerated. Samples were collected from both aerated and non-aerated wheat at intervals over the 16-week storage period and subjected to biological assay using laboratory multi-organophosphorus-resistant strains of Tribolium castaneum, Sitophilus granarius, Sitophilus oryzae and Oryzaephilus surinamensis. The samples were also analysed for chlorpyrifos-methyl residues. No differences in either the biological efficacy or the rate of chemical decomposition were detected between the aerated and non-aerated wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号