首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
The effects of sub-lethal CO2(aq) concentrations were tested for the first time on gilthead seabream (Sparus aurata) juveniles (4–25 g; 64 growth days) and adult (∼300–400 g; 71 d) fish, both in fully controlled pilot tests and the latter also as part of full-scale RAS (recirculating aquaculture system) operation. In the pilot experiments (concentration range 5.2–56.3 mg CO2/L) the specific growth rate, mortality rate, and physical fish disorders were monitored. In the full scale experiment, two groups of fish, originally from the same batch, were exposed for 197 d to controlled (by NaOH dosage) and uncontrolled pH conditions, resulting in exposure of the fish to significantly different CO2(aq) concentrations. The pilot results showed, as expected, that the seabream fish grew faster at the lower CO2 concentrations and that the growth rate of both juveniles and adult fish was only minimally inhibited up to roughly 20 mg CO2/L (compared to a previously published curve). Mortality rate was considerable only at the highest CO2 concentration (∼56 mg CO2/L). Physical irregularities were not observed, apart from abnormally high absence of swim bladder at the highest CO2(aq) treatment. The (statistically significant) results from the full-scale RAS operation showed that growing gilthead seabream for 197 d at roughly constant and relatively low (∼16 mg/L) CO2(aq) concentration resulted in fish with ∼10% larger mean weight relative to the fish grown in ponds in which CO2(aq) was not controlled and its concentration fluctuated daily between 19 and 37 mg/L.  相似文献   

2.
A study was undertaken to measure the water flow (Qw) delivered by a vacuum airlift designed for recirculating aquaculture systems (RAS) in fresh (<1‰ of salinity) and sea water (35‰ of salinity). The vacuum airlift consists of two concentric tubes connected at their top to a depression chamber. The water rises in the inner tube as a result of air being injected in its lower section and flows back through the external downcomer tube. The vacuum airlift was adjusted at three different lengths: 2, 4 or 6 m and water discharge could be lifted from 0 to 30 cm. Air flow rate (Qg) varied from 0 to 80 L min−1. Different types of air injectors were tested, delivering different bubble sizes (0.1–5 mm) depending on porosity and functioning at low or high injection pressure. Results show an increase in water flow when pipe length and air flow were increased and lift height reduced. Water flow also depended on the type of water and ranged from 0 to 35 m3 h−1 (0–580 L min−1) for fresh water and only from 0 to 20 m3 h−1 (0–330 L min−1) for sea water (for a 6 m high vacuum airlift). This difference was attributed to the smaller bubble diameter and higher gas holdup (ɛg) observed in sea water (0–20%) compared to fresh water (0–10%). When bubbles were present in the downcomer tube, they created a resistance to flow (counter-current airlift) that slowed down liquid velocity and thus water flow. Increasing the vacuum made it possible to use low air injection pressures and high injection depths. Vacuum also increased bubble size and airflow (20 L min−1 at atmospheric pressure to 60 L min−1 at 0.3 barA) and thus water flow rates. With RAS, the presence of fish feed in water rapidly increased water flow delivered by the airlift because of changes of water quality and gas holdup. When working with low head RAS (under 0.3 m), vacuum airlift could save up to 50% of the energy required for centrifugal pumps. An empirical predictive model was developed and calibrated. Simulation shows a good correlation between predicted values and measurements (R2 = 0.96).  相似文献   

3.
In zero-exchange superintensive culture systems, flocculated particles (bioflocs) accumulate in the water column. Consequently, some control over the concentration of these particles must be performed. The objective of this study is to evaluate the effects of three concentrations of bioflocs on microbial activity, selected water quality indicators and performance of Litopenaeus vannamei in a tank system operated with no water exchange. A 44-day study was conducted with juvenile (6.8 g) shrimp stocked in twelve 850 L tanks at a stocking density of 459 shrimp m−3. Biofloc levels were expressed as three presets of total suspended solids (TSS) concentrations, as follows: 200 mg L−1 (T200), 400–600 mg L−1 (T400–600), and 800–1000 mg L−1 (T800–1000). TSS levels were controlled by attaching a 40 L settling tank to each culture tank. Reduction of TSS to concentrations close to 200 mg L−1 decreased the time of bacterial cell residence and significantly reduced the nitrification rates in the water (P < 0.05). The tanks in the T200 treatment had a greater variability of ammonia and nitrite (P < 0.05), which led to the need to increase the C:N ratio of the organic substrate to control ammonia through its assimilation into heterotrophic bacterial biomass. But the higher production of heterotrophic bacteria in T200 (P < 0.05) increased the dissolved oxygen demand. Nitrification rates were higher (P < 0.05) in tanks with TSS concentrations above 400 mg L−1, and ammonia and nitrite were significantly lower than in the T200 tanks. We suggest that ammonia and nitrite in the T400–600 and T800–1000 tanks were controlled primarily by nitrifying bacteria, which provided higher stability of these parameters and of dissolved oxygen. Regarding shrimp performance, the reduction of TSS to levels close to 200 mg L−1 was associated with better nutritional quality of bioflocs. Nevertheless, differences in biofloc levels and nutritional quality were not sufficient to affect the weight gain by shrimp. The rate of shrimp survival and the final shrimp biomass were lower (P < 0.05) when the TSS concentrations were higher than 800 mg L−1. Analysis of the shrimps’ gills showed a higher degree of occlusion in the T800–1000 treatment (P < 0.05), which suggests that the shrimp have an intolerance to environments with a solids concentration above 800 mg L−1. Our results show that intermediate levels of bioflocs (TSS between 400 and 600 mg L−1) appear to be more suitable to superintensive culture of L. vannamei since they create factors propitious for maintaining the system’s productivity and stability  相似文献   

4.
Direct and continuous measurement of dissolved CO2 (dCO2) is crucial for intensive aquaculture, especially in shallow raceway systems (SRS). In this work the performance of a portable dissolved CO2 probe analyzer was tested for the effects of different aqueous solutions, pure oxygen injection and agitation. Laboratory results showed significant (p < 0.05) solution effects on probe performance for low (10–20 mg L−1) and high (30–50 mg L−1) dCO2 concentrations. Globally performance was better in deionized water, followed by marine fish farm water and artificial seawater. Accuracy and response time were the parameters most affected by the type of solution tested. Linearity was always observed (R2 = 0.995–0.999). The probe was sensitive to 1 mg L−1 dCO2 increments for concentrations <6 mg L−1 in artificial seawater. Pure oxygen injection did not affect probe readouts, and agitation was needed for better accuracy and response time. In real marine SRS with tanks in series dCO2 dynamics was revealed using the probe coupled to a developed flow cell. A prototype SRS was built and used to study dCO2 dynamics without endangering cultivated fish. Generally, results obtained indicate that the probe tested although precise, is better suited for discrete, single-point dCO2 monitoring, being a limited resource for the special needs of shallow raceway systems. As SRS represent a paradigm change in aquaculture, new water quality monitoring strategies and instrumentation are needed, especially for dCO2. Fiber optic sensors can be a solution for continuous, multipoint monitoring, thus contributing to the understanding of water quality dynamics in hyperintensive aquaculture systems.  相似文献   

5.
Denitrification reactors have proven their functionality in commercial recirculation aquaculture systems (RAS). Nevertheless, clogging occurs due to the low hydraulic loads necessary to accomplish anoxic conditions for a successful denitrification process in RAS, which hampers the adjustment of stable working conditions within fixed bed denitrification reactors. Reactors working on the basis of activated sludge demand careful hydraulic control and/or complex configurations for sludge retention.To develop a low-maintenance denitrification reactor, an enclosed moving bed filter, driven by recirculation of the inherent, oxygen poor gas was designed. A Self cleaning Inherent gas Denitrification reactor (SID-reactor) of 0.65 m3, which offered a moving bed volume of 0.39 m3 was connected with a RAS of semi-industrial scale for pike perch (Sander lucioperca) production. This species indicates suboptimal environmental conditions (as e.g. NO3-N concentrations above approximately 68 mg l−1) by prompt reduction of the feed intake. In different experimental series, the SID-reactor was operated with denatured ethanol, methanol, acetic acid or glycerin as carbon sources and changing operational modes.Clogging was prevented by a 40 second inherent gas recirculation twice an hour, which provided continuous, maintenance free operation with marginal energy demand. With inlet (RAS) and outlet NO3-N concentrations in the range of 49 mg l−1 and 12 mg l−1, mean denitrification rates of 199 g to 235 g NO3-N per m3 moving bed volume and day were determined for all tested carbon sources. Negative effects on the feed intake of the reared pike perch were detected with all carbon sources except methanol. Changing the mode of operation to continuous circulation of the filter bed at inlet NO3-N concentrations of 26 mg l−1, the denitrification performance reached 451 g NO3-N per m3 moving bed volume and day. The SID-reactor allowed for the reduction of freshwater exchange in the pike perch RAS from 600 l to 70 l (−88%) and the sodium bicarbonate buffer from 182 g to 31 g (−83%) per kg of administered food. The easy and reliable operation of the SID-reactor could help to establish controlled denitrification as a routine purification step in RAS.  相似文献   

6.
A step toward environmental sustainability of recirculat aquaculture systems (RAS) is implementation of single-sludge denitrification, a process eliminating nitrate from the aqueous environment while reducing the organic matter discharge simultaneously. Two 1700 L pilot-scale RAS systems each with a 85 L denitrification (DN) reactor treating discharged water and hydrolyzed solid waste were setup to test the kinetics of nitrate and COD removal. Nitrate removal and COD reduction efficiency was measured at two different DN-reactor sludge ages (high θX: 33–42 days and low θX: 17–23 days). Nitrate and total N (NO3 + NO2 + NH4+) removal of the treated effluent water ranged from 73–99% and 60–95% during the periods, respectively, corresponding to an overall maximum RAS nitrate removal of approximately 75%. The specific nitrate removal rate increased from 17 to 23 mg NO3-N (g TVS d)−1 and the maximal potential DN rate (measured at laboratory ideal conditions) increased correspondingly from 64–68 mg NO3-N (g TVS d)−1 to 247–294 mg NO3-N (g TVS d)−1 at high and low θX, respectively. Quantification of denitrifiers in the DN-reactors by qPCR showed only minor differences upon the altered sludge removal practice. The hydrolysis unit improved the biodegradability of the solid waste by increasing volatile fatty acid COD content 74–76%. COD reductions in the DN-reactors were 64–70%. In conclusion, this study showed that single-sludge denitrification was a feasible way to reduce nitrate discharge from RAS, and higher DN rates were induced at lower sludge age/increased sludge removal regime. Improved control and optimization of reactor DN-activity may be achieved by further modifying reactor design and management scheme as indicated by the variation in and between the two DN-reactors.  相似文献   

7.
A 13-day nursery trial was conducted to evaluate the performance of young Litopenaeus vannamei post-larvae (from PL6 to PL18) reared in both biofloc and microalgae-based systems at a stocking density of 67 PLs L−1. The effects of different concentrations of total suspended solids (TSS) on PL performance were also evaluated. One experimental group was reared in a conventional microalgae-based system with daily water exchange and daily addition of microalgae (herein called microalgae treatment). The other two experimental groups were reared using biofloc technology (BFT) with daily dextrose addition and no water exchange, but in the “Biofloc-500” treatment, TSS were maintained at around 500 mg L−1, while in the “Biofloc-700” treatment, TSS were maintained at around 700 mg L−1. Water quality variables remained within the appropriate range for larval culture. In microalgae treatment, ammonia control was likely associated with its assimilation into microalgae biomass and daily water exchange. In biofloc tanks, however, the addition of dextrose stimulated the production of bacterial biomass from ammonia. This system required only 12.9% of the water used by the microalgae treatment since water was not exchanged during the culture. The nursery of young PLs resulted in similar (P > 0.05) performance in all treatments: survival >94%, PL length ∼ 11.5 mm, and PL dry weight ∼ 1.2 mg. In addition, the salinity stress test (>90.0%) was not significantly different among treatments. Our results indicate that BFT can be as effective as the microalgae-based system for the nursery of young L. vannamei post-larvae. We also found that post-larvae performance was similar (P > 0.05) between biofloc treatments, indicating that organisms can tolerate environments with large quantities of solids.  相似文献   

8.
《Fisheries Research》2007,83(1-3):74-86
The life history of an increasingly important pelagic commercial and sport fish, the Talang queenfish, Scomberoides commersonnianus, was studied in northern Australia to investigate the stock status and assess current management of the species using minimum legal lengths (MLL). Estimated von Bertalanffy growth parameters were L = 1404 mm FL, K = 0.10 year−1 and t0 = −1.21 year−1. There was no significant difference in growth between sexes. Ages ranged from 1 to 11 years with age composition differing between the commercial (mainly 6–7 years) and sport fishery (mainly 2–4 years). Females matured (L50) at 635 mm FL and 4–5 years. Spawning occurred between August and March when mature females were estimated to produce 259,488–2,859,935 eggs per spawning. Natural mortality (M) was estimated as 0.16–0.26 year−1, while the combined fishing mortality (Fcurrent) from commercial and sport fisheries was 0.38–0.48 year−1. Yield-per-recruit analyses revealed that under current MLL limits (no MLL or 45 cm TL) and natural mortality (M = 0.16, 0.2 and 0.26 year−1), Fcurrent exceeded the reference points Fmax (0.15–0.22 year−1) and F0.1 (0.10–0.15 year−1), suggesting the stock may be growth overfished if the current situation remains unchanged. Although a stock–recruitment relationship is unknown, spawning stock biomass-per-recruit analysis indicates the stock may also be recruitment overfished since Fcurrent exceeded the reference points F25% (0.19–0.24 year−1) and F40% (0.11–0.15 year−1). Increasing the MLL corresponding to L50 of females (70 cm TL) will greatly improve the yield and long-term sustainability of the stock, and also enhance the sport fishery by increasing the number of larger trophy fish.  相似文献   

9.
Scallop larval production systems in Norway have changed from the use of batch to continuous flow through systems (FTS) during the last decade. Energy use to heat water in both larval and spat nurseries is considerable. Two experiments (June 2010 and February 2011) using water recirculation technology (RAS) were performed in large scale systems (3500 L larval tanks) supplied with continuous addition of algal feed, and 20% renewal of seawater.In the RAS a gradual increase in CO2, decrease in pH and dissolved oxygen was observed over time. This was most obvious during experiment two, when the total organic carbon content increased in both FTS and RAS. The total bacterial number was lower and more stable in FTS than in the RAS. The variations in seawater quality parameters were smaller during the first experiment compared to the second, when values of oxygen saturation were reduced to <70%, pH was 7.8 and NO3 reached 5 mg L−1. Even though these changes would seem less beneficial for survival and growth of scallop larvae, results showed that the survival at the end of the larval stage was higher in the FTS, but the yield of competent larvae ready for settlement was not significant different (p > 0.05) due to large variations between tanks. The CV% was 28.9% in FTS, while it was 49.9% in RAS. In FTS the mean yield was 40.2%, while it was 26.5% of initial number of larvae in RAS. Large variations in survival and yield were found between the larval tanks as well as gradual reduction in pH and oxygen in RAS tanks. The results indicate that there is a large potential for 80% reduction in water use by utilizing recirculation technology.  相似文献   

10.
The accumulation of particulate organic matter (POM) in recirculating aquaculture systems (RAS) has become an important issue with the intensification of finfish production. The objective of this study was to assess the foam fractionation efficiency of a vacuum airlift in different conditions (POM concentrations, airflow rates, bubble sizes, water renewal rates and feed addition). In sea water, the vacuum airlift allowed removing 20% of the initial POM concentration per hour (foam fractionation efficiency), corresponding to a 20.7-fold concentration factor between the tank and the foam. In rearing conditions, efficiency increased with decreasing water renewal rate or increasing POM concentration. An increase in airflow rate from 10 to 80 L min−1 in the vacuum airlift significantly decreased foam fractionation efficiency when feed was added to the water. The impact of feeding was only observed with high airflow rates where bubble coalescence occurred. Calculated POM production by fish ranged between 15.9 and 23.5 g h−1 and was equivalent to estimations based on feed conversion ratio (FCR). This indicated that all the POM produced was extracted by the vacuum airlift.  相似文献   

11.
Decreased Litopenaeus vannamei performance resulting from excess total suspended solids (TSS) has been highlighted in previous studies. Therefore, the aim of this study was to evaluate the effect of different TSS concentrations on the L. vannamei growth performance in a BFT system for 42 days. Five TSS concentrations were used—250, 500, 1000, 2000, and 4000 mg L−1—in three replicates identified as T250, T500, T1000, T2000, and T4000, respectively, in 200 L-tanks each. Dissolved oxygen concentration (DO) was maintained above 5 mg L−1. Shrimp with an initial average weight of 4.57 ± 1.07 g were stocked at a density of 277 shrimp m−2. The physical and chemical parameters were monitored. Water quality parameters and animal performance were subjected to analysis of variance (ANOVA − one way). The physical and chemical parameters were within the recommended range for L. vannamei. Weekly weight gain, feed conversion rate, survival, and productivity showed no significant differences (p > 0.05). The high TSS concentrations did not seem to affect the performance of this species when DO concentrations were maintained above 5 mg L−1.  相似文献   

12.
Environmentally sustainable aquaculture development requires increased nitrogen removal from recirculating aquaculture systems (RAS). In this study, removed solids from a large commercial outdoor recirculated trout farm (1000 MT year−1) were explored as an endogenous carbon source for denitrification. This was done by (1) a controlled laboratory experiment on anaerobic hydrolysis of the organic matter (from sludge cones, drumfilter, and biofilter back-wash) and (2) an on-site denitrification factorial experiment varying the soluble COD (CODS)/NO3-N ratio from 4 to 12 at hydraulic retention times (HRT) from 50 to 170 min in simple 5.5 m3 denitrification reactors installed at the trout farm.The lab-experiments showed that the major part of the readily biodegradable organic matter was hydrolyzed within 14 days, and the hydrolysis rate was fastest the first 24 h. Organic matter from the sludge cones generated 0.21 ± 0.01 g volatile fatty acids (VFA) g−1 total volatile solids (TVS), and the VFAs constituted 75% of CODS. Analogously, 1 g TVS from the drum filter generated 0.15 ± 0.01 g VFA, constituting 68% of the CODS. Comparison of the laboratory hydrolysis experiments and results from the on-farm study revealed as a rough estimate that potentially 17–24% of the generated VFA was lost due to the current sludge management.Inlet water to the denitrification reactors ranged in NO3-N concentration from 8.3 to 11.7 g m−3 and CODS from 52.9 to 113.4 g m−3 (10.0 ± 1.2 °C). The highest NO3-N removal rate obtained was at the intermediate treatments; 91.5–124.8 g N m−3reactor d−1. The effect of the C/N ratio depended on the HRT. At low HRT, the variation in C/N ratio had no significant effect on NO3-N removal rate, contrary to the effect at the high HRT. The stoichiometric ratio of CODS/NO3-N was 6.0 ± 2.4, ranging from 4.4 (at the high HRT) to 9.3 (at the low HRT). A simple model of the denitrification reactor developed in AQUASIM showed congruence between modeled and measured data with minor exceptions. Furthermore, this study pointed to the versatility of the NO3-N removal pathways expressed by the bacterial population in response to changes in the environmental conditions; from autotrophic anammox activity presumably present at low C/N to dissimilatory nitrate reduction to ammonia (DNRA) at high C/N, besides the predominate “normal” heterotrophic dissimilatory nitrate reduction (denitrification).  相似文献   

13.
When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out valuable base added to the RAS (as bicarbonate, hydroxide, or carbonate), which increases farm operating costs when high alkalinity concentrations are maintained; however, alkalinity must not be so low that it interferes with nitrification or pH stability. For these reasons, a study was designed to evaluate the effects of alkalinity on biofilter performance, and CO2 stripping during cascade aeration, within two replicate semi-commercial scale Atlantic salmon smolt RAS operated with moving bed biological filters. Alkalinity treatments of nominal 10, 70, and 200 mg/L as CaCO3 were maintained using a pH controller and chemical dosing pumps supplying sodium bicarbonate (NaHCO3). Each of the three treatments was replicated three times in each RAS. Both RAS were operated at each treatment level for 2 weeks; water quality sampling was conducted at the end of the second week. A constant feeding of 23 kg/day/RAS was provided every 1–2 h, and continuous lighting, which minimized diurnal fluctuations in water quality. RAS hydraulic retention time and water temperature were 4.3 days and 12.5 ± 0.5 °C, respectively, typical of smolt production RAS in Norway.It was found that a low nominal alkalinity (10 mg/L as CaCO3) led to a significantly higher steady-state TAN concentration, compared to when 70 or 200 mg/L alkalinity was used. The mean areal nitrification rate was higher at the lowest alkalinity; however, the mean TAN removal efficiency across the MBBR was not significantly affected by alkalinity treatment. The CO2 stripping efficiency showed only a tendency towards higher efficiency at the lowest alkalinity. In contrast, the relative fraction of total inorganic carbon that was removed from the RAS during CO2 stripping was much higher at a low alkalinity (10 mg/L) compared to the higher alkalinities (70 and 200 mg/L as CaCO3). Despite this, when calculating the total loss of inorganic carbon from RAS, it was found that the daily loss was about equal at 10, and 70 mg/L, whereas it was highest at 200 mg/L alkalinity. pH recordings demonstrated that the 10 mg/L alkalinity treatment resulted in the lowest system pH, the largest increase in [H+] across the fish culture tanks, as well as giving little response time in case of alkalinity dosing malfunction. Rapid pH changes under the relatively acidic conditions at 10 mg/L alkalinity may ultimately create fish health issues due to e.g. CO2 or if aluminium or other metals are present. In conclusion, Atlantic salmon smolt producers using soft water make-up sources should aim for 70 mg/L alkalinity considering the relatively low loss of inorganic carbon compared to 200 mg/L alkalinity, and the increased pH stability as well as reduced TAN concentration, compared to lower alkalinity concentrations.  相似文献   

14.
《Aquacultural Engineering》2010,42(3):188-193
The removal of phytoplankton cells from aquaculture systems generally results in the reduction of nitrogenous waste and improves water quality. With this study, the effects of chitosan concentration, environmental condition and pH adjustment on flocculation of phytoplankton in marine shrimp (Litopenaeus vannamei) culture tanks were investigated. The remaining phytoplankton and suspended solids in the system were indicators for evaluating the efficiency of chitosan on flocculation. The results indicate that the flocculation efficiency of chitosan was highest (>85%) and remained fairly constant at a chitosan concentration of 40–80 mg L−1 and a pH range of 7–9 after chitosan addition. With this novel technique including 40 mg L−1 chitosan addition, pH adjustment to 6.5 and then to 8.5, high efficiency and consistency of flocculation were achieved. This technique could also be applied with various water alkalinity up to 400 mg CaCO3 L−1. The experiment for phytoplankton removal by chitosan flocculation in the recirculating aquaculture system showed that flocculation efficiency remained constant even though flocculation was repeated several times.  相似文献   

15.
Irrigated rice fields have enormous potential for expanding the aquaculture production in rice producing countries. Two field experiments were carried out at the Bangladesh Agricultural University, Mymensingh, to optimize the productivity of integrated rice–fish systems using Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L. Both experiments were laid out in a randomized complete block design with three replicates per treatment and regular rice monoculture as control. In the first trial, carp and tilapia were tested in single culture and in mixed culture with supplementary feeding at 2× maintenance level. The highest fish yield was obtained in the carp/tilapia mixed culture (586 ± 125 kg ha 1), followed by tilapia alone (540 ± 65 kg ha 1), and carp alone (257 ± 95 kg ha 1). Carp had significantly lower yield than the other two fish groups (p < 0.05) due to high mortality and inefficient feed utilization. As the carp/tilapia combination performed the best in the first experiment, it was tested with different inputs in the second trial, i.e. regular urea fertilization and two different feeding levels. The feeding levels were: continuous feeding at 2× maintenance level (feed level I) and a declining feeding schedule from 4× to 2× maintenance level (feed level II). The highest fish yield was obtained in feed level II (935 ± 29 kg ha 1), followed by feed level I (776 ± 22 kg ha 1), and the non-fed group (515 ± 85 kg ha 1). Yield differences between the treatments were significant at p < 0.05. Rice yields showed controversial effects between the rice–fish treatments and were dependent on the inputs provided. The highest rice production (4.2 t ha 1) was obtained from rice–fish plots with regular urea fertilization. Various significant effects of fish on water quality parameters were observed. Fish decreased the dissolved oxygen (DO) and pH value compared to rice only, especially when supplementary feed was provided. Moreover, fish stimulated the growth of phytoplankton and increased chlorophyll-a concentration. In conclusion, carp/tilapia mixed culture with supplementary feeding was found to be optimal for maximizing the output from rice–fish culture.  相似文献   

16.
Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted to compare the long-term effects of “high” (99 ± 1 mg/L NO3-N) versus “low” nitrate-nitrogen (10.0 ± 0.3 mg/L NO3-N) on the health and performance of post-smolt Atlantic salmon cultured in replicate freshwater RAS. Equal numbers of salmon with an initial mean weight of 102 ± 1 g were stocked into six 9.5 m3 RAS. Three RAS were maintained with high NO3-N via continuous dosing of sodium nitrate and three RAS were maintained with low NO3-N resulting solely from nitrification. An average daily water exchange rate equivalent to 60% of the system volume limited the accumulation of water quality parameters other than nitrate. Atlantic salmon performance metrics (e.g. weight, length, condition factor, thermal growth coefficient, and feed conversion ratio) were not affected by 100 mg/L NO3-N and cumulative survival was >99% for both treatments. No important differences were noted between treatments for whole blood gas, plasma chemistry, tissue histopathology, or fin quality parameters suggesting that fish health was unaffected by nitrate concentration. Abnormal swimming behaviors indicative of stress or reduced welfare were not observed. This research suggests that nitrate-nitrogen concentrations  100 mg/L do not affect post-smolt Atlantic salmon health or performance under the described conditions.  相似文献   

17.
《Aquacultural Engineering》2010,42(3):166-175
Fish oxygen requirement is a fundamental variable of aquaculture system design and management, as it is the basis for determining water flow rates for sustaining stock. A study on oxygen consumption of California halibut (Paralichthys californicus) between 3.2 and 165.6 g was conducted in small raceways (2.41 m long, 0.28 m wide, and 0.22 m high; operational water depth between 0.05 and 0.10 m with a quiescent zone 19 cm long in the effluent section) working as open respirometers in a recirculating system under farm-like conditions. The fish were fed commercial dry pelleted feeds at a ratio of ∼0.70–3.00% of body weight (BW) and stocked at densities between 94% and 316% percent coverage area (PCA). Oxygen consumption rates were determined by mass balance calculations. The mean and maximum oxygen consumption rates (g O2/kg fish/day) for juvenile California halibut under the conditions tested can be expressed by Mday = 15.077W−0.2452 and Mday = 17.266W−0.2033, respectively, where W is fish weight in grams. The determination of oxygen consumption by California halibut in farm-like conditions provides valuable information on the oxygen requirement of these fish in an aquacultural setting. This information can be used for designing and sizing a rearing facility for the intensive culture of California halibut.  相似文献   

18.
A 56-day study was conducted in which shrimp (Litopenaeus vannamei) were stocked at 300 m−3 into 16, 500-L tanks. Four treatments were created: chemoautotrophic (CA), heterotrophic sucrose (HS), heterotrophic molasses (HM), and heterotrophic glycerol (HG). The heterotrophic treatments were managed such that the C:N ratio of inputs (feed and carbohydrate source) was 22:1. The chemoautotrophic treatment received no added carbohydrate, only shrimp feed. Each treatment was assigned randomly to four replicate tanks. Nitrate-N was significantly greater in the CA treatment, accumulating to a peak mean concentration of 162 mg NO3-N L−1 and nitrate was typically below detection (<0.01 mg NO3-N L−1) in the heterotrophic treatments. 5-Day biochemical oxygen demand (BOD5) was significantly greater in the heterotrophic treatments compared to the chemoautotrophic treatment. Total suspended solids concentration was significantly lower in the CA treatment compared to any other. Shrimp growth rate was significantly greater in the CA and HS treatments versus the HM treatment and there was no significant difference in growth rate between the HG treatment and any other treatment. These results indicate that differences in management and carbohydrate source can lead to substantial disparity in system function and shrimp production.  相似文献   

19.
Peracetic acid (PAA) products are being introduced to aquaculture as sustainable disinfectants. Two strategies are used to apply PAA: high dose pulse applications, or low dose continuous application. In the present study, their impacts on fish health and water quality were investigated in triplicate flow-through tanks stocked with rainbow trout. The gentler and shorter water cortisol increase measured along twice-per-week pulse applications of 1 mg L−1 PAA indicated a progressive adaptation of fish. In contrast, the continuous application of 0.2 mg L−1 PAA caused no stress to fish. Meanwhile, no mortality and no impact on growth or innate cellular immunity were observed. The pulse applications restricted biofilm formation, and partially inhibited nitrification. Additionally, the highest oxygen concentration and stable pH were observed. In contrast, the continuous application promoted biofilm formation, and caused a pH increase and intermediate oxygen concentration. The contrast was probably due to different susceptibility of microbes to PAA-induced oxidative stress. To summarize, pulse PAA applications cause minor stress in fish, but have advantages over continuous application by ensuring better water quality.  相似文献   

20.
In vivo digestibility determination in shrimp is a challenge because these animals are coprophagous, benthic and slow feeders and the small amount of feces that they produce is difficult to collect. The objective of this study was to evaluate an efficient tank design for the purpose of studying shrimp digestibility. Different tank designs were evaluated considering drain system (dual-drain and single-drain), water inlet flow rate (8, 12, and 16 L min−1) and bottom drain diameter (6, 13, 19, 25 and 50 mm) and their effects on tank hydraulics, water velocity and solids flushing. A circular and slightly conical 500 L tank was adapted with a clarifier for the two dual-drain designs (Cornell-type and central-type) and settling columns for the two single-drain designs (Guelph-F and Guelph-L). Results showed that: (1) water rotational velocity profile was more homogeneous in tanks with larger bottom drain outlets, and water velocity increased with water inlet flow rate from almost zero up to 14.5 ± 0.7 cm s−1; (2) solids flushing, measured as the percentage of feed pellets retained at both the bottom drain and in the settling devices, was positively correlated with the surface loading rate (L min−1 flow per m2) and was more effective at the Guelph-L design fitted with a 150 mm diameter settling column. In this system 100% of the solids were removed at the inflow rate of 16 L min−1. It can be concluded that among the systems evaluated, the Guelph-L at an inflow-rate of 12 L min−1 was most efficient for both solids removal and water velocity profile and thus seemed more suitable for shrimp digestibility studies in high performance conditions. Technologies involving hydrodynamic must be intensively applied to solids removal for aquatic species production as well as research purposes like digestibility, which is highlighted in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号