首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif), and a mutated rpsL gene to confer streptomycin resistance (Str), was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1) and D (2), were isolated from the crude extracts of a selected Str-Rif double mutant (M6) of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26), and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds.  相似文献   

2.
The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI). Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutyl)qunoline-4-(1H)-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutyl)quinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC)-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development.  相似文献   

3.
Muricid molluscs are a natural source of brominated isatin with anticancer activity. The aim of this study was to examine the safety and efficacy of synthetic 6-bromoisatin for reducing the risk of early stage colorectal tumor formation. The purity of 6-bromoisatin was confirmed by 1H NMR spectroscopy, then tested for in vitro and in vivo anticancer activity. A mouse model for colorectal cancer was utilized whereby colonic apoptosis and cell proliferation was measured 6 h after azoxymethane treatment by hematoxylin and immunohistochemical staining. Liver enzymes and other biochemistry parameters were measured in plasma and haematological assessment of the blood was conducted to assess potential toxic side-effects. 6-Bromoisatin inhibited proliferation of HT29 cells at IC50 223 μM (0.05 mg/mL) and induced apoptosis without increasing caspase 3/7 activity. In vivo 6-bromoisatin (0.05 mg/g) was found to significantly enhance the apoptotic index (p ≤ 0.001) and reduced cell proliferation (p ≤ 0.01) in the distal colon. There were no significant effects on mouse body weight, liver enzymes, biochemical factors or blood cells. However, 6-bromoisatin caused a decrease in the plasma level of potassium, suggesting a diuretic effect. In conclusion this study supports 6-bromoisatin in Muricidae extracts as a promising lead for prevention of colorectal cancer.  相似文献   

4.
Pure compound screening has previously identified the indolglyoxylamidospermidine ascidian metabolites didemnidine A and B (2 and 3) to be weak growth inhibitors of Trypanosoma brucei rhodesiense (IC50 59 and 44 μM, respectively) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 41 and 15 μM, respectively), but lacking in selectivity (L6 rat myoblast, IC50 24 μM and 25 μM, respectively). To expand the structure–activity relationship of this compound class towards both parasites, we have prepared and biologically tested a library of analogues that includes indoleglyoxyl and indoleacetic “capping acids”, and polyamines including spermine (PA3-4-3) and extended analogues PA3-8-3 and PA3-12-3. 7-Methoxy substituted indoleglyoxylamides were typically found to exhibit the most potent antimalarial activity (IC50 10–92 nM) but with varying degrees of selectivity versus the L6 rat myoblast cell line. A 6-methoxyindolglyoxylamide analogue was the most potent growth inhibitor of T. brucei (IC50 0.18 μM) identified in the study: it, however, also exhibited poor selectivity (L6 IC50 6.0 μM). There was no apparent correlation between antimalarial and anti-T. brucei activity in the series. In vivo evaluation of one analogue against Plasmodium berghei was undertaken, demonstrating a modest 20.9% reduction in parasitaemia.  相似文献   

5.
The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica, collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek’s (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC50 27.6 μg/mL) compared to the biomalt culture extract (IC50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC50 48.5 and 51.3 μM, respectively.  相似文献   

6.
Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).  相似文献   

7.
Two new secondary metabolites, namely, pinodiketopiperazine A (1) and 6,7-dihydroxy-3-methoxy-3-methylphthalide (2), along with alternariol 2,4-dimethyl ether (3) and l-5-oxoproline methyl ester (4), which were isolated from a natural source for the first time but have been previously synthesized, were characterized from the marine sediment-derived fungus Penicillium pinophilum SD-272. In addition, six known metabolites (5–10) were also identified. Their structures were elucidated by analysis of the NMR and mass spectroscopic data. The absolute configuration of compound 1 was determined by experimental and calculated ECD spectra. Compound 2 displayed potent brine shrimp (Artemia salina) lethality with LD50 11.2 μM.  相似文献   

8.
Chondrostereum sp., a marine fungus isolated from a soft coral Sarcophyton tortuosum, can yield hirsutane framework sesquiterpenoids. However, the metabolites profiles vary dramatically with the composition change of the culture media. This fungus was cultured in a liquid medium containing glycerol as the carbon source, and two new metabolites, chondrosterins I and J (1 and 2), were obtained. Their structures were elucidated primarily based on MS, NMR and X-ray single-crystal diffraction data. By comparison with the known hirsutane sesquiterpenoids, chondrosterins I and J have unique structural features, including a methyl was migrated from C-2 to C-6, and the methyl at C-3 was carboxylated. Compound 2 exhibited potent cytotoxic activities against the cancer cell lines CNE-1 and CNE-2 with the IC50 values of 1.32 and 0.56 μM.  相似文献   

9.
An in-depth study of the secondary metabolites contained in the Caribbean sponge Smenospongia aurea led to the isolation of smenamide A (1) and B (2), hybrid peptide/polyketide compounds containing a dolapyrrolidinone unit. Their structures were elucidated using high-resolution ESI-MS/MS and homo- and heteronuclear 2D NMR experiments. Structures of smenamides suggested that they are products of the cyanobacterial metabolism, and 16S rRNA metagenomic analysis detected Synechococcus spongiarum as the only cyanobacterium present in S. aurea. Smenamides showed potent cytotoxic activity at nanomolar levels on lung cancer Calu-1 cells, which for compound 1 is exerted through a clear pro-apoptotic mechanism. This makes smenamides promising leads for antitumor drug design.  相似文献   

10.
Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2) to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 3.3 μM) while exhibiting low levels of cytotoxicity (L6, IC50 167 μM). A series of C-7 amide and Δ2(3) analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM), and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3)-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively), while Δ2(3)-phenethylamide 8e (IC50 0.67 μM, SI 78) exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM) combined with excellent selectivity (SI 560–4000). In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively.  相似文献   

11.
Food-derived bioactive compounds are gaining increasing significance in life sciences. In the present study, we identified angiotensin I-converting enzyme (ACE)-inhibitory peptides from Mactra veneriformis hydrolysate using a nano-LC-MS/MS method. Mactra veneriformis hydrolysate was first separated into four fractions (F1–F4) based on molecular weight by ultrafiltration. The fraction with molecular weight lower than 1 kDa (F1) showed the highest ACE inhibitory activity. F1 was then analyzed by a high throughput nano-LC-MS/MS method and sequences of peptides in F1 were calculated accordingly. The 27 peptides identified as above were chemically synthesized and tested for ACE-inhibitory activity. The hexapeptide VVCVPW showed the highest potency with an IC50 value of 4.07 μM. We then investigated the interaction mechanism between the six most potent peptides and ACE by molecular docking. Our docking results suggested that the ACE inhibitory peptides bind to ACE via interactions with His383, His387, and Glu411 residues. Particularly, similar to the thiol group of captopril, the cysteine thiol group of the most potent peptide VVCVPW may play a key role in the binding of this peptide to the ACE active site.  相似文献   

12.
High resolution Fourier transform mass spectrometry (HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy were employed as complementary metabolomic tools to dereplicate the chemical profile of the new and antitrypanosomally active sponge-associated bacterium Actinokineospora sp. EG49 extract. Principal Component (PCA), hierarchical clustering (HCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) were used to evaluate the HRFTMS and NMR data of crude extracts from four different fermentation approaches. Statistical analysis identified the best culture one-strain-many-compounds (OSMAC) condition and extraction procedure, which was used for the isolation of novel bioactive metabolites. As a result, two new O-glycosylated angucyclines, named actinosporins A (1) and B (2), were isolated from the broth culture of Actinokineospora sp. strain EG49, which was cultivated from the Red Sea sponge Spheciospongia vagabunda. The structures of actinosporins A and B were determined by 1D- and 2D-NMR techniques, as well as high resolution tandem mass spectrometry. Testing for antiparasitic properties showed that actinosporin A exhibited activity against Trypanosoma brucei brucei with an IC50 value of 15 µM; however no activity was detected against Leishmania major and Plasmodium falciparum, therefore suggesting its selectivity against the parasite Trypanosoma brucei brucei; the causative agent of sleeping sickness.  相似文献   

13.
Wang Y  Zheng J  Liu P  Wang W  Zhu W 《Marine drugs》2011,9(8):1368-1378
To investigate the structurally novel and bioactive natural compounds from marine-derived microorganisms under high salinity, the fungus Aspergillus terreus PT06-2 was isolated from the sediment of the Putian Sea Saltern, Fujian, China. Three new compounds, terremides A (1) and B (2) and terrelactone A (3), along with twelve known compounds (4–15) were isolated and identified from the fermentation broth of A. terreus PT06-2 at 10% salinity. Among these metabolites, compounds 4 and 15 only produced in the 10% salinity culture, were identified as methyl 3,4,5-trimethoxy-2-(2-(nicotinamido) benzamido) benzoate, and (+)-terrein, respectively. The new compounds 1 and 2 exhibited antibacterial activity against Pseudomonas aeruginosa and Enterobacter aerogenes with MIC values of 63.9 and 33.5 μM, respectively. Compounds 5 showed moderate anti-H1N1 activity and lower cytotoxicity with IC50 and CC50 values of and 143.1 and 976.4 μM, respectively.  相似文献   

14.
Diazepinomicin is a dibenzodiazepine alkaloid with an unusual structure among the known microbial metabolites discovered so far. Diazepinomicin was isolated from the marine sponge-associated strain Micromonospora sp. RV115 and was identified by spectroscopic analysis and by comparison to literature data. In addition to its interesting preclinical broad-spectrum antitumor potential, we report here new antioxidant and anti-protease activities for this compound. Using the ferric reducing antioxidant power (FRAP) assay, a strong antioxidant potential of diazepinomicin was demonstrated. Moreover, diazepinomicin showed a significant antioxidant and protective capacity from genomic damage induced by the reactive oxygen species hydrogen peroxide in human kidney (HK-2) and human promyelocytic (HL-60) cell lines. Additionally, diazepinomicin inhibited the proteases rhodesain and cathepsin L at an IC50 of 70–90 µM. It also showed antiparasitic activity against trypomastigote forms of Trypanosoma brucei with an IC50 of 13.5 µM. These results showed unprecedented antioxidant and anti-protease activities of diazepinomicin, thus further highlighting its potential as a future drug candidate.  相似文献   

15.
One new phenylalanine derivative 4′-OMe-asperphenamate (1), along with one known phenylalanine derivative (2) and two new cytochalasins, aspochalasin A1 (3) and cytochalasin Z24 (4), as well as eight known cytochalasin analogues (5–12) were isolated from the fermentation broth of Aspergillus elegans ZJ-2008010, a fungus obtained from a soft coral Sarcophyton sp. collected from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods. The absolute configuration of 1 was determined by chemical synthesis and Marfey’s method. All isolated metabolites (1–12) were evaluated for their antifouling and antibacterial activities. Cytochalasins 5, 6, 8 and 9 showed strong antifouling activity against the larval settlement of the barnacle Balanus amphitrite, with the EC50 values ranging from 6.2 to 37 μM. This is the first report of antifouling activity for this class of metabolites. Additionally, 8 exhibited a broad spectrum of antibacterial activity, especially against four pathogenic bacteria Staphylococcus albus, S. aureus, Escherichia coli and Bacillus cereus.  相似文献   

16.
Five new polyoxygenated marine steroids—punicinols A–E (1–5)—were isolated from the gorgonian Leptogorgia punicea and characterized by spectroscopic methods (IR, MS, 1H, 13C and 2-D NMR). The five compounds induced in vitro cytotoxic effects against lung cancer A549 cells, while punicinols A and B were the most active, with IC50 values of 9.7 μM and 9.6 μM, respectively. The synergistic effects of these compounds with paclitaxel, as well as their effects on cell cycle distribution and their performance in the clonogenic assay, were also evaluated. Both compounds demonstrated significant synergistic effects with paclitaxel.  相似文献   

17.
The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L) and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases.  相似文献   

18.
In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.  相似文献   

19.
20.
Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号