首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water erosion in the hilly areas of west China is the main process contributing to the overall sediment of the Yellow River and the Yangtze River. The impact of gully erosion in total sediment output has been mostly neglected. Our objective was to assess the sediment production and sediment sources at both the hillslope and catchment scales in the Yangjuangou reservoir catchment of the Chinese Loess Plateau, northwest China. Distribution patterns in sediment production caused by water erosion on hills and gully slopes under different land use types were assessed using the fallout 137Cs technique. The total sediment production from the catchment was estimated by using the sediment record in a reservoir. Sediment sources and dominant water erosion processes were determined by comparing 137Cs activities and 210Pb/137Cs ratios in surface soils and sub-surface soils with those of sediment deposits from the reservoir at the outlet of the catchment. Results indicated that landscape location had the most significant impact on sediment production for cultivated hillslopes, followed by the terraced hillslope, and the least for the vegetated hillslope. Sediment production increased in the following order: top>upper>lower>middle for the cultivated hillslope, and top>lower>upper>middle for the terraced hillslope. The mean value of sediment production declined by 49% for the terraced hillslope and by 80% for the vegetated hillslope compared with the cultivated hillslope. Vegetated gully slope reduced the sediment production by 38% compared with the cultivated gully slope. These data demonstrate the effectiveness of terracing and perennial vegetation cover in controlling sediment delivery at a hillslope scale. Averaged 137Cs activities and 210Pb/137Cs ratios in the 0–5 cm surface soil (2.22–4.70 Bq kg−1 and 20.70–22.07, respectively) and in the 5–30 cm subsoil (2.60 Bq kg−1 and 28.57, respectively) on the cultivated hills and gully slopes were close to those of the deposited sediment in the reservoir (3.37 Bq kg−1 and 29.08, respectively). These results suggest that the main sediment sources in the catchment were from the surface soil and subsoil on the cultivated slopes, and that gully erosion is the dominant water erosion process contributing sediment in the study area. Changes in land use types can greatly affect sediment production from gully erosion. An increase in grassland and forestland by 42%, and a corresponding decrease in farmland by 46%, reduced sediment production by 31% in the catchment.  相似文献   

2.
Jan Moeyersons   《CATENA》2003,50(2-4):381-400
This article presents new quantitative evidence that land use in Rwanda contributes to the development of hillslope incisions.Two types of hillslope incisions can be distinguished in southern Rwanda. Incisions of the first type drain an area depending on the form and extension on the natural topography and geology. The Runyinya gully (25°) and the Rugabano soil slippage (39°) are two examples. On a logarithmic plot of critical slope inclination at the incision head versus drainage area towards the incision head, both incisions lay sensibly to the right of the Montgomery–Dietrich (M-D) envelope. The latter gives the range of these topographical thresholds for gully and mass-wasting incision in parts of North America. The Runyinya and Rugabano cases obey the linear equation:
Scr=(±0.6)A−(±0.6)
where Scr=critical slope gradient (tangent of slope in °) at the gully head or the scar and A=the area (ha) drained towards the incision head.Hillslope incisions of the second group rely on a run-on area larger than normal because they are localised at the ‘outlet’ of artificially runoff-collecting systems like roads, soil conservational contour trenches, tracks and other linear landscape elements. Such systems often drain a surface much larger in extension than the natural run-on area to the ‘outlet.’ These hillslope incisions, taking into account their artificially big drainage area, concentrate more or less along the line:
Scr=(±0.3)A−(±0.6)
This line is about in the center of the Montgomery–Dietrich envelope. If, however, only the natural drainage area of these ‘outlet’ incisions is taken into account, all points fall close to the left border or even to the left of the Montgomery–Dietrich envelope. This indicates a much higher probability for incision in those localities receiving supplementary runoff or interflow from outside the natural drainage area. In the case of a soil slippage at Rwaza Hill, detailed stability calculations show that the slope failure should be due to excessive water infiltration into the bottom of a trench. The digging of the trench provoked an increase in the area drained to the slippage head by a factor of 6.The phenomenon of ‘forward’ erosion is compatible with the existence of threshold combinations of slope and drained area. For slopes steeper than 7–8°, the phase of regressive erosion does often follow the forward incision event with a delay of several years or more.Finally, the scanty data set now available for Rwanda suggests that the drainage area critical to hillslope incision on the red-brown ferrallitic soils in Rwanda might be nearly twice as big as those in North America.  相似文献   

3.
雨强和坡度对黄土陡坡地浅沟形态特征影响的定量研究   总被引:6,自引:1,他引:5  
浅沟形态特征是建立陡坡地坡面浅沟侵蚀预报模型的基础。为了定量研究黄土陡坡地浅沟形态特征,在长8 m、宽2 m、深0.6 cm的试验土槽上制作了雏形浅沟,设计了2个降雨强度(50、100 mm/h)和3个浅沟发生的典型坡度(15°、20°、25°),利用模拟降雨和径流冲刷(10 L/min)相结合的试验方法定量分析了黄土陡坡地的浅沟形态特征。结果表明:降雨强度和坡度的增加均加快了坡面浅沟侵蚀过程并使浅沟沟槽宽度和深度不断增加,25°和100 mm/h降雨强度下的浅沟沟槽平均宽度和深度比15°和50 mm/h降雨强度下的分别增加1.40和0.61倍。根据测针板法得到的3 cm×10 cm精度的地表高程值数据,在Surfer软件中生成不同试验处理下的地面数字高程模型(DEM,digital elevation model)及水流流路图等,发现坡度的增加使两侧坡面细沟汇入浅沟沟槽的坡长增大,而降雨强度的增加则导致浅沟沟槽两侧坡面细沟汇入浅沟沟槽的坡长缩短,同时,沟道密度、地面割裂度和浅沟复杂度均随着降雨强度和坡度的增加而呈现增大的趋势,三者分别变化于0.74~1.48 m/m2、0.13~0.29和1.64~2.84之间,而不同降雨强度和坡度条件下浅沟沟槽宽深比变化于0.65~1.27之间。基于不同试验处理下的DEM,根据相邻格网关系在水平方向上计算方向导数后发现,方向导数格网等值线图可以有效地反映坡面浅沟和细沟的长度、表面积及侵蚀最严重的浅沟沟底位置。  相似文献   

4.
Reservoir siltation because of water erosion is an important environmental issue in Mediterranean countries where storage of clear surface water is crucial for their economic and agricultural development. The high density of gully systems observed in Mediterranean regions raises the question of their contribution to reservoir siltation. In this context, this study quantified the absolute and relative contributions of rill/interrill and gully/channel erosion in sediment accumulation at the outlet of small Tunisian catchments (0·1–10 km2) during the last 15 years (1995–2010). To this end, a fingerprinting method based on measurements of caesium‐137 and total organic carbon combined with long‐term field monitoring of catchment sediment yield was applied to five catchments in order to cover the diversity of environmental conditions found along the Tunisian Ridge and in the Cape Bon region. Results showed the very large variability of erosion processes among the selected catchments, with rill/interrill erosion contributions to sediment accumulated in outlet reservoirs ranging from 20 to 80%. Overall, rill/interrill erosion was the dominant process controlling reservoir siltation in three catchments whereas gully/channel erosion dominated in the other two catchments. We identified the presence of marly gypsum substrates and the proportion of catchment surface covered by soil management/conservation measures as the main drivers of erosion process variability at the catchment scale. These results provided a sound basis to propose guidelines for erosion mitigation in these Mediterranean environments and suggested to apply models simulating both rill/interrill and gully/channel erosion in catchments of the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Dino Torri  Lorenzo Borselli 《CATENA》2003,50(2-4):449-467
An approach to gully erosion is presented in this paper. The approach is based on general equations derived from theoretical considerations. The equations apply to a situation of intense erosion rate, such as at peak discharge during the few critical rainstorms, able to generate or to widen gullies.Equations linking gully widening to gully deepening are derived. They do not depend on the way in which concentrated flow aggressiveness is estimated. The equation expressing gully width/depth relationship was successfully compared with data from the literature.When runoff aggressiveness was estimated through unit stream power and bottom flow shear stress, the width/discharge relationships found were similar to those expected on the basis of previous studies (e.g., Leopold and Maddock [U. S. Geol. Surv. Prof. Pap. 252 (1953) 57 pp.]) even if slope gradient explicitly appears in contrast with empirical evidence. Only threshold conditions for gullies indicate that flow shear stress (for laminar flow conditions) can explain the observed trends. This astonishing result most probably indicates that gully initiation needs more complex contexts to be explained than the one here used (based on a Montgomery and Dietrich [1994. Landscape dissection and drainage area–slope thresholds. In: M.J. Kirkby (ed.), Process Models and Theoretical Geomorphology. Wiley, 221–246] approach).A selection of the proposed equations have been arranged into a research model and an example of the outcome has been given for two situations typical of cropland in southern Tuscany (Italy). The results indicate that the spatial distribution of soil characteristics and of land use influences significantly gully generation and evolution. This further confirms that gully morphological thresholds cannot be explained by simple approaches.  相似文献   

6.
坡面水蚀预报模型研究   总被引:20,自引:2,他引:20  
基于对我国坡面水蚀预报模型研究成果的述评和考虑坡面土壤侵蚀特征,提出了我国坡面水蚀预报模型的基本形式,给出了模型中各参数,如降雨侵蚀力、坡度与坡长、浅沟侵蚀因子的计算公式,并对土壤可蚀性、作物和水保措施等因子的提取方法进行了讨论。  相似文献   

7.
Gbris   . Kertsz  L. Zmb 《CATENA》2003,50(2-4):151-164
Gully erosion can be widely observed on cultivated hillslopes in Hungary. Loose sediments covering two thirds of the total area of the country are prone to gully erosion.A detailed study of gully formation was carried out in the Rakaca catchment (58 km2), northeastern Hungary. The objectives include (1) a detailed survey of the present gullies, (2) an explanation of differences in gully distribution within the catchment, (3) clarification of the role of influencing factors like slope gradient, vegetation cover and soil type and (4) a study of changes of gully distribution and development in time over the last 200 years based on the comparison of topographic maps.The present gully distribution was first surveyed by applying 1:10 000 topographic maps and aerial photographs. The total length of the network is 70.9 km, i.e. 1.22 km/km2. Distribution inhomogeneities within the catchment can well be explained by differences in slope gradient and vegetation cover.The rate of increase of the gully length per unit area (1 km2) calculated for different time periods shows the following trends: (1) until 1860, when more than 50% of the catchment was forested, it was 5 m year−1 km−2; (2) between 1860 and 1920, when forest area dropped to almost 25% and agricultural land use was extended to slopes steeper than 25%, it still remained at roughly 5 m year−1 km−2; (3) after 1920, with 24–25% forest cover and with the extension of farming activity to the steepest slopes, it reached 10 m year−1 km−2.It could be shown that gully erosion on cultivated slopes leads to the development of gully systems in 50–60 years even if slope gradient is below 12%.To prevent further development of gully systems, it is suggested that at least 30% of the area should be forested and slopes steeper than 17% should not be cultivated at all.  相似文献   

8.
Gully erosion: Impacts, factors and control   总被引:21,自引:1,他引:21  
C. Valentin  J. Poesen  Yong Li 《CATENA》2005,63(2-3):132
Gully erosion attracts increasing attention from scientists as reflected by two recent international meetings [Poesen and Valentin (Eds.), Catena 50 (2–4), 87–564; Li et al., 2004. Gully Erosion Under Global Change. Sichuan Science Technology Press, Chengu, China, 354 pp.]. This growing interest is associated with the increasing concern over off-site impacts caused by soil erosion at larger spatial scales than the cultivated plots. The objective of this paper is to review recent studies on impacts, factors and control of gully erosion and update the review on ‘gully erosion and environmental change: importance and research needs’ [Poesen et al., 2003. Catena 50 (2–4), 91–134.]. For the farmers, the development of gullies leads to a loss of crop yields and available land as well as an increase of workload (i.e. labour necessary to cultivate the land). Gullies can also change the mosaic patterns between fallow and cultivated fields, enhancing hillslope erosion in a feedback loop. In addition, gullies tend to enhance drainage and accelerate aridification processes in the semi-arid zones. Fingerprinting the origin of sediments within catchments to determine the relative contributions of potential sediment sources has become essential to identify sources of potential pollution and to develop management strategies to combat soil erosion. In this respect, tracers such as carbon, nitrogen, the nuclear bomb-derived radionuclide 137 Cs, magnetics and the strontium isotopic ratio are increasingly used to fingerprint sediment. Recent studies conducted in Australia, China, Ethiopia and USA showed that the major part of the sediment in reservoirs might have come from gully erosion.Gullies not only occur in marly badlands and mountainous or hilly regions but also more globally in soils subjected to soil crusting such as loess (European belt, Chinese Loess Plateau, North America) and sandy soils (Sahelian zone, north-east Thailand) or in soils prone to piping and tunnelling such as dispersive soils. Most of the time, the gullying processes are triggered by inappropriate cultivation and irrigation systems, overgrazing, log haulage tracks, road building and urbanization. As exemplified by recent examples from all over the world, land use change is expected to have a greater impact on gully erosion than climate change. Yet, reconstructions of historical causes of gully erosion, using high-resolution stratigraphy, archaeological dating of pottery and 14C dating of wood and charcoal, show that the main gully erosion periods identified in Europe correspond to a combination not only of deforestation and overuse of the land but also to periods with high frequency of extreme rainfall events.Many techniques have proved to be effective for gully prevention and control, including vegetation cover, zero or reduced tillage, stone bunds, exclosures, terracing and check dams. However, these techniques are rarely adopted by farmers in the long run and at a larger spatial scale because their introduction is rarely associated with a rapid benefit for the farmers in terms of an increase in land or labour productivity and is often contingent upon incentives.  相似文献   

9.
不同植被格局对梁峁坡-沟坡的侵蚀动力作用机制   总被引:2,自引:0,他引:2  
[目的]探究不同植被格局对梁峁坡—沟坡的侵蚀动力作用机制,为进一步揭示草地坡面侵蚀规律和植被减蚀效应研究提供科学依据。[方法]以梁峁坡—沟坡为研究对象,采用室内降雨模拟降雨和三维激光扫描技术,分析不同植被格局对梁峁坡—沟坡侵蚀动力作用机制。[结果]径流流速和含沙量共同影响着坡面侵蚀动力过程,径流流速是主要影响因素。坡面的侵蚀产沙来源主要位于沟坡内,不同植被格局下梁峁坡与沟坡产沙比例的不同,反映了植被调控侵蚀的范围和强度的不同。草带位于梁峁坡中下部时,不但能够有效降低梁峁坡的侵蚀程度,而且能够有效抑制和减缓沟坡内的径流流速,大幅度降低梁峁坡下部和沟坡内的侵蚀程度。[结论]不同植被格局可以通过影响径流流速和含沙量来调控梁峁坡—沟坡侵蚀动力。  相似文献   

10.
浅沟侵蚀是黄土高原丘陵沟壑区的主要侵蚀类型之一。利用室内模拟降雨与放水相结合的研究方法,对雨强、上游汇水面积、坡度和耕作等因素对浅沟侵蚀的影响进行了初步研究,结果表明:浅沟侵蚀发生的速率与坡度、雨强和汇水面积均呈正相关关系。耕作通过改变表层土壤结构,改变了浅沟侵蚀随雨强、坡度和上游汇水面积与侵蚀速率的响应关系。且在较小坡度坡面上,耕作显著减少由于雨强变化引起的侵蚀变化,但在大坡度和大雨强条件下,耕作对雨强引起的侵蚀变化有加强作用。  相似文献   

11.
The Souar lithologic formation in semi-arid Tunisia is undergoing severe gully erosion which is threatening soil and water resources. Soil conservation strategies have focused more on terracing than on gully control techniques, since the contribution of gully sediment yield in the overall soil loss from watersheds is unknown. The paper reports investigations into the sediment yield provided by head-cut as well as sidewall–floor erosion of first order gullies on gentle and steep slope catchments underlined by the Souar lithologic formation. We measured mean field sediment volumes evacuated by different headward reaches of 10 and 9 gullies located on gentle and steep slope catchments, respectively. Two equations between the length of the gully head cutting and the corresponding volume of evacuated sediment were established. The treatment with a Geographic Information System (Arc View) of air photographs of six flights from 1952 to 2000 allowed the calculation of the volume of sediment provided both by head cutting and gully sidewalls–floor erosion through the following up of gully extension in eight catchments during the five periods separating the dates of these flights. Total gully erosion was on average 1.66 m3 ha− 1 year− 1 for the gentle slopes and 5.603 m3 ha− 1 year− 1 for the steep slopes. Sidewalls–floor contribution in total erosion was on average 81.5% for the gentle slopes and 77.8% for the steep slopes. We found out that the mean annual rainfall resulting from 40 mm daily rainfall threshold explained better the variation of annual head cutting sediment yield for these five periods than any other annual rainfall resulting from lower daily rainfall thresholds. Two equations between these two variables were established both for gentle and steep slope catchments.  相似文献   

12.
基于三维重建技术的坡面细沟侵蚀演变过程研究   总被引:4,自引:1,他引:3  
作为黄土高原地区沟头溯源侵蚀和水流汇集发源地的梁峁坡面,在强降雨下其产流产沙对沟缘线以下坡面及沟道侵蚀有着重大影响。该研究根据野外实地考查构建5°~35°变坡段实体模型,进行6场间歇性人工模拟降雨试验,并借助基于三维重建技术的PhotoScan软件获取坡面DEM,将其侵蚀演化过程进行图形化、数字化,定性定量揭示其侵蚀形态演变特征。研究表明:1)梁峁坡面细沟侵蚀历经4个阶段:面蚀阶段,即产生一系列呈串珠状分布的侵蚀跌坑,宽度5~9 cm,深度1~4 cm;细沟形成阶段,由面蚀所产生的微小跌坑在径流作用下长、宽、深均不断增大,最大分别达到266、7.6、13.8cm;细沟网形成阶段,细沟出现分叉及联通,有明显流路;小切沟形成阶段,伴随沟壁崩塌、沟壁加宽和沟底下切,最大沟长及最大沟深较细沟形成时增大3倍以上。2)对比次降雨过程基于三维建模所计算侵蚀量与实测侵蚀量,第1场降雨试验因地表疏松颗粒较多导致实测侵蚀量比建模计算侵蚀量大而引起较大偏差(20.82%),其他场次偏差均在10%左右或以下,总体来说,该技术可以较好地应用于侵蚀发育过程的研究。该研究实现侵蚀演变关键过程图形化、数字化,有助于人们定性、定量了解和认识梁峁坡面侵蚀过程,且对于创新侵蚀过程研究方法亦具有实践指导价值。  相似文献   

13.
Analysis of sediment sources is an important component in the development of catchment sediment budgets and in determining links between erosion from sources and sediment delivery to catchment outlets. In this study 137Cs and 210Pbex were used to determine surface and sub-surface source contributions of fine sediment in a small upland headwater catchment (1.6 km2) in south-eastern Australia. The findings from this analysis are employed in an adjustment procedure to better differentiate sediment source erosion processes by utilising channel survey and erosion pin data. This improved the precision of estimates of sediment-source erosion-process contributions from hillslopes and channel/gully walls. A mean of 74% of in-channel deposits and suspended sediment exiting the study catchment was derived from sub-surface sources and when adjusted for erosion process this increased to 81%, which may be attributed to channel and gully wall erosion alone. Net erosion of the channel floor was low and constitutes only a small part of the total channel source input to sediment flux. Variability in sediment source contributions within the catchment was high, with rapid transition from hillslope to channel source dominance of sediment flux with distance downstream in the study catchment.  相似文献   

14.
黄土高塬沟壑区沟坡道路侵蚀临界水动力学试验研究   总被引:1,自引:0,他引:1  
道路侵蚀是黄土高塬重要的侵蚀方式,通过野外放水冲刷试验研究了黄土高塬沟壑区沟坡道路侵蚀水力学及产沙特性。结果表明,平均输沙率随坡度和流量的增加而增大,输沙率与坡度之间呈对数关系。水流剪切力在3°~12°的坡度变化中呈增大趋势,在9°~12°其增大趋势变缓。进一步的分析结果表明,道路侵蚀的发生具有一定临界条件。土壤剥蚀率与径流剪切力、水流功率和单宽能耗之间均呈线性关系,其中临界剪切力为2.443N/(m2.min),临界水流功率为0.369N/(m.s),临界单宽能耗为1.993J/(min.cm);对比分析知,土壤剥蚀率与水流功率相关系数最高。  相似文献   

15.
以浅沟集水区为研究对象,分析了子午岭地区林地被开垦破坏15年后裸露地在不同侵蚀强度和侵蚀方式下的土壤养分流失和土壤微生物数量的变化。结果表明,林地开垦破坏后,土壤侵蚀加剧发展,侵蚀强度达159.7t/(hm2a),是林地土壤侵蚀量的上千倍。开垦破坏15年后,裸露地浅沟集水区不同地形部位表层土壤全氮、有机碳、速效磷和土壤微生物总数显著减少,同林地相比,依次分别减少37.9%~82.6%、42.7%~86.4%、24.2%~80.3%和31.8%~92.0%。在裸露地浅沟集水区梁坡随坡长的增加,表层土壤有机碳、全氮和速效磷含量及微生物总数呈显著的下降趋势,且沟槽的土壤各养分含量及微生物总数明显低于沟间。裸露地浅沟集水区土壤养分流失强度及微生物数量减少幅度在浅沟集水区的空间分布与土壤侵蚀方式和侵蚀强度相对应。林地开垦破坏15年后,土壤养分以有机碳流失最严重,其次分别为速效磷、全氮;微生物中的真菌减少幅度最大,细菌次之,放线菌减少幅度最小。  相似文献   

16.
沟蚀发生的地貌临界理论计算中数据获取方法及应用   总被引:2,自引:1,他引:2  
沟蚀发生是一种地貌临界现象,与沟头处局地坡度及上方汇水面积有关,而沟蚀发生地貌临界理论能够预测沟头可能发生的位置。该文从沟蚀发生地貌临界理论起源、数据获取方式、参数计算方法、影响因素及应用等方面综合评述了该理论的发展及近年来国内外的有关研究。数据获取方式主要包括野外实测、高清遥感影像及地形图测量。参数计算方法包括目视(下限值)法、正交回归(95%置信区间下限)、正交回归(下限值)及分位数回归等。相对剪切力指数值反映区域主要的沟蚀发生机制,临界常数值反映当前特定外界环境下的沟蚀发生临界条件。将相对剪切力指数固定后,临界常数的时间序列变化能够表征外界环境改变对沟蚀发生的影响。人类活动改变了沟头上方汇流环境,进而影响临界条件。沟蚀发生地貌临界理论可获取沟道侵蚀风险较大的区域,为沟道侵蚀防治措施布设提供参考。结合高分辨率地形图,增加表征人类活动影响汇流过程的参数能够丰富沟蚀发生地貌临界理论。该理论与已有沟道侵蚀发展模型结合,可将沟头发生位置和沟道发展过程统一,促进沟道侵蚀全过程的模拟。  相似文献   

17.
黄土丘陵沟壑区小流域土壤侵蚀及其预报模型研究   总被引:2,自引:0,他引:2  
在小流域内建立人工径流试验小区和自然坡面径流试验小区,观测天然降雨条件下的土壤侵蚀现象、土壤侵蚀量和小流域出口治沟骨干工程的淤积量,并对小流域土壤侵蚀进行了分类。在特别界定小流域"坡面侵蚀"、"沟道侵蚀"和沟道"重力侵蚀"词语含义的基础上,建立起坡面侵蚀模数和沟道侵蚀模数的预报模型。该侵蚀预报模型具有较高的精度,适用于年降雨量为430mm左右的黄土丘陵沟壑区。  相似文献   

18.
为了探究野外自然坡沟系统土壤侵蚀过程,研究于黄土丘陵沟壑区典型流域辛店沟内自然坡面开展5场放水冲刷试验,利用地面三维激光扫描技术(Terrestrial laser scanning, TLS)获取高精度地形信息,并采用DEM of difference(DoD)地形变化监测方法计算产沙量,利用实测产沙量评估TLS的监测精度,并探讨了坡沟系统侵蚀/沉积的变化特征。结果表明:(1)累积场次中,DoD不确定性(即level of detection, LoD)平均值(范围)为16.5 mm(16.2~16.8 mm)。单场次中,LoD值平均值为16.4 mm(16.2~16.6 mm);(2)累积场次中,梁峁坡、沟谷坡、坡沟系统TLS扫描所得产沙量相对误差的平均值(范围)为52.63%(26.06%~106.98%),56.68%(30.26%~75.49%)和56.28%(33.37%~73.28%),与实测数据显著相关(R2>0.9,p<0.05)。单场次TLS扫描相对误差波动范围更大且平均值高于累积场次,其值分别为83.70%(4.08%~190.4...  相似文献   

19.
重力侵蚀黄土沟壑区沟坡产沙特性   总被引:3,自引:0,他引:3  
沟坡是黄土丘陵沟壑区小流域侵蚀产沙的主要来源,其侵蚀规律的研究可为流域水土保持措施优化配置提供科学依据,对该地区的防灾减灾和可持续发展具有重要现实意义。在多种坡度、坡高的陡坡模型上进行了模拟降雨试验,分别采用地貌仪和径流泥沙采样装置对次降雨过程中沟坡的重力侵蚀量和产流、产沙过程进行了动态监测和定量分析。结果表明:重力侵蚀在高含沙水流的形成中起着十分重要的作用,但不是每次重力侵蚀的发生都能导致高含沙水流;次降雨过程中,含沙量和输沙率均随降雨历时呈现上升趋势,特别是次降雨的中后期,含沙量和输沙率的增大趋势都比较明显;历次降雨事件中,次降雨30min全过程出口径流的平均产沙量和次降雨中后期出口径流平均产沙量的变化趋势一致;次降雨过程中,出口径流含沙量与输沙率随坡度的增大呈整体波动式增大,但与坡高关系不显著。总之,在黄土沟坡区,重力侵蚀对产沙过程有显著影响。  相似文献   

20.
黄河中游冻融侵蚀的表现方式及其产沙能力评估   总被引:15,自引:0,他引:15       下载免费PDF全文
黄河中游,尤其是以黄土丘陵沟壑区为代表的那些多沙区的侵蚀产沙是引起黄河下游河道严重淤积的主要原因。在这些地区,水力侵蚀、风力侵蚀、冻融侵蚀是其主要的外侵蚀因素。其中水力侵蚀已经得到比较深入的研究,风力侵蚀也已引起人们的空前重视,而对该区的冻融侵蚀的关注却相对薄弱。实际上,冻融侵蚀对这些地区沟道的作用非常显著。从黄河中游丘陵沟壑区冻融侵蚀的环境背景、作用机理和表现方式等方面展开论述,并根据沟道的岩性特点、沟道侵蚀量大小及对一些实测资料对比,初步认为砒沙岩区的冻融侵蚀量可以达到沟道产沙量的一半左右,最大可达流域侵蚀量的1/3左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号