首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
The status and trends of global biodiversity are often measured with a bias towards datasets limited to terrestrial vertebrates. The first global assessment of an insect order (Odonata) provides new context to the ongoing discussion of current biodiversity loss. A randomly selected sample of 1500 (26.4%) of the 5680 described dragonflies and damselflies was assessed using IUCN’s Red List criteria. Distribution maps for each species were created and species were assigned to habitat types. These data were analysed in respect to threat level for regions and habitat types. We have found that one in 10 species of dragonflies and damselflies is threatened with extinction. This threat level is among the lowest of groups that have been assessed to date, suggesting that previous estimates of extinction risk for insects might be misleading. However, Odonata only comprise a small invertebrate order, with above-average dispersal ability and relatively wide distribution ranges. For conservation science and policy to be truly representative of global biodiversity a representative cross-section of invertebrates needs to be included.  相似文献   

2.
Recent concern over human-induced climate warming has activated bioclimatic research projecting the species-response to climate change scenarios. However, climate change is one of a range of human-induced environmental drivers controlling biodiversity, and for many species should be considered together within a framework of relevant stresses and threats. This paper critically assesses the sensitivity of epiphyte assemblages to regional gradients in climate, pollution regime and landscape-scale habitat structure (woodland extent and fragmentation). We examine lichen epiphytes associated with juniper scrub (a conservation priority habitat in Europe), sampled across a network of protected sites in Britain (Special Areas of Conservation). Results point to significant differences in associated epiphyte diversity between conservation priority sites. Historic woodland structure was identified as of greater importance than present-day woodland structure in controlling species composition and richness, pointing to an extinction debt among lichen epiphytes. Climatic setting was important in controlling species composition, but not species richness. However, we demonstrate that pollution regime exerts the dominant controlling force for epiphyte assemblages across regional gradients. As a corollary, we caution that for many species groups - for example those sensitive to pollutants, or landscape structure - an exclusive focus on climate is restricting, and that climate change models should expand to include a range of multiple interacting factors.  相似文献   

3.
Rapid land-use and climate changes are projected to cause broad-scale global land-cover transformation that will increase species extinction rates. We assessed the exposure of globally threatened plant biodiversity to future habitat loss over the first half of this century by testing country-level associations between threatened plant species richness and future habitat loss owing to land-use and climate changes, separately. In countries overlapping Biodiversity Hotspots, plant species endangerment increases with climate change-driven habitat loss. This association suggests that many currently threatened plant species will become extinct owing to anthropogenic climate change in the absence of potentially mitigating factors such as natural and assisted range shift, and physiological and genetic adaptations. Countries rich in threatened species, which are also projected to have relatively high total future habitat loss, are concentrated around the equator. Because poverty and poor governance can compromise conservation, we considered the economic condition and quality of governance with the degree of plant species endangerment and future habitat loss to prioritize countries based on conservation need. We identified Angola, Cuba, Democratic Republic of Congo, Ethiopia, Kenya, Laos, Madagascar, Myanmar, Nepal, Tajikistan, and Tanzania as the countries in greatest need of conservation assistance. For conservation endeavors to be effective, the conservation capacity of these high-need countries needs to be improved by assisting political stability and economic sustainability. We make policy recommendations that aim to mitigate climate change, promote plant species conservation, and improve the economic conditions and quality of governance in countries with high conservation need.  相似文献   

4.
Global climate change poses an immense challenge for conservation biologists seeking to mitigate impacts to species and ecosystems. Species persistence will depend on geographic range shifts or adaptation in response to warming patterns as novel climates and community assemblages arise. Assisted colonization has been proposed as a method for addressing these challenges. This technique, which consists of transporting species to a new range that is predicted to be favorable for persistence under future climate scenarios, has become the subject of controversy and discussion in the conservation community due to its highly manipulative nature, questions about widespread feasibility, and uncertainty associated with the likelihood of translocated species becoming invasive. We reviewed the discussion and criticism associated with assisted colonization and sought to identify other conservation techniques that also display potential to promote the colonization and adaptation of species in response to climate change. We propose an integrated conservation strategy that includes management for habitat connectivity, conservation genetics, and when necessary, assisted colonization of species that are still unable to shift their ranges even given implementation of the above standard conservation approaches. We argue that this integrated approach will facilitate persistence for a larger proportion of species than is possible by solely using assisted colonization. Furthermore, a multi-faceted approach will likely reduce the uncertainty of conservation outcomes and will become increasingly necessary for conservation of biodiversity in a changing climate.  相似文献   

5.
Biodiversity in Africa, Madagascar and smaller surrounding islands is both globally extraordinary and increasingly threatened. However, to date no analyses have effectively integrated species values (e.g., richness, endemism) ‘non-species’ values (e.g., migrations, intact assemblages), and threats into a single assessment of conservation priorities. We present such an analysis for the 119 ecoregions of Africa, Madagascar and smaller islands. Biodiversity is not evenly distributed across Africa and patterns vary somewhat among taxonomic groups. Analyses of most vertebrates (i.e., birds, mammals, amphibians) tend to identify one set of priority ecoregions, while plants, reptiles, and invertebrates highlight additional areas. ‘Non-species’ biological values are not correlated with species measures and thus indicate another set of ecoregions. Combining species and non-species values is therefore crucial for assembling a comprehensive portfolio of conservation priorities across Africa. Threats to biodiversity are also unevenly distributed across Africa. We calculate a synthetic threat index using remaining habitat, habitat block size, degree of habitat fragmentation, coverage within protected areas, human population density, and the extinction risk of species. This threat index is positively correlated with all three measures of biological value (i.e., richness, endemism, non-species values), indicating that threats tend to be focused on the region’s most important areas for biodiversity. Integrating biological values with threats allows identification of two distinct sets of ecoregion priority. First, highly imperilled ecoregions with many narrow endemic species that require focused actions to prevent the loss of further habitat leading to the extinction of narrowly distributed endemics. Second, less threatened ecoregions that require maintenance of large and well-connected habitats that will support large-scale habitat processes and associated area-demanding species. By bringing these data together we can be much more confident that our set of conservation recommendations serves the needs of biodiversity across Africa, and that the contribution of different agencies to achieving African conservation can be firmly measured against these priorities.  相似文献   

6.
Climate change is likely to affect the persistence of large, space-requiring species through habitat shifts, loss, and fragmentation. Anthropogenic land and resource use changes related to climate change can also impact the survival of wildlife. Thus, climate change has to be integrated into biodiversity conservation plans. We developed a hybrid approach to climate-adaptive conservation landscape planning for snow leopards in the Himalayan Mountains. We first mapped current snow leopard habitat using a mechanistic approach that incorporated field-based data, and then combined it with a climate impact model using a correlative approach. For the latter, we used statistical methods to test hypotheses about climatic drivers of treeline in the Himalaya and its potential response to climate change under three IPCC greenhouse gas emissions scenarios. We then assessed how change in treeline might affect the distribution of snow leopard habitat. Results indicate that about 30% of snow leopard habitat in the Himalaya may be lost due to a shifting treeline and consequent shrinking of the alpine zone, mostly along the southern edge of the range and in river valleys. But, a considerable amount of snow leopard habitat and linkages are likely to remain resilient to climate change, and these should be secured. This is because, as the area of snow leopard habitat fragments and shrinks, threats such as livestock grazing, retaliatory killing, and medicinal plant collection can intensify. We propose this approach for landscape conservation planning for other species with extensive spatial requirements that can also be umbrella species for overall biodiversity.  相似文献   

7.
Birds are among the most widely studied organisms on earth and represent an important indicator group for learning about the effects of climate change – particularly in regard to the effects of climate change on tropical ecosystems. In this review, we assess the potential impacts of climate change on tropical birds and discuss the factors that affect species’ ability to adapt and survive the impending alterations in habitat availability. Tropical mountain birds, species without access to higher elevations, coastal forest birds, and restricted-range species are especially vulnerable. Some birds may be especially susceptible to increased rainfall seasonality and to extreme weather events, such as heat waves, cold spells, and tropical cyclones. Birds that experience limited temperature variation and have low basal metabolic rates will be the most prone to the physiological effects of warming temperatures and heat waves. Mostly unknown species’ interactions, indirect effects, and synergies of climate change with other threats, such as habitat loss, emerging diseases, invasive species, and hunting will exacerbate the effects of climate change on tropical birds. In some models habitat loss can increase bird extinctions caused by climate change by 50%. 3.5 °C surface warming by the year 2100 may result in 600–900 extinctions of land bird species, 89% of which occur in the tropics. Depending on the amount of future habitat loss, each degree of surface warming could lead to approximately 100–500 additional bird extinctions. Protected areas will be more important than ever, but they need to be designed with climate change in mind. Although 92% of currently protected areas are likely to become climatically unsuitable in a century, for example only 7 or 8 priority species’ preferred climatic envelopes are projected to be entirely lost from the African Important Bird Area network. Networks of protected areas need to incorporate extensive topographical diversity, cover wide elevational ranges, have high connectivity, and integrate human-dominated landscapes into conservation schemes. Most tropical bird species vulnerable to climate change are not currently considered threatened with extinction, often due to lack of knowledge; systematically and regularly gathering information on the ecology, and current and future distributions of these species is an urgent priority. Locally based, long-term tropical bird monitoring and conservation programs based on adaptive management are essential to help protect birds against climate change.  相似文献   

8.
Pantepui is a biogeographical province composed of a group of approximately 50 tabular mountain summits, or tepuis, in the southeast of Venezuela. This region, also known as Guayana Highlands (GH), lies between 1500 and 3014 m elevation and has an approximate extension of 6000 km2. The summits of the tepuis are characterized by exceptional vascular plant diversity and high endemism. However, it is expected that ongoing global warming will produce upward displacements of summit taxa, which may cause the extinction of certain species due to habitat loss. This study assessed the potential extinction risk of the >600 Pantepui endemic vascular plant species during the 21st century due to global warming, revealing that 30–50% of endemic species would lose their habitat by the end of this century. In light of these results, prioritization of threatened species for conservation purposes became necessary. This was achieved through the calculation of an Environmental Impact Value (EIV) for each species, and a subsequent division of these species into priority categories, which should be used in a chronological sequence to guide decision-making and future research aimed at establishing the most suitable conservation strategies. A number of in situ and ex situ conservation alternatives were discussed. In situ conservation by means of designating protected areas does not appear a viable option because of the upward habitat displacement involved in this case. Conversely, seed banks, living plant collections and managed relocation were suggested in this chronological order to preserve the species studied here.  相似文献   

9.
Climate change and habitat fragmentation are considered key pressures on biodiversity. In this paper we explore the potential synergetic effects between these factors. We argue that processes at two levels of spatial scale interact: the metapopulation level and the species range level. Current concepts of spatially dynamic metapopulations and species ranges are consistent, and integration improves our understanding of the interaction of landscape level and geographical range level processes. In landscape zones in which the degree of habitat fragmentation allows persistence, the shifting of ranges is inhibited, but not blocked. In areas where the spatial cohesion of the habitat is below the critical level of metapopulation persistence, the expansion of ranges will be blocked. An increased frequency of large-scale disturbances caused by extreme weather events will cause increasing gaps and an overall contraction of the distribution range, particularly in areas with relatively low levels of spatial cohesion. Taking into account the effects of climate change on metapopulations, habitat distribution and land use changes, future biodiversity research and conservation strategies are facing the challenge to re-orient their focus and scope by integrating spatially and conceptually more dynamic aspects at the landscape level.  相似文献   

10.
Evidence has accumulated that at least three of the six species of amphibians indigenous to the British Isles have greatly declined in numbers over the last thirty years, in one case to a degree which requires urgent conservation measures to prevent extinction. Some reasons for the decrease include widespread physical destruction of habitat, extensive collection by amateurs and by professional organizations, and the increased use of pesticides. A number of actions which might help to conserve viable populations of British amphibians are proposed.  相似文献   

11.
Expanding human population and economic growth have led to large-scale conversion of natural habitat to human-dominated landscapes with consequent large-scale declines in biodiversity. Conserving biodiversity, while at the same time meeting expanding human needs, is an issue of utmost importance. In this paper we develop a spatially explicit landscape-level model for analyzing the biological and economic consequences of alternative land-use patterns. The spatially explicit biological model incorporates habitat preferences, area requirements and dispersal ability between habitat patches for terrestrial vertebrate species to predict the likely number of species that will be sustained on the landscape. The spatially explicit economic model incorporates site characteristics and location to predict economic returns for a variety of potential land uses. We apply the model to search for efficient land-use patterns that maximize biodiversity conservation objectives for given levels of economic returns, and vice versa. We apply the model to the Willamette Basin, Oregon, USA. By thinking carefully about the arrangement of activities, we find land-use patterns that sustain high levels of biodiversity and economic returns. Compared to the 1990 land-use pattern, we show that both biodiversity conservation and the value of economic activity could be increased substantially.  相似文献   

12.
Destruction and fragmentation of (semi-) natural habitats are considered the main causes of biodiversity loss worldwide. Plant species may exhibit a slow response to fragmentation, resulting in the development of an extinction debt in fragmented plant communities. The detection of extinction debt is of primary importance in habitat conservation strategies. We applied two different approaches proposed in the literature to identify extinction debt in South-East Belgium calcareous grasslands. The first method compared species richness between stable and fragmented habitat patches. The second explored correlations between current species richness and current and past landscape configurations using multiple regression analyses. We subsequently examined results generated by both methods. In addition, we proposed techniques to identify species that are more likely to support extinction debt and associated functional traits. We estimated a respective extinction debt of approximately 28% and 35% of the total and specialist species richness. Similar results were obtained from both methods. We identified 15 threatened specialist species under the current landscape configuration. It is likely the landscape configuration no longer supports the species habitat requirements. We demonstrated that non-clonal species are most threatened, as well as taxa that cannot persist in degraded habitats and form only sparsely distributed populations. We discussed our results in light of other studies in similar habitats, and the overall implications for habitat conservation.  相似文献   

13.
Scenario planning should be an effective tool for developing responses to climate change but will depend on ecological assessments of broad enough scope to support decision-making. Using climate projections from an ensemble of 16 models, we conducted an assessment of a midcontinental area of North America (Minnesota) based on a resistance, resilience, and facilitation framework. We assessed likely impacts and proposed options for eight landscape regions within the planning area. Climate change projections suggest that by 2069, average annual temperatures will increase 3 °C with a slight increase in precipitation (6%). Analogous climate locales currently prevail 400–500 km SSW. Although the effects of climate change may be resisted through intensive management of invasive species, herbivores, and disturbance regimes, conservation practices need to shift to facilitation and resilience. Key resilience actions include providing buffers for small reserves, expanding reserves that lack adequate environmental heterogeneity, prioritizing protection of likely climate refuges, and managing forests for multi-species and multi-aged stands. Modifying restoration practices to rely on seeding (not plants), enlarge seed zones, and include common species from nearby southerly or drier locales is a logical low-risk facilitation strategy. Monitoring “trailing edge” populations of rare species should be a high conservation priority to support decision-making related to assisted colonization. Ecological assessments that consider resistance, resilience, and facilitation actions during scenario planning is a productive first step towards effective climate change planning for biodiversity with broad applicability to many regions of the world.  相似文献   

14.
The forests and highlands along the southern portion of the Nigeria-Cameroon border and on the island of Bioko have long been recognized as being biologically diverse. This region (referred to as the Biafran forests and highlands) is a center of endemism for a wide variety of taxa including, but not limited to, primates, anuran amphibians, birds, freshwater fish, butterflies, dragonflies, and trees. Though these groups have diverse distributions, conservation efforts have to date largely been focused on lowland areas. We conducted a GIS-based analysis of point locality records for three groups characterized by high endemism (primates, anuran amphibians, birds) in order to examine both their spatial and altitudinal distribution throughout the study area. We also evaluated the distribution of existing and potential protected areas relative to highland areas and the distribution of endemics. Our analysis suggests that the existing protected area system provides poor coverage of montane habitats and their associated endemic taxa. Complementarity analysis suggests that, if the protected area network were expanded to include a small number of highland sites, coverage of endemic taxa could be significantly improved. Many of these important highland sites are currently under intense pressure from habitat loss and hunting. If the full range of biodiversity present in the Biafran forests and highlands is to be preserved, new protected areas should be gazetted that take the varied distributions of the regions endemic taxa into account.  相似文献   

15.
Climate change presents a potentially severe threat to biodiversity. Species will be required to disperse rapidly through fragmented landscapes in order to keep pace with the changing climate. An important challenge for conservation is therefore to manage landscapes so as to assist species in tracking the environmental conditions to which they are adapted. Here we develop a stochastic spatially explicit model to simulate plant dispersal across artificial fragmented landscapes. Based on certain assumptions as to the dispersal mechanism, we assess the impact that varying potential for rare long-distance dispersal (LDD) has on the ability to move over landscapes with differing spatial arrangements of suitable habitat (clumped versus fragmented). Simulations demonstrate how the relative importance of landscape structure in determining migration ability may decrease as the potential for LDD increases. Thus, if LDD is the principal mechanism by which rapid large-scale migrations are achieved, strategically planned networks of protected habitat may have a limited impact on rates of large-scale plant migrations. We relate our results to conventional principles for conservation planning and the geometric design of reserves, and demonstrate how reversal of these principles may maximise the potential for conservation under future climates. In particular, we caution against the justification of large-scale corridors on grounds of climate change since migration along corridors by standard dispersal mechanisms is unlikely to keep pace with projected change for many species. An improved understanding of the dispersal mechanisms by which species achieve rapid migrations, and the way that these processes are affected by patterns of landscape fragmentation, will be important to inform future conservation strategies.  相似文献   

16.
The identification of priority sites that ensure the achievement of conservation goals is key to direct conservation efforts. An estimation of the level of vulnerability of each priority area allows the identification of sites that need urgent conservation action. We present a systematic reserve selection for 1654 African mammals and amphibians that uses habitat suitability models as estimates of the area occupied by each species. These are based on the geographic range and habitat preferences for each species, which we collected in the framework of the World Conservation Union (IUCN) Global Amphibian Assessment and IUCN Global Mammal Assessment. Our results showed that in addition to existing protected areas, approximately 2.8 million km2 of land is irreplaceable to achieve the protection of 10% of the area occupied by all amphibians and mammals. This figure is higher than previous estimates from other studies. Most irreplaceable sites are located in the sub-Saharan region. More than half (55%) of the irreplaceable sites have high human population density; for only 17% the human population density is low. African amphibians and mammals have therefore to be conserved in densely populated areas where innovative management policies will be required to accommodate conservation successfully.  相似文献   

17.
We present the first detailed comparison of extinction rates amongst a wide range of nonmarine groups, using data from Britain. For selected taxa, comparisons are made with rates in the United States and the globe. We estimate the overall extinction rate in Britain is 1–5% of the regional species list per century. Most of the groups of organisms assessed have very similar rates, with high rates in some groups which are aquatic, use dead wood or are on their climatic margin. In Britain, the extinction rate probably rose from the 19th to the 20th Century, and is projected to rise in the 21st Century. Habitat loss is the principal driver of extinctions. In Britain, birds are relatively good indicators of extinction rates and extinction-prone habitats, whilst butterflies are not. At larger scales, such as the USA and globally, birds, freshwater fish and amphibians show potential as indicators. Consideration of ‘Possibly Extinct’ species and monitoring of habitat area may provide more responsive measures of biodiversity loss.  相似文献   

18.
Static networks of nature reserves disregard the dynamics of species ranges in changing environments. In fact, climate warming has been shown to potentially drive endangered species out of reserves. Less attention has been paid to the related problem that a warmer climate may also foster the invasion of alien species into reserve networks. Here, we use niche-based predictive modelling to assess to which extent the Austrian Natura 2000 network and a number of habitat types of conservation value outside this network might be prone to climate warming driven changes in invasion risk by Robinia pseudacacia L., one of the most problematic alien plants in Europe.Results suggest that the area potentially invaded by R. pseudacacia will increase considerably under a warmer climate. Interestingly, invasion risk will grow at a higher than average rate for most of the studied habitat types but less than the national average in Natura 2000 sites. This result points to a potential bias in legal protection towards high mountain areas which largely will remain too cold for R. pseudacacia. In contrast, the selected habitat types are more frequent in montane or lower lying regions, where R. pseudacacia invasion risk will increase most pronouncedly.We conclude that management plans of nature reserves should incorporate global warming driven changes in invasion risk in a more explicit manner. In case of R. pseudacacia, reducing propagule pressure by avoiding purposeful plantation in the neighbourhood of reserves and endangered habitats is a simple but crucial measure to prevent further invasion under a warmer climate.  相似文献   

19.
We evaluated the influence of uncertainty, based on variation in expert opinion, on assessment of conservation status of Australian amphibians. We examined relationships between different biological variables and inferred relative extinction risk, the influence of uncertainty on resulting ranks, and regional patterns of extinction risk and uncertainty. Our results were in general agreement with the International Union for the Conservation of Nature and Natural Resources but also reveal apparent high extinction risks among some taxa that the IUCN did not classify in any threatened category. These differences were exaggerated when the most conservative status assessments were taken from variation in expert opinion. Our assessments of relative extinction risk were strongly dependent on basic demographic variables, particularly population size, geographic distribution of populations and age at first reproduction. We identified regional hotspots of high relative extinction risk and poor knowledge of amphibians, leading to high uncertainty about the conservation status of species from those areas. Regional clustering of species with high relative extinction risk and high uncertainty may indicate higher levels of relative extinction risk than previously assessed. Our results highlight the influence of uncertainty on interpretation of conservation assessments of organism groups with large knowledge gaps. Uncertainty should be further incorporated into conservation planning as it not only highlights taxa with potentially underestimated extinction risk, but also facilitates identification of knowledge gaps informative of conservation status. Knowledge of regional patterns of extinction risk and uncertainty assists conservation planning through identification of regions of high extinction risk and/or large knowledge gaps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号