首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Lag screw fixation using single 4.5 mm cortical bone screws is a recommended technique for repair of mid-sagittal plane fractures of the distal phalanx in adult horses. However, implant infection and technical difficulties in obtaining adequate interfragmentary compression have made this surgical procedure somewhat controversial. We hypothesized that use of larger diameter screws would result in increased axial compression and improved stability of this fracture.Paired distal phalanges from the forelimbs of 10 adult horses were collected at necropsy and divided in half in the midsagittal plane. Using a randomized block study design, four types of bone screws (4.5 mm cortical, 5.5 mm cortical, 6.5 mm cancellous pre-tapped, and 6.5 mm cancellous non-tapped) were inserted to a depth of 15 mm. During screw insertion, the axial force generated under the screw head was measured with a load washer containing a piezoelectric force transducer, while torque of insertion was recorded with a torsional testing machine. The 6.5mm screw inserted after pre-tapping generated significantly greater axial force (2781 N) than the 4.5 mm (1522 N), 5.5 mm (2073 N) or 6.5 mm non-tapped (2295 N) screws. The relationship between maximal applied torque and axial force generated was linear for each screw type. Each unit of torque applied during insertion of cortical screws resulted in a greater increase in axial compression, as compared to cancellous screws. These data suggest that use of larger diameter screws would result in improved interfragmentary compression of distal phalangeal fractures.  相似文献   

2.
The purpose of this study was to determine the biomechanical properties of feline long bone by testing cadaver bone from mature cats in compression, three-point bending, notch sensitivity and screw pull-out strength. The determination of these properties is of clinical relevance with regard to the forces resulting in long bone fractures in cats as well as the behaviour and failure mode of surgical implants utilized for fracture stabilization and repair in the cat. Cadaveric cat femurs were tested in compression, three-point bending and in three-point bending after the addition of a 2.0 mm screw hole. Cortical screws, 2.7 mm in diameter, were inserted in cadaveric cat femur samples for screw pull-out testing. The mean maximum load to failure of mid diaphyseal feline femurs tested in compression was 4201+/-1218 N. Statistical analysis of the parameter of maximum load tested in compression revealed a statistical difference between sides (p=0.02), but not location (p=0.07), or location by side (p=0.12). The maximum strength of mid diaphyseal feline femurs tested in compression was 110.6+/-26.6 MPa. The modulus of elasticity of mid-diaphyseal cat femurs tested in compression was determined to be 5.004+/-0.970 GPa. The mean maximum load to failure of feline femurs tested in three-point bending was 443+/-98 N. The mean maximum load to failure of feline femurs tested in three-point bending after a 2.0 mm diameter hole was drilled in the mid-diaphyseal region of each sample through both cortices was 471+/-52 N. The mean maximum load required for screw pull-out of 2.7 mm cortical screws placed in feline femurs tested in tension was 886+/-221 N. This data should be suitable for investigating fracture biomechanics and the testing of orthopaedic constructs commonly used for fracture stabilization in the feline patient.  相似文献   

3.
OBJECTIVE: To compare screw insertion variables and pullout mechanical properties between AO 6.5-mm cancellous and 7.3-mm cannulated bone screws in foal femoral bone. STUDY DESIGN: A paired, in vitro mechanical study. SAMPLE POPULATION: Seven pairs of femora from immature (1-7 months) foals. METHODS: The 6.5 cancellous and 7.3-mm cannulated screws were inserted at standardized proximal and distal metaphyseal, and mid-diaphyseal locations. Insertion torque, force, and time to drill, tap (6.5-mm cancellous), guide wire insertion (7.3-mm cannulated), and screw insertion were measured. Screw pullout properties (yield and failure load, displacement, and energy, and stiffness) were determined from mechanical tests. The effects of screw type and location on insertion variables and pullout properties were assessed with repeated measures ANOVA. Pairwise comparisons were examined with post hoc contrasts. Significance was set at P<.05 for all comparisons. RESULTS: Insertion torques for the 7.3-mm cannulated screws were significantly greater than for the 6.5-mm tap, but significantly lower than for the 6.5-mm cancellous screws. Total screw insertion times were similar. Pullout properties of both screws were similar at each femoral location. The holding power of both screws was significantly greater in the mid-diaphysis than in either metaphyseal location. Pullout failure occurred by bone shearing at the bone-screw interface in all specimens. CONCLUSIONS: The 6.5-mm cancellous and 7.3-mm cannulated screws vary in insertion properties, but have similar pullout properties in the mid-diaphysis, proximal, and distal metaphysis of foal femora. Both screw types have greater holding power at the mid-diaphyseal location compared with metaphyseal locations. Based on overall similar holding powers of 6.5-mm cancellous and 7.3-mm cannulated screws, it is unlikely that increasing the screw diameter beyond 6.5 mm will provide increased holding power in foal femoral bone. CLINICAL RELEVANCE: Use of the 7.3-mm cannulated screw should be considered for foal femoral fracture repair when greater accuracy is needed, or when bone threads for the 6.5-mm cancellous screw have been stripped.  相似文献   

4.
OBJECTIVE: To compare the biomechanical characteristics and mode of failure of 2 techniques using parallel 5.5 mm screws for pastern joint arthrodesis in horses. STUDY DESIGN: Randomized block design, for horse (1-5), method of fixation (two 5.5 mm screws versus three 5.5 mm screws), side (right, left), and end (front, hind). Constructs were tested to failure in 3-point bending. SAMPLE POPULATION: Twenty limbs (5 cadavers). METHODS: A combined aiming device was used to facilitate screw placement. Two parallel 5.5 mm screws were inserted in lag fashion in 1 limb of a pair, and three 5.5 mm screws were inserted in the contralateral limb. Constructs were then tested in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials testing machine at a loading rate of 19 mm/s. Maximal bending moment at failure and stiffness were obtained from bending moment-angular deformation curves. RESULTS: There was no significant difference between two and three 5.5 mm screw constructs for bending moment and stiffness (P<.05). All constructs ultimately failed by bone fracture or screw bending. For proximal interphalangeal (PIP) joint arthrodesis constructs loaded in 3-point bending, no significant effect of treatment, side, or end on maximal bending moment or stiffness was detected. CONCLUSIONS: Two 5.5 mm cortical screws inserted in parallel should provide a surgically simpler and equally strong PIP joint arthrodesis compared with three 5.5 mm cortical screws. CLINICAL RELEVANCE: Two 5.5 mm cortical screws inserted in parallel for PIP joint arthrodesis should perform similarly under conditions used in this study, as three 5.5 mm screws inserted in a similar manner, when loaded under bending.  相似文献   

5.
OBJECTIVE: To test the effects of bone diameter and eccentric loading on fatigue life of 2.7-mm-diameter cortical bone screws used for locking a 6-mm-diameter interlocking nail. SAMPLE POPULATION: Eighteen 2.7-mm-diameter cortical bone screws. PROCEDURE: A simulated bone model with aluminum tubing and a 6-mm-diameter interlocking nail was used to load screws in cyclic 3-point bending. Group 1 included 6 screws that were centrally loaded within 19-mm-diameter aluminum tubing. Group 2 included 6 screws that were centrally loaded within 31.8-mm-diameter aluminum tubing. Group 3 included 6 screws that were eccentrically loaded (5.5 mm from center) within 31.8-mm-diameter aluminum tubing. The number of cycles until screw failure and the mode of failure were recorded. RESULTS: An increase in the diameter of the aluminum tubing from 19 to 31.8 mm resulted in a significant decrease in the number of cycles to failure (mean +/- SD, 761,215 +/- 239,853 to 16,941 +/- 2,829 cycles, respectively). Within 31.8-mm tubing, the number of cycles of failure of eccentrically loaded screws (43,068 +/- 14,073 cycles) was significantly greater than that of centrally loaded screws (16,941 +/- 2,829 cycles). CONCLUSIONS AND CLINICAL RELEVANCE: Within a bone, locking screws are subjected to different loading conditions depending on location (diaphyseal vs metaphyseal). The fatigue life of a locking screw centrally loaded in the metaphyseal region of bone may be shorter than in the diaphysis. Eccentric loading of the locking screw in the metaphysis may help to improve its fatigue life.  相似文献   

6.
An in vitro experimental cadaveric mechanical testing study was performed using 20 radiographically mature dogs, weighing between 18-33 kg. The aim of the study was to compare the axial pull-out strength of 3.5 mm cortical and 4.0 mm cancellous bone screws inserted in the canine proximal tibia using manual and power tapping techniques. 3.5 cortical and 4.0 cancellous bone screws were inserted in canine cadaver proximal tibiae using a manual or power tapping technique. The screws were extracted using a servohydraulic materials testing machine in order to measure axial pull-out strength. Axial pull-out strength was recorded relative to the total bone width and total cortical width of each tibia. The mean axial pull-out strength for all constructs was 717.8+/-56.5 N without any statistically significant difference among groups (p=0.4183). The groups were equal in animal body weight, cortical width and total bone width (p=0.2808). The axial pull-out strength in proportion to cortical and total bone width was not significantly different among groups (p=0.5318). Axial pull-out strengths of 3.5 mm cortical and 4.0 mm cancellous bone screws inserted in the proximal tibial metaphysis were not significantly different. Axial pull-out strength was not affected by the use of power tapping in either screw type.  相似文献   

7.
Objective—To determine and compare the in vitro pullout strength of 5.5-mm cortical versus 6.5-mm cancellous bone screws inserted in the diaphysis and metaphysis of adult equine third metacarpal (MCIII) bones, in threaded 4.5-mm cortical bone screw insertion holes that were then overdrilled with a 4.5-mm drill bit to provide information relevant to the selection of a replacement screw if a 4.5-mm cortical screw is stripped. Study Design—In vitro pullout tests of 5.5-mm cortical and 6.5-mm cancellous screws in equine MCIII bones. Sample Population—Two independent cadaver studies each consisting of 14 adult equine MCIII bones. Methods—Two 4.5-mm cortical screws were placed either in the middiaphysis (study 1) or distal metaphysis (study 2) of MCIII bones. The holes were then overdrilled with a 4.5-mm drill bit and had either a 5.5-mm cortical or a 6.5-mm cancellous screw inserted; screw pullout tests were performed at a rate of 0.04 mm/second until screw or bone failure occurred. Results—In diaphyseal bone, the screws failed in all tests. Tensile breaking strength for 5.5-mm cortical screws (997.5 ± 49.3 kg) and 6.5-mm cancellous screws (931.6 ± 19.5 kg) was not significantly different. In metaphyseal bone, the bone failed in all tests. The holding power for 6.5-mm cancellous screws (39.1 ± 4.9 kg/mm) was significantly greater than 5.5-mm cortical screws (23.5 ± 3.5 kg/mm) in the metaphysis. There was no difference in the tensile breaking strength of screws in the diaphysis between proximal and distal screw holes; however, the holding power was significantly greater in the distal, compared with the proximal, metaphyseal holes. Conclusions—Although tensile breaking strength was not different between 5.5-mm cortical and 6.5-mm cancellous screws in middiaphyseal cortical bone, holding power of 6.5-mm cancellous screws was greater than 5.5-mm cortical screws in metaphyseal bone of adult horses. Clinical Relevance—If a 4.5-mm cortical bone screw strips in MCIII diaphyseal bone of adult horses, either a 5.5-mm cortical or 6.5-mm cancellous screw, however, would have equivalent pullout strengths. A 6.5-mm cancellous screw, however, would provide greater holding power than a 5.5-mm cortical screw in metaphyseal bone.  相似文献   

8.
OBJECTIVE: To characterize the mechanical performance of a veterinary bone anchor under static and cyclic loads. STUDY DESIGN: Mechanical testing study. ANIMALS: Cadaveric canine humeri. METHODS: Humeri (6 pairs) were collected from skeletally mature dogs (mean [+/-SD] age, 17.2+/-2.1 months; weight, 20.8+/-1.5 kg). Bone anchors were inserted in the proximal metaphysis using nylon, and were longitudinally extracted. For the opposite humerus, anchors were subjected to longitudinal cyclic load (50% of the load at failure of their pair) for 1200 cycles then longitudinally loaded to failure. Anchors were then installed in a similar and adjacent area of these 2(nd) humeri with nylon and cyclically tested perpendicular to the axis of anchor insertion (100% of the longitudinal holding power of their pair) for 1200 cycles, then perpendicularly loaded to failure. Paired t-tests were used to compare holding power before and after longitudinal cyclic testing. RESULTS: Longitudinal holding power of the screw-type anchor in the proximal humerus was 385+/-30 N. Anchor pullout was the only mode of failure. Anchors in the paired humeri did not fail after 1200 cycles of 50% longitudinal loading, and post-cycle holding strength was not different (335+/-87 N; P=.32). Perpendicularly loaded anchors did not fail after 1200 cycles of 100% of opposite longitudinal holding strength, and had post-cycle perpendicular holding strengths of 514+/-72 N. Suture breakage was the mode of failure. CLINICAL RELEVANCE: Bone anchor holding strength is dependent on orientation of suture load. Screw-type bone anchor holding strength was not affected by longitudinal cyclic loading, and holding strengths of approximately 385 N can be expected in metaphyseal bone of large-breed mature dogs. Perpendicularly loaded anchors have higher failure loads, and holding strength of approximately 514 N can be expected in metaphyseal bone of the proximal humerus.  相似文献   

9.
The holding power of orthopedic screws in the third metacarpal and metatarsal cadaver bones of foals that were aged from 1 to 14 days was tested. Comparative trials between screws inserted at the same site in contralateral bones from the same foal were performed to compare the holding power of 5.5 mm cortical and 6.5 mm cancellous screws in the metaphysis, and the holding power of 5.5 and 4.5 mm cortical screws in the diaphysis. A MTS servohydraulic tensile testing machine was used to perform screw pullouts at a displacement rate of 19 mm/sec. There was no significant difference between maximum holding power of 5.5 mm cortical screws and 6.5 mm cancellous screws in the metaphysis when expressed as kg per mm of bone width at the screw insertion site (p = 0.097) or as kg per mm of screw thread engaged in the bone (p = 0.17). There was no significant difference in holding power of 5.5 and 6.5 mm screws in the proximal versus distal metaphysis (p = 0.10). The 5.5 mm screws had significantly greater holding power than the 4.5 mm screws in the diaphysis (p = 0.0097). Fixation failure at screw pullout was always due to bone shear. In internal fixation in foal bone, the 5.5 mm screws may be a suitable alternative to 6.5 mm screws in the metaphysis. Use of 5.5 mm rather than 4.5 mm screws is recommended in the diaphysis because of greater holding power.  相似文献   

10.
OBJECTIVE: To investigate factors influencing screw loosening after triple pelvic osteotomy (TPO) and ischial wire stabilization of the acetabular segment. DESIGN: Retrospective case series. Animals-227 dogs with congenital hip dysplasia or subluxated hip joints. PROCEDURES: Medical records and radiographs of 227 dogs that underwent 332 TPO procedures were evaluated, and data pertaining to screw type, plate position, sacral screw engagement, use of ischial interfragmentary wires, and pelvic alignment were assessed for associations with screw loosening. RESULTS: Complications developed in 96 of the 332 (29%) procedures. Cancellous screws without sacral engagement were associated with the lowest frequency (6%) of loosening, compared with cancellous and cortical screws engaging the sacrum and cortical screws that did not engage the sacrum. Frequency of screw loosening increased when cortical or cancellous screws engaged the sacrum and when cortical screws were used. In dogs that had surgery bilaterally, the first limb on which TPO was performed had a higher frequency of screw loosening than the second limb. Pelvic alignment loss was greatest (5.4 degrees ) when the 3 most cranial screws were loosened. Loss of pelvic alignment was significantly different between dogs that underwent surgery and had complications and those that underwent surgery and did not have complications in association with loosening of 1, 2, and 3 screws. CONCLUSIONS AND CLINICAL RELEVANCE: TPO screw loosening was multifactorial and related to stability of the affected ilium, screw type, and screw position. Placing cancellous screws that do not engage the sacrum in pelvic osteotomy plate positions 1 through 3 may decrease the number of screws that loosen.  相似文献   

11.
OBJECTIVE: To evaluate and compare the mechanical properties of 4.5 narrow and 3.5 broad plating systems using their respective cortical and cancellous screws in unstable, central, and eccentric gap fracture models. STUDY DESIGN: Mechanical evaluation and comparison of 2 dynamic compression plate (DCP) systems. SAMPLE POPULATION: Eighteen cortical and 30 cancellous gapped fracture models. METHODS: DCP (4.5 mm narrow, 3.5 mm broad) with their respective cortical screws were applied to cortical bone density polyurethane foam blocks to construct center gap cortical fracture models that were tested in gap closing monotonic 4-point bending. DCP (4.5 mm narrow, 3.5 mm broad) with their respective cancellous screws were applied to cancellous bone density polyurethane foam blocks to construct eccentric gap cancellous fracture models. The cancellous constructs were tested in monotonic gap opening and gap closing cantilever bending and in cyclic axial loading. Univariate and multivariate repeated measures ANOVA were used to compare the maximum loads at failure of the 4.5 mm constructs and 3.5 mm constructs. RESULTS: The 4.5 mm narrow plating system withstood significantly higher loads at failure than the 3.5 mm broad plating system in 4-point bending (P<.0001) and gap opening cantilever bending (P<.0001). The 4.5 mm system failed in gap closing cantilever bending by plastic deformation of the plate, whereas the 3.5 mm system failed by screw pullout. There was no difference between the 2 systems in cyclic axial loading. CONCLUSION: Results indicate that the 4.5 mm narrow plating system has a mechanical advantage over the 3.5 mm broad plating system for stabilization of gapped fracture models. CLINICAL RELEVANCE: The 4.5 mm narrow plating system may be mechanically advantageous compared with the 3.5 mm broad plating system for stabilizing unreconstructed comminuted long bone fractures in large dogs.  相似文献   

12.
OBJECTIVE: To evaluate the effect of 2 cement augmentation techniques on pullout strength of 1.5 mm screws placed in stripped 1.5 mm screw sites in the distal metaphysis of feline radii. STUDY DESIGN: Experimental study. SAMPLE POPULATION: Feline radii (21 pairs). METHODS: Treatment groups (n=4) were allocated according to a Latin square design to 4 sites in each pair of radii. Positive and negative controls were a 1.5 mm screw and a screw of the same diameter in a previously stripped screw hole, respectively. Treatment groups were a 1.5 mm screw implanted in a previously stripped screw hole after injection of polymethylmethacrylate (PMMA) or a bioresorbable calcium phosphate cement (CPC, Norian skeletal repair system (SRS)). The ultimate pullout strength was compared between groups. RESULTS: The mean (+/-SEM) pullout strength of screws augmented with either bone cement was less than that of the positive control group and greater than that of the negative control. Injection of CPC or PMMA before screw implantation increased the pullout strength of the negative control by 86.8+/-22.9% and 104.1+/-32.1%, respectively. Holding power of the positive control screws differed from these 2 groups, and was 274.8+/-39.17% higher than that of the negative control. CONCLUSION: Injection of CPC or PMMA increases but does not restore the holding power of stripped 1.5 mm diameter screws. CLINICAL RELEVANCE: The use of CPC (Norian SRS) augmentation of stripped 1.5 mm diameter screws warrants clinical investigation as it combines biomechanical results similar to PMMA with osteoconduction and resorbability.  相似文献   

13.
Objective— Biomechanical analysis of acute load to failure (ALF) of 3 veterinary and 1 human suture anchor and cyclic load to failure with two suture material/suture anchor constructs in canine femoral condyles.
Study Design— Biomechanical in vitro study.
Sample Population— Cadaveric femora from 20–30 kg dogs.
Methods— Three veterinary and 1 human suture anchor were placed in the cranial and caudal aspects of the femoral condyle and subjected to 0° ALF. Anchors were loaded with 5 USP Fiberwire or 27 kg test nylon leader line (NLL) and subjected to 90° cyclic testing for 10,000 cycles followed by ALF at 90°.
Results— No significant difference in ALF for any anchor type was detected in the cranial aspect of the femoral condyle; however all veterinary anchors had higher ALF in the caudal aspect of the femoral condyle. In cyclic testing, the constructs in descending order (most cycles to least) were: (1) FlexiTwist/NLL, (2) Securos/Fiberwire, Securos/NLL, (3) IMEX/Fiberwire, IMEX/NLL, and (4) FlexiTwist/Fiberwire, Fastin/Fiberwire. Fiberwire was significantly stronger than NLL in post-cycling ALF testing.
Conclusions— Veterinary anchors had higher ALF in the caudal versus cranial aspect of the femoral condyle. Except for the FlexiTwist in which NLL performed better, Fiberwire and NLL both had similar cyclic performance with each veterinary anchor type. The veterinary anchors exceeded the human anchor in ALF and cycles to failure.
Clinical Relevance— The tested veterinary suture anchors with Fiberwire or NLL may be used in the femoral condyle, preferably in the caudal aspect, and should withstand estimated loading conditions in appropriately confined postoperative canine patients.  相似文献   

14.
OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.  相似文献   

15.
OBJECTIVE: To compare screw insertion characteristics and pullout mechanical properties between self-tapping (ST) and non-self-tapping (NST) AO 4.5-mm cortical bone screws in adult equine third metacarpal bone (MC3). STUDY DESIGN: In vitro biomechanical experiment. ANIMALS OR SAMPLE POPULATION: Seven pairs of adult equine MC3. METHODS: Bicortical holes were drilled transversely in proximal metaphyseal, diaphyseal, and distal metaphyseal locations of paired MC3. NST screws were inserted in pre-tapped holes in 3 sites of one bone pair, and ST screws were inserted in non-tapped holes of contralateral MC3. Tapping and screw insertion times and maximum torques were measured. Screw pullout mechanical properties were determined. RESULTS: Screw insertion time was longer for ST screws. Total time for tapping and insertion (total insertion time) was over twice as long for NST screws. Statistically significant differences were not observed between screws for any pullout mechanical property. From pullout tests, diaphyseal locations had significantly stiffer and stronger structure than metaphyseal locations. Pullout failure more commonly occurred because of screw breakage than bone failure. Bone failure and bone comminution were more commonly associated with ST screws. Bone failure sites had pullout failure loads that were 90% of screw failure sites. CONCLUSIONS: NST and ST 4.5-mm-diameter cortical bone screws have similar pullout mechanical properties from adult equine MC3. ST screws require less than half the total insertion time of NST screws. CLINICAL RELEVANCE: Use of ST 4.5-mm-diameter cortical bone screws should be considered for repair of adult equine MC3 fractures; however, bone failures at screw sites should be monitored.  相似文献   

16.
OBJECTIVE: To investigate the effect of laser shock peening on the fatigue life and surface characteristics of 3.5-mm-diameter cortical bone screws. SAMPLE POPULATION: 32 stainless steel, 3.5-mm-diameter cortical bone screws. PROCEDURE: Screws were randomly assigned to an untreated control group or 2 power-density treatment groups, 6 gigawatts (GW)/cm2 and 8.5 GW/cm2, for laser shock peening. Number of cycles to failure and findings on scanning electron microscopy-assisted morphometric evaluation, including the mode of failure, surface debris, surface damage, and thread deformation, were compared between control and treated screws. RESULTS: The 6 GW/cm2 treated screws had a significant (11%) improvement in fatigue life, compared with untreated control screws. The 8.5 GW/cm2 treated screws had a significant (20%) decrease in fatigue life, compared with control screws. A mild but significant increase in thread deformation was evident in all treated screws, compared with control screws. The 8.5 GW/cm2 treated screws had significantly more surface irregularities (elevations and pits), compared with control or 6 GW/cm2 treated screws. CONCLUSION AND CLINICAL RELEVANCE: A modest positive increase in fatigue strength was produced by this design of laser shock peening on the midshaft of cortical bone screws. High laser shock peening power densities were detrimental, decreasing screw fatigue strength probably resulting from structural damage. Greater fatigue life of cortical bone screws can be generated with laser shock peening and could reduce screw breakage as a cause of implant failure; however, future studies will be necessary to address biocompatibility, alternative cleaning techniques, alterations in screw strength and pullout characteristics, and effects on susceptibility to corrosion.  相似文献   

17.
OBJECTIVE: To determine failure strength, stiffness, and failure mode of 4 suture materials in equine linea alba. STUDY DESIGN: Randomized complete block design. SAMPLE POPULATION: Linea albas collected from 12 adult horses (mean weight, 475 kg; mean age, 10 years). METHODS: The ventral abdominal fascia, including the linea alba, was collected and bisected along the linea alba into right and left halves. Each half was divided into four, 5-cm sections extending from the umbilicus cranially, and randomly assigned to 1 of 4 suture materials: 2 polydioxanone (2 PD), 3 polyglactin 910 (3 PG), 6 polyglactin 910 (6 PG), and 7 polydioxanone (7 PD). A single cycle to failure test was performed on each specimen at a distraction rate of 100 mm/min. Differences in failure strength and stiffness for the materials were evaluated using a mixed linear model with significance set at P<.05. RESULTS: In 94 of 96 test sections, constructs failed by suture failure. There were significant differences in failure strength (P<.0001) and stiffness (P<.001) among the suture/tissue constructs. 7 PD had the highest breaking strength (316.8 N) followed by 6 PG (281.3 N), 3 PG (229.9 N), and 2 PD (193.0 N). Six PG had the largest stiffness (14 N/mm) followed by 3 PG (12.7 N/mm), 7 PD (10.1 N/mm), and 2 PD (7.2 N/mm). Suture breaking strength and stiffness were not affected by linea or fascia thickness, individual horse, half of the linea alba, or abdominal wall position. Eighty-five (90.4%) suture loops failed adjacent the knot. CONCLUSIONS: When tested in single cycle to failure, suture material was more likely to fail than the linea alba. Larger suture materials had higher breaking strengths than smaller suture materials and stiffness was also affected by suture material and size. CLINICAL RELEVANCE: Given its high initial breaking strength and its relatively longer in vivo strength retention, 7 PD seems an appropriate choice of suture material for closure of the equine linea alba when maximal short-term failure strength is desired.  相似文献   

18.
OBJECTIVE: To describe a modified 3-loop pulley suture pattern for the reattachment of canine tendons to bone along with a biomechanical comparison with the locking-loop suture. STUDY DESIGN: In vitro biomechanical study and clinical case report. ANIMALS OR SAMPLE POPULATION: Biomechanical study: 10 paired gastrocnemius tendons and calcaneii harvested from 5 canine cadavers. Case report: a Doberman with avulsion of the gastrocnemius tendon of insertion. METHODS: Biomechanical study: paired tendons were reattached to the calcaneus with either a modified 3-loop pulley pattern or a locking-loop pattern. Tensile loading to failure was performed. A direct, non-contact, method of gap measurement, using digital video, was used to measure gap formation. Load required to initiate gap formation (defined as load at a 1 mm gap) and to produce a 3 mm gap was evaluated in addition to maximum load and gap at failure. RESULTS: Mean (+/-SEM) 1 mm gap loads were 31.0+/-4.2 and 17.2+/-2.5 N, mean 3 mm gap loads were 49.1+/-2.4 and 28.9+/-3.2 N, and mean maximum loads were 72.9+/-4.3 and 55.8+/-2.2 N for the modified 3-loop pulley suture and the locking-loop suture, respectively. These differences were statistically significant (P<.05). The gap at failure was similar for both repairs. The clinical case remained sound 7 months postoperatively. CONCLUSIONS: A modified 3-loop pulley pattern is biomechanically superior to a locking-loop pattern for reattachment of the canine gastrocnemius tendon to bone and may be suitable for clinical use. CLINICAL RELEVANCE: Tendon repairs with a gap >3 mm are reported to be at increased risk of rupture during the first 6 weeks postoperatively. A modified 3-loop pulley pattern resists gap formation better than a locking-loop pattern.  相似文献   

19.
OBJECTIVE: To compare shear stability of simulated humeral lateral condylar fractures reduced with either a self-compressing pin or cortical bone screw. STUDY DESIGN: In vitro biomechanical tests. SAMPLE POPULATION: Bilateral cadaveric canine humeri (n=18) without evidence of elbow disease. METHODS: Lateral condylar fracture was simulated by standardized osteotomy. Bone fragments were stabilized with a self-compressing pin or a cortical bone screw (2.7 or 3.5 mm) inserted in lag fashion. Specimens were mounted in a materials testing system and the condylar fragment displaced in a proximal direction until failure. Mechanical testing variables derived from load-deformation curves were compared between stabilization methods using a Student's paired t-test. RESULTS: There were no statistically significant differences for mechanical testing variables between pin and screw stabilized specimens at expected walk and trot loads. Three yield points subjectively coincided with yield of the interfragmentary interface (Y1), bone at the implant interface (Y2), and implant deformation (Y3). Displacements at Y1 were 48-156% greater for pin than screw stabilized specimens. Y2 and Y3 loads were higher for screw than pin stabilized specimens, but likely supraphysiologic for dogs convalescing after surgical repair. CONCLUSIONS: A self-compressing pin or a cortical bone screw inserted in lag fashion both provided adequate strength in applied shear to sustain expected physiologic loads through the repaired canine elbow during postoperative convalescence. CLINICAL RELEVANCE: Because self-compressing pins were easy to implant and mechanical properties were not significantly different than cortical screws at expected physiologic loads, pins should be considered for the repair of traumatic humeral condylar fractures.  相似文献   

20.
The in vitro biomechanical properties of three methods for internal fixation of femoral neck fractures were evaluated. Fifty cadaveric femura from Beagle dogs were used. Ten intact femora served as controls. In 40 femura, an osteotomy of the femoral neck was performed to simulate a transverse fracture. With the remaining 30 femura, three repair methods (two medium Orthofix pins, a 2.7 mm cortical bone screw placed in lag fashion and an anti- rotational Kirschner wire, or three divergent 1.1 mm Kirschner wires) were used to stabilize the osteotomies, and 10 osteotomies were stabilised per repair method. These 30 femura where then subject to monotonic loading to failure. Construct stiffness and load to failure were measured. In the remaining 10 femura, pressure sensitive film was placed at the osteotomy site prior to stabilization with either two Orthofix pins (n = 5) or a screw placed in lag fashion (n = 5) to determine the compressive pressure (MPa), compressive force (KN) and area of compression (cm2). There was no significant difference in the stiffness or load to failure for the three repair methods evaluated. There was no significant difference in the compressive pressure, compressive force or area of compression in osteotomies stabilized with Orthofix pins and 2.7 mm bone screws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号