首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

3.
ObjectiveTo compare the anaesthetic and cardiopulmonary effects of alfaxalone with propofol when used for total intravenous anaesthesia (TIVA) during ovariohysterectomy in dogs.Study designA prospective non-blinded randomized clinical study.AnimalsFourteen healthy female crossbred bitches, aged 0.5–5 years and weight 16–42 kg.MethodsDogs were premedicated with acepromazine 0.01 mg kg?1 and morphine 0.4 mg kg?1. Anaesthesia was induced and maintained with either propofol or alfaxalone to effect for tracheal intubation followed by an infusion of the same agent. Dogs breathed spontaneously via a ‘circle’ circuit, with oxygen supplementation. Cardiopulmonary parameters (respiratory and heart rates, end-tidal carbon dioxide, tidal volume, and invasive blood pressures) were measured continuously and recorded at intervals related to the surgical procedure. Arterial blood samples were analysed for blood gas values. Quality of induction and recovery, and recovery times were determined. Non-parametric data were tested for significant differences between groups using the Mann–Whitney U-test and repeatedly measured data (normally distributed) for significant differences between and within groups by anova.ResultsBoth propofol and alphaxalone injection and subsequent infusions resulted in smooth, rapid induction and satisfactory maintenance of anaesthesia. Doses for induction (mean ± SD) were 5.8 ± 0.30 and 1.9 ± 0.07 mg kg?1 and for the CRIs, 0.37 ± 0.09 and 0.11 ± 0.01 mg kg?1 per minute for propofol and alfaxalone respectively. Median (IQR) recovery times were to sternal 45 (33–69) and 60 (46–61) and to standing 74 (69–76) and 90 (85–107) for propofol and alphaxalone respectively. Recovery quality was good. Cardiopulmonary effects did not differ between groups. Hypoventilation occurred in both groups.Conclusions and clinical relevanceFollowing premedication with acepromazine and morphine, both propofol and alphaxalone produce good quality anaesthesia adequate for ovariohysterectomy. Hypoventilation occurs suggesting a need for ventilatory support during prolonged infusion periods with either anaesthetic agent.  相似文献   

4.
ObjectiveComparison of the analgesic effect of buprenorphine at 20 or 40 μg kg?1.Study designAn investigator ‘blinded’, randomised study.AnimalsTwenty six dogs presented for ovariohysterectomy.MethodsDogs were premedicated intramuscularly with acepromazine 0.03 mg kg?1 and buprenorphine at either 20 (B20, n = 12) or 40 μg kg?1 (B40, n= 14) followed by anaesthetic induction with propofol and maintenance with isoflurane. During anaesthesia non invasive blood pressure, heart rate, respiratory rate, blood oxygen saturation, inspired and expired volatile agent, end-tidal carbon dioxide and ECG were recorded. Pain and sedation were assessed using interactive VAS scores; mechanical nociceptive thresholds were measured at the wound and hindlimb - all were assessed before and up to 22 hours after administration. Carprofen was used for rescue analgesia.ResultsThere were no significant differences between the two groups for any of the parameters examined. Rescue analgesia was required around 5 hours after administration of buprenorphine in a significant number of animals. Sedation was good preoperatively and scores decreased over time postoperatively. Hock thresholds did not change over time; wound thresholds decreased significantly compared to the baseline value from 3 hours onwards.ConclusionsAdministration of buprenorphine at either 20 or 40 μg kg?1 IM with acepromazine provided good pre-operative sedation. Cardiovascular and respiratory values remained within clinically acceptable limits during anaesthesia. There was no evidence that increasing dose increased adverse events that may be associated with opioid administration (e.g. bradycardia and respiratory depression).Clinical relevanceIncreasing the dose of buprenorphine from 20 to 40 μg kg?1 did not provide any benefits with respect to analgesia after ovariohysterectomy as assessed using the VAS scoring system.  相似文献   

5.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

6.
7.
ObjectiveTo compare the effects of morphine, parecoxib, tramadol and a combination of parecoxib, tramadol and pindolol on nociceptive thresholds in awake animals and their effect on glomerular filtration rate (GFR) in dogs subjected to 30 minutes of anesthesia.AnimalsEight adult mixed breed experimental dogs.Study designRandomized, controlled trial.MethodsDogs received 0.05 mg kg?1 acepromazine subcutaneously (SC) as anaesthetic pre-medication. Thirty to sixty minutes later, they received either tramadol 3 mg kg?1 intravenously, (IV), parecoxib (1 mg kg?1 IV), a combination of tramadol 3 mg kg?1 (IV), parecoxib 1 mg kg?1 (IV) and pindolol 5 μg kg?1 (SC), morphine (0.1 mg kg?1 (IV) or 0.9% saline (2 mL). Anaesthesia was then induced with IV propofol to effect (2.9 ± 0.8 mg kg?1) and maintained with halothane in oxygen for 30 minutes. Systolic arterial blood pressure was maintained above 90 mmHg with IV fluids and by adjusting the inspired halothane concentration. Post-treatment nociceptive thresholds to mechanical stimuli, expressed as percent of pre-treatment values, were compared between the treatments to assess the analgesic efficacy of the drugs. Plasma iohexol clearance (ICL), a measure of GFR, was estimated both before and 24 hours after induction of anaesthesia to study the drugs’ effects on renal perfusion. Nociceptive threshold and GFR data were compared using mixed model analysis in sas®9.1.ResultsBoth tramadol and parecoxib produced similar analgesia, which was less than that of morphine. Their combination with pindolol produced analgesia comparable with morphine. None of the test drugs, either alone or in combination, reduced GFR.ConclusionTramadol and parecoxib (either alone or in combination) can increase nociceptive thresholds in awake dogs and have minimal effects on renal perfusion in normotensive dogs subjected to anaesthesia.  相似文献   

8.
ObjectiveTo assess the effects of premedication with buprenorphine on the characteristics of anaesthesia induced with ketamine/medetomidine.Study designProspective crossover laboratory study.AnimalsSix female New Zealand White rabbits.MethodsRabbits received, on occasions separated by 7 days, either buprenorphine (0.03 mg kg?1) or saline subcutaneously (SC) as premedication, followed 1 hour later by SC ketamine (15 mg kg?1) and medetomidine (0.25 mg kg?1) (K/M). At pre-determined time points reflex responses and cardiopulmonary parameters were recorded and arterial blood samples taken for analysis. Total sleep time was the duration of loss of the righting reflex. Duration of surgical anaesthesia was the time of suppression of the ear pinch and pedal withdrawal reflexes. Wilcoxon signed-ranks tests were used to compare data before (T0) and 10 minutes after (T10) injection with K/M.ResultsAll animals lost all three reflex responses within 10 minutes of injection of K/M. The duration of loss of these reflexes significantly increased in animals that received buprenorphine. At induction, animals that had received buprenorphine tended to have a lower respiration rate but there were no significant differences in arterial PCO2, PO2 or pH between treatments. Hypoxaemia [median PaO2 < 6.0 kPa (45 mmHg)] developed in both treatments at T10 but there was no significant difference between treatments. Mean arterial pressure (MAP) was lower at T10 in animals that had received buprenorphine.Conclusion and clinical relevancePremedication with buprenorphine significantly increased the duration of anaesthesia induced by K/M, with no significant depression of respiration further to the control treatment within the first 10 minutes of anaesthesia. The MAP decreased but this was not reflected in a difference in other physiological parameters. These data show that premedication with buprenorphine, before K/M anaesthesia in the rabbit, has few negative effects and may provide beneficial analgesia.  相似文献   

9.
ObjectiveTo determine if body condition score (BCS) influences the sedative effect of intramuscular (IM) premedication or the dose of intravenous (IV) propofol required to achieve endotracheal intubation in dogs.Study designProspective clinical study.AnimalsForty–six client–owned dogs undergoing general anaesthesia.MethodsDogs were allocated to groups according to their BCS (BCS, 1 [emaciated] to 9 [obese]): Normal–weight Group (NG, n = 25) if BCS 4–5 or Over–weight Group (OG, n = 21) if BCS over 6. Dogs were scored for sedation prior to IM injection of medetomidine (5 μg kg?1) and butorphanol (0.2 mg kg?1) and twenty minutes later anaesthesia was induced by a slow infusion of propofol at 1.5 mg kg?1 minute?1 until endotracheal intubation could be achieved. The total dose of propofol administered was recorded. Data were tested for normality then analyzed using Student t–tests, Mann–Whitney U tests, chi–square tests or linear regression as appropriate.ResultsMean ( ± SD) propofol requirement in NG was 2.24 ± 0.53 mg kg?1 and in OG was 1.83 ± 0.36 mg kg?1. The difference between the groups was statistically significant (p = 0.005). The degree of sedation was not different between the groups (p = 0.7). Post–induction apnoea occurred in 11 of 25 animals in the NG and three of 21 in OG (p = 0.052).ConclusionsOverweight dogs required a lower IV propofol dose per kg of total body mass to allow tracheal intubation than did normal body condition score animals suggesting that IV anaesthetic doses should be calculated according to lean body mass. The lower dose per kg of total body mass may have resulted in less post–induction apnoea in overweight/obese dogs. The effect of IM premedication was not significantly affected by the BCS.Clinical relevanceInduction of general anaesthesia with propofol in overweight dogs may be expected at lower doses than normal–weight animals.  相似文献   

10.
ObjectiveTo evaluate the clinical efficacy and cardiorespiratory effects of alfaxalone as an anaesthetic induction agent in dogs with moderate to severe systemic disease.Study designRandomized prospective clinical study.AnimalsForty dogs of physical status ASA III-V referred for various surgical procedures.MethodsDogs were pre-medicated with intramuscular methadone (0.2 mg kg?1) and allocated randomly to one of two treatment groups for induction of anaesthesia: alfaxalone (ALF) 1–2 mg kg?1 administered intravenously (IV) over 60 seconds or fentanyl 5 μg kg?1 with diazepam 0.2 mg kg?1± propofol 1–2 mg kg?1 (FDP) IV to allow endotracheal intubation. Anaesthesia was maintained with isoflurane in oxygen and fentanyl infusion following both treatments. All dogs were mechanically ventilated to maintain normocapnia. Systolic blood pressure (SAP) was measured by Doppler ultrasound before and immediately after anaesthetic induction, but before isoflurane administration. Parameters recorded every 5 minutes throughout subsequent anaesthesia were heart and respiratory rates, end-tidal partial pressure of carbon dioxide and isoflurane, oxygen saturation of haemoglobin and invasive systolic, diastolic and mean arterial blood pressure. Quality of anaesthetic induction and recovery were recorded. Continuous variables were assessed for normality and analyzed with the Mann Whitney U test. Repeated measures were log transformed and analyzed with repeated measures anova (p < 0.05).ResultsTreatment groups were similar for continuous and categorical data. Anaesthetic induction quality was good following both treatments. Pre-induction and post-induction systolic blood pressure did not differ between treatments and there was no significant change after induction. The parameters measured throughout the subsequent anaesthetic procedures did not differ between treatments. Quality of recovery was very, quite or moderately smooth.Conclusions and clinical relevanceInduction of anaesthesia with alfaxalone resulted in similar cardiorespiratory effects when compared to the fentanyl-diazepam-propofol combination and is a clinically acceptable induction agent in sick dogs.  相似文献   

11.
Objective To compare the postoperative analgesic and sedative properties of buprenorphine and morphine in cats. Study Design Prospective, randomized, blinded study. Animals Thirty‐two domestic cats undergoing surgery. Methods Cats received pre‐anaesthetic medication with acepromazine (0.05 mg kg?1) given intramuscularly and were randomly allocated to group M and given morphine (0.1 mg kg?1) intramuscularly (IM) or to group B and given buprenorphine (0.01 mg kg?1) IM. Anaesthesia was induced with propofol and maintained with halothane in oxygen and nitrous oxide. Pain and sedation scores using visual analogue scales, and heart and respiratory rates, were measured immediately before, and 30, 60, 120, 180, 300 and 420 minutes after anaesthesia. Results Pain scores were significantly lower at 60, 120 and 180 minutes after anaesthesia in group B. Group B also had higher heart rates at 30 minutes. There were no other statistically significant differences between the groups. Clinical relevance Buprenorphine (0.01 mg kg?1) appeared to provide better postoperative analgesia than morphine (0.1 mg kg?1) and may also have a longer duration of action.  相似文献   

12.
ObjectiveTo evaluate the effects of medetomidine, midazolam and ketamine (MMK) in captive gorillas after premedication with oral zuclopenthixol.Study designCase series.AnimalsSix gorillas, two males and four females, aged 9–52 years and weighing 63–155 kg.MethodsThe gorillas were given zuclopenthixol dihydrochloride 0.2 ± 0.05 mg kg?1 per os twice daily for 3 days for premedication. On the day of anaesthesia the dose of zuclopenthixol was increased to 0.27 mg kg?1 and given once early in the morning. Anaesthesia was induced with medetomidine 0.04 ± 0.004 mg kg?1, midazolam 0.048 ± 0.003 mg kg?1 and ketamine 4.9 ± 0.4 mg kg?1 intramuscularly (IM). Upon recumbency, the trachea was intubated and anaesthesia was maintained on 1–2% isoflurane in oxygen. Physiological parameters were monitored every 10 minutes and arterial blood gas analysis was performed once 30–50 minutes after initial darting. At the end of the procedure, 42–115 minutes after initial darting, immobilisation was antagonized with atipamezole 0.21 ± 0.03 mg kg?1 and sarmazenil 5 ± 0.4 μg kg?1 IM.ResultsRecumbency was reached within 10 minutes in five out of six animals. One animal required two additional darts before intubation was feasible. Heart rate ranged from 60 to 85 beats minute?1, respiratory rate from 17 to 46 breaths minute?1 and temperature from 36.9 to 38.3 °C. No spontaneous recoveries were observed and anaesthetic level was stable. Blood gas analyses revealed mild respiratory acidosis, and mean PaO2 was 24.87 ± 17.16 kPa (187 ± 129 mmHg) with all values being above 13.4 kPa (101 mmHg). Recovery was smooth and gorillas were sitting within 25 minutes.Conclusion and clinical relevanceThe drug combination proved to be effective in anaesthetizing captive gorillas of various ages and both sexes, with minimal cardio-respiratory changes.  相似文献   

13.
ObjectiveTo investigate effects of vatinoxan in dogs, when administered as intravenous (IV) premedication with medetomidine and butorphanol before anaesthesia for surgical castration.Study designA randomized, controlled, blinded, clinical trial.AnimalsA total of 28 client-owned dogs.MethodsDogs were premedicated with medetomidine (0.125 mg m?2) and butorphanol (0.2 mg kg?1) (group MB; n = 14), or medetomidine (0.25 mg m?2), butorphanol (0.2 mg kg?1) and vatinoxan (5 mg m?2) (group MB-VATI; n = 14). Anaesthesia was induced 15 minutes later with propofol and maintained with sevoflurane in oxygen (targeting 1.3%). Before surgical incision, lidocaine (2 mg kg?1) was injected intratesticularly. At the end of the procedure, meloxicam (0.2 mg kg?1) was administered IV. The level of sedation, the qualities of induction, intubation and recovery, and Glasgow Composite Pain Scale short form (GCPS-SF) were assessed. Heart rate (HR), respiratory rate (fR), mean arterial pressure (MAP), end-tidal concentration of sevoflurane (Fe′Sevo) and carbon dioxide (Pe′CO2) were recorded. Blood samples were collected at 10 and 30 minutes after premedication for plasma medetomidine and butorphanol concentrations.ResultsAt the beginning of surgery, HR was 61 ± 16 and 93 ± 23 beats minute?1 (p = 0.001), and MAP was 78 ± 7 and 56 ± 7 mmHg (p = 0.001) in MB and MB-VATI groups, respectively. No differences were detected in fR, Pe′CO2, Fe′Sevo, the level of sedation, the qualities of induction, intubation and recovery, or in GCPS-SF. Plasma medetomidine concentrations were higher in group MB-VATI than in MB at 10 minutes (p = 0.002) and 30 minutes (p = 0.0001). Plasma butorphanol concentrations were not different between groups.Conclusions and clinical relevanceIn group MB, HR was significantly lower than in group MB-VATI. Hypotension detected in group MB-VATI during sevoflurane anaesthesia was clinically the most significant difference between groups.  相似文献   

14.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

15.
ObjectiveTo evaluate the efficacy of maropitant for prevention of vomiting and gastroesophageal reflux (GER) in dogs following acepromazine-hydromorphone premedication and inhalation anesthesia.Study designRandomized, blinded, prospective clinical study.AnimalsTwenty-six dogs admitted for elective soft tissue or orthopedic procedures that were 3.1 ±3.1 years of age and weighed 20.5 ± 11.4 kg.MethodsDogs were randomly assigned to one of two groups: Group M received maropitant (1.0 mg kg?1) and Group S received 0.9% saline (0.1 mL kg?1) intravenously 45–60 minutes before premedication with hydromorphone (0.1 mg kg?1) and acepromazine (0.03 mg kg?1) intramuscularly. An observer blinded to treatment documented any retching or vomiting for 20 minutes before induction with propofol (2–6 mg kg?1) and inhalation anesthesia. A pH probe inserted into the distal esophagus was used to detect GER.ResultsNone of the dogs in Group M retched or vomited (0/13), 6/13 (46%) in Group S were observed to retch or vomit, and the difference between groups was significant (p = 0.015). There were no differences between groups in the number of dogs with GER (Group M: 4/13, Group S: 6/13 dogs) or the number of reflux events. Esophageal pH at the end of anesthesia was significantly lower in both M and S groups in dogs with GER versus dogs without GER (p = 0.004 and 0.011, respectively). Only dogs with GER in Group S had significantly lower pH at the end compared to the beginning of anesthesia (p = 0.004).Conclusions and clinical relevanceIntravenous maropitant prevented retching and vomiting associated with acepromazine-hydromorphone premedication. Maropitant did not prevent the occurrence of GER. Fewer dogs in Group M developed GER but further study with a larger number of dogs is necessary to determine if there is a significant difference.  相似文献   

16.
ObjectiveTo determine the effect of ondansetron on the incidence of vomiting in cats pre-medicated with dexmedetomidine and buprenorphine.Study designRandomized, blinded, controlled trial.AnimalsEighty-nine female domestic shorthair cats, aged 3–60 months (median, 12 months) and weighing 1.2–5.1 kg.MethodsEach cat received dexmedetomidine (40 μg kg?1) plus buprenorphine (20 μg kg?1), intramuscularly as pre-anesthetic medication. Cats were assigned to three treatment groups: ondansetron (0.22 mg kg?1, intramuscular [IM]), either 30 minutes before the pre-anesthetic medication (ONDA group, n = 31) or with the pre-anesthetic medication (OPM group, n = 30) mixed with the pre-anesthetic medications in the same syringe, or not to receive the antiemetic (control group, n = 28). Emesis was recorded as an all-or-none response. The number of episodes of emesis and the time until onset of the first emetic episode were recorded for each cat. Clinical signs of nausea were recorded whenever they occurred, and a numerical rating scale was used to quantify these signs. Data were analyzed using Kruskal–Wallis and Chi-square test; a Bonferroni correction was made for six comparisons; thus, the two-sided p for significance was 0.05/6 = 0.008.ResultsThere was a significant reduction in the number of cats vomiting, in the episodes of vomiting/cat, the time elapsed between the premedication and the first vomiting and the severity of nausea in the OPM group compared to the ONDA and control groups.Conclusions and clinical relevanceIn cats, the administration of ondansetron (0.22 mg kg?1) ameliorates and reduced the severity of dexmedetomidine-induced nausea and vomiting only when it was administered in association with this drug.  相似文献   

17.
ObjectiveTo determine which class of opioid alone or in conjunction with other anesthetic drugs causes post-anesthetic hyperthermia in cats.Study designProspective, randomized, crossover study.AnimalsEight adult, healthy, cats (four spayed females and four castrated males weighing 3.8 ± 0.6 kg).MethodsEach cat was instrumented with a wireless thermistor in the abdominal cavity. Temperature in all phases was recorded every 5 minutes for 5 hours. Population body temperature (PBT) was recorded for ~8 days. Baseline body temperature is the final 24 hours of the PBT. All injectable drugs were given intramuscularly. The cats were administered drugs in four phases: 1) hydromorphone (H) 0.05, 0.1, or 0.2 mg kg?1; 2) morphine (M) (0.5 mg kg?1), buprenorphine (BUP) (0.02 mg kg?1), or butorphanol (BUT) (0.2 mg kg?1); 3) ketamine (K) (5 mg kg?1) or ketamine (5 mg kg?1) plus hydromorphone (0.1 mg kg?1) (KH); 4) isoflurane in oxygen for 1 hour. Fifteen minutes prior to inhalant anesthetic, cats received either no premed (I), hydromorphone (0.1 mg kg?1) (IH), or hydromorphone (0.1 mg kg?1) plus ketamine (5 mg kg?1) (IHK).ResultsMean PBT for all unmedicated cats was 38.9 ± 0.6 °C (102.0 ± 1 °F). The temperature of cats administered all doses of hydromorphone increased from baseline (p < 0.03) All four opioids (H, M, BUP and BUT) studied increased body temperature compared with baseline (p < 0.005). A significant difference was observed between baseline temperature values and those in treatment KH (p < 0.03). Following recovery from anesthesia, temperature in treatments IH and IHK was different from baseline (p < 0.002).Conclusions and clinical relevanceAll of the opioids tested, alone or in combination with ketamine or isoflurane, caused an increase in body temperature. The increase seen was mild to moderate (<40.1 °C (104.2 °F) and self limiting.  相似文献   

18.
ObjectiveTo evaluate the feasibility of gastroduodenoscopy in dogs premedicated with acepromazine in combination with butorphanol or methadone.Study designProspective, randomized, double-blinded clinical trial.AnimalsA group of 40 client-owned dogs.MethodsDogs were randomly allocated to one of two groups and give intramuscular acepromazine 0.02 mg kg–1 combined with either butorphanol 0.3 mg kg–1 (group ACEBUT) or methadone 0.2 mg kg–1 (group ACEMET). General anaesthesia was induced with propofol and ketamine and maintained with sevoflurane (2.3%) in oxygen. Cardiopulmonary variables were recorded at 5 minute intervals during anaesthesia. Feasibility of the entire gastroduodenoscopy was evaluated with a visual analogue scale (VAS) from 0 (best) to 100 (worst) (primary outcome of the study). Lower oesophageal sphincter dilatation and duodenal intubation were scored. Pylorus diameter was measured with standard endoscopic inflatable balloons. Overall cardiovascular stability was assessed during anaesthesia, using a VAS (0-100), as was the presence of fluid in the oesophagus, regurgitation, need for mechanical ventilation, and intraoperative and postoperative rescue analgesia (secondary outcomes of the study). Differences between treatments were analysed with Mann–Whitney U, Student t test, Fisher exact test or mixed model analysis of variance as appropriate. Subsequently, feasibility VAS of the gastroduodenoscopy was assessed for noninferiority between groups. The noninferiority margin was set as –10.ResultsAll gastroduodenoscopies were successfully completed in both groups using an endoscope tip diameter of 12.8 mm in all but one dog. Feasibility of gastroduodenoscopy was evaluated as 2.9 ± 5.6 in group ACEBUT and 5.1 ± 5.8 in group ACEMET. No significant differences between groups were detected in any measured or assessed variables, and noninferiority was confirmed.Conclusion and clinical relevanceIn our study population, the effects of methadone and butorphanol when combined with acepromazine were comparable.  相似文献   

19.
ObjectiveTo assess as premedicants, the sedative, cardiorespiratory and propofol-sparing effects in dogs of dexmedetomidine and buprenorphine compared to acepromazine and buprenorphine.Study designProspective, randomised, blinded clinical studyAnimalsSixty healthy dogs (ASA grades I/II). Mean (SD) body mass 28.0 ± 9.1 kg, and mean age 3.4 ± 2.3 years.MethodsDogs were allocated randomly to receive 15 μg kg?1 buprenorphine combined with either 30 μg kg?1 acepromazine (group 1), 62.5 μg m?2 dexmedetomidine (group 2), or 125 μg m?2 dexmedetomidine (group 3) intramuscularly. After 30 minutes, anaesthesia was induced using a propofol target controlled infusion. Heart rate, respiratory rate, and oscillometric arterial blood pressure were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. Induction quality and pre-induction sedation were scored on 4 point scales. Propofol target required for endotracheal intubation was recorded. Data were analysed using Chi-squared tests, Kruskal-Wallis, one way and general linear model anova (p < 0.05).ResultsAge was significantly lower in group 1 (1.0 (1.0–3.8) years) than group 2 (5.0 (2.0–7.0) years), (median, (IQR)). There were no significant differences in sedation or quality of induction between groups. After premedication, heart rate was significantly lower and arterial blood pressures higher in groups 2 and 3 than group 1, but there was no significant difference between groups 2 and 3. Propofol targets were significantly lower in group 3 (1.5 (1.0–2.5) μg mL?1) than group 1 (2.5 (2.0–3.0) μg mL?1); no significant differences existed between group 2 (2.0 (1.5–2.5) μg mL?1) and the other groups (median, (interquartile range)).Conclusions and Clinical relevanceWhen administered with buprenorphine, at these doses, dexmedetomidine had no advantages in terms of sedation and induction quality over acepromazine. Both doses of dexmedetomidine produced characteristic cardiovascular and respiratory effects of a similar magnitude.  相似文献   

20.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号