首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Luteolysis before the time of maternal recognition of pregnancy is one cause of low fertility in high‐producing dairy cows. The objective of this study was to assess whether induction of a secondary corpus luteum (CL) late in the luteal phase would delay the time of luteolysis. Twenty high‐producing Holstein cows were synchronized to ovulation (Day 0) with the Ovsynch protocol and received hCG (1500 IU im) on Day 12. Corpora lutea formation (as evaluated by ultrasonography) and plasma P4 concentrations were monitored from Days 4 to 36. hCG treatment induced the formation of one secondary CL (CL2) in 11 of 20 cows (55%) from the dominant follicle (mean diameter: 14.2 ± 0.9 mm) of two‐wave (3/11) and three‐wave (8/11) cycles. The maximal diameter of the CL2 (23.3 ± 1.9 mm) was reached approximately 6 days after hCG treatment and was correlated with its structural lifespan (p < 0.01). Cows that formed a CL2 after hCG had higher mean plasma P4 concentrations on Day 14 (+4.5 ng/ml) and Day 18 (+3.0 ng/ml) compared with cows without CL2 (p < 0.05). The structural regression of CL2 begun approximately 8 days after that of the CL1, and the median time at which the first drop in circulating P4 levels occurred was later in cows that formed a CL2 than in those that did not (Day 26 vs Day 18; p < 0.01). Thus, the induction of a CL2 by hCG on Day 12 might reduce the risk of premature luteolysis in high‐producing dairy cows after insemination.  相似文献   

2.
Objectives were to determine associations between percentage pregnancy loss (PPL) in dairy cattle and: (i) pregnancy diagnosis by ultrasonography; (ii) pregnancy diagnosis by serum pregnancy‐specific protein B (PSPB) concentrations, with or without serum progesterone concentrations; and (iii) production and environmental factors. This study included 149 822 pregnancy diagnoses conducted over 13 years in Holstein‐Friesian cows in Hungarian dairy herds. The following were determined: PPL in cows diagnosed pregnant by transrectal ultrasonography 29–42 days after artificial insemination (AI; n = 11 457); PPL in cows diagnosed pregnant by serum PSPB 29–35 days after AI (n = 138 365); and PPL and its association with serum progesterone concentrations, PSPB and production/environmental variables. The definition of PPL was percentage of cows initially diagnosed pregnant based on ultrasonography or PSPB, but not pregnant when examined by transrectal palpation 60 –70 days after AI. The PPL was lower (p < 0.001) in cows following ultrasonographic vs PSPB diagnosis of pregnancy at 29–35 days (8.1 vs 19.3%, respectively), but was higher in cows following ultrasonographic pregnancy diagnosis on 29–35 vs 36–42 days (8.1 vs 7.1%, respectively, P < 0.05). Furthermore, 72.9% of pregnancies with ultrasound‐detected morphological abnormalities resulted in pregnancy loss. As a subset of PSPB data, a fully quantitative PSPB assay was used for 20 430 samples; PPL in cows with a high PSPB concentration (>1.1 ng/ml) was lowest (15.0%), whereas cows with low concentrations of both PSPB and progesterone (0.6–1.1 and <2 ng/ml, respectively) had the highest PPL (76.3%; p < 0.0001). Furthermore, PPL was higher in cows with advanced parity and with high milk production, when ambient temperatures were high, although body condition score (BCS) had no effect on PPL. Finally, there were no significant associations between serum PSPB and environmental temperatures or number of post‐partum uterine treatments.  相似文献   

3.
This field study investigated whether the administration of a single dose of gonadotropin‐releasing hormone (GnRH) to dairy cows without a corpus luteum (CL) 4 weeks after calving can improve reproductive performance. Holstein dairy cows underwent ultrasonography to assess the presence of ovarian structures at 29.2 ± 5.2 days post‐partum, and cows were divided into two main groups based on the presence (CL group, n = 230) or absence (non‐CL group, n = 460) of a CL. The non‐CL group was further randomly divided into two subgroups based on the administration of GnRH (non‐CL GnRH group, n = 230) or no GnRH (non‐CL control group, n = 230). Subsets of cows from non‐CL control (n = 166) and non‐CL GnRH (n = 175) groups received a second ultrasonography at 44.5 ± 5.4 days post‐partum to assess CL formation. The percentage of cows with CL at the second ultrasonography was greater in the non‐CL GnRH group (70.9%) than in the non‐CL control group (53.0%, p = 0.0006). The hazard of the first post‐partum insemination by 150 days in milk (DIM) was higher in the CL group than in the non‐CL control group (hazard ratio [HR]: 1.36, p = 0.001). The probability of a pregnancy to the first insemination was higher in non‐CL GnRH (odds ratio [OR]: 1.50, p = 0.04) and CL groups (OR: 1.55, p = 0.03) compared to the non‐CL control group. Furthermore, the hazard of pregnancy by 210 DIM was higher in non‐CL GnRH (HR: 1.30, p = 0.01) and CL (HR: 1.51, p = 0.0001) groups than in the non‐CL control group. In conclusion, administration of GnRH to dairy cows without a CL 4 weeks after calving was associated with an increase in ovulation and improved reproductive performance.  相似文献   

4.
Increased embryonic losses may be associated with inadequate progesterone (P4) concentrations in high‐producing lactating dairy cattle. The objectives of the present studies were to determine if chronic administration of a gonadotropin‐releasing hormone (GnRH) agonist, Deslorelin, would increase circulating P4 concentrations and subsequently increase pregnancy rates in dairy cattle. Administration of Deslorelin for 12 days increased (p < .05) luteal volume and circulating P4 concentrations in primiparous lactating dairy cows, but increased only luteal volumes in multiparous cows. Treatment with Deslorelin increased Day 45 pregnancy rates in cows as compared to untreated controls. Chronic treatment with Deslorelin in dairy cattle; (a) increased luteal volume of the primary CL, (b) induced accessory CL, (c) increased circulating P4 concentration in primiparous cows only, (d) did not lengthen the estrous cycle upon removal of treatment, and (e) increased pregnancy rates. Although luteal volume was increased in multiparous cows and circulating P4 concentrations were not with Deslorelin treatment, there was an apparent effect on pregnancy rates. This hormonal strategy may represent a suitable model to address local effects of P4 and GnRH/luteinizing hormone on uterine environment and subsequent embryonic survival.  相似文献   

5.
A field study was conducted aimed at (i) evaluating the practicability of a fixed‐time insemination regime for medium‐sized dairy operations of north‐western Germany, representative for many regions of Central Europe and (ii) substituting hCG for GnRH as ovulation‐inducing agent at the end of a presynch or ovsynch protocol in an attempt to reduce the incidence of premature luteal regression. Cows of two herds synchronized by presynch and two herds synchronized by ovsynch protocol were randomly allotted to three subgroups; in one group ovulation was induced by the GnRH analog buserelin, in another by hCG, whereas a third group remained untreated. The synchronized groups were fixed‐time inseminated; the untreated group bred to observed oestrus. Relative to untreated herd mates, pregnancy rate in cows subjected to a presynch protocol with buserelin as ovulation‐inducing agent was 74%; for hCG it was 60%. In cows subjected to an ovsynch protocol, the corresponding relative pregnancy rates reached 138% in the case of buserelin and 95% in the case of hCG. Average service interval was shortened by 1 week in the presynch and delayed by 2 weeks in the ovsynch group. It may be concluded that fixed‐time insemination of cows synchronized via ovsynch protocol with buserelin as ovulation‐inducing agent is practicable and may help improve efficiency and reduce the work load involved with herd management in medium‐sized dairy operations. The substitution of hCG for buserelin was found to be not advisable.  相似文献   

6.
Our aim was to compare Corpus luteum (CL) development and blood plasma concentration of progesterone ([P4]) in thoroughbred mares after spontaneous (Control: C) or human chorionic gonadotrophin (hCG)‐induced ovulation. Lactating mares (C = 12; hCG = 21) were daily teased and mated during second oestrus post‐partum. Treated mares received 2500 IU hCG i.v. at first day of behavioural oestrus when dominant follicular size was >35, ≤42 mm and mated 12–24 h after. Control mares in oestrus were mated with dominant follicular size ≥45 mm. Dominant follicle before ovulation, CL and gestational sac were measured by ultrasound and [P4] by radioimmunoassay (RIA). Blood sampling and ultrasound CL exams were done at days 1, 2, 3, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 60 and 90 after ovulation and gestational sac from day 12 after ovulation in pregnant (P) mares; non‐pregnant (NP) were followed until oestrus returned. Data analyses considered four subgroups: hCG‐P, hCG‐NP, C‐P and C‐NP. Preovulatory follicular size was smaller in hCG mares than in C: 39.2 ± 2.7 mm vs 51.0 ± 1.8 mm (p < 0.0001). All hCG mares ovulated 24–48 h after treatment and presented similar oestrus duration as controls. C. luteum size in P mares showed the same pattern of development through days 4–35, presenting erratic differences during initial establishment. Thus, on days 1 and 3, CL was smaller in hCG‐P (p < 0.05); while in hCG‐NP, CL size was greater than in C‐NP on day three (p = 0.03). Corpus luteum size remained stable until day 90 in hCG‐P mares, while in C‐P a transient and apparently not functional increase was detected on days 40 and 45 (p < 0.05) and the decrease from day 60 onwards, made this difference to disappear. No differences were observed in [P4] pattern between P, or between NP subgroups, respectively. So, hCG‐induced ovulation does not affect CL development, neither [P4] during early pregnancy. One cycle pregnancy rate tended to be lower in hCG mares while season pregnancy rates were similar to controls.  相似文献   

7.
Lactating dairy cows (n = 667) at random stages of the oestrous cycle were assigned to either ovsynch (O, n = 228), heatsynch (H, n = 252) or control (C, n = 187) groups. Cows in O and H groups received 100 μg of GnRH agonist, i.m. (day 0) starting at 44 ± 3 days in milk (DIM), and 500 μg of cloprostenol, i.m. (day 7). In O group, cows received 100 μg of GnRH (day 9) and were artificially inseminated without oestrus detection 16–20 h later. In H group, cows received 1 mg oestradiol benzoate (EB) i.m., 24 h after the cloprostenol injection and were artificially inseminated without oestrus detection 48–52 h after the EB injection. Cows in C group were inseminated at natural oestrus. On the day of artificial insemination (AI), cows in all groups were assigned to subgroups as follows: human Chorionic Gonadotrophin (O‐hCG) (n = 112), O‐saline (n = 116), H‐hCG (n = 123), H‐saline (n = 129), C‐hCG (n = 94) and C‐saline (n = 93) subgroups. Cows in hCG and saline subgroups received 3000 IU hCG i.m. and or 10 ml saline at day 5 post‐AI (day 15), respectively. Pregnancy status was assessed by palpation per rectum at days 40 to 45 after AI. The logistic regression model using just main effects of season (summer and winter), parity (primiparous and pluriparous), method1 (O, H and C) and method2 (hCG and saline) showed that all factors, except method1, were significant. Significant effects of season (p < 0.01), hCG and parity (p < 0.01), and a trend of parity and season (p < 0.1) were detected. A clear negative effect of warm period on first service pregnancy rate was noted (p < 0.01). The pregnancy rate was the lowest in the H protocol during warm period (p < 0.05). Treatment with hCG 5 days after AI significantly improved pregnancy rates in those cows that were treated with the H protocol compared with saline treatments (41.5% vs 24.8%; p < 0.01). O and H were more effective in primiparous than in pluriparous cows (46.1% vs 29.9%; p < 0.1 and 43.6% vs 24.6%; p < 0.01). First service pregnancy rates were higher in primiparous hCG‐treated than in pluriparous hCG‐treated cows (57.9% vs 32.3%; p < 0.01). The pregnancy rate was higher for the hCG‐treated cows compared with saline‐treated cows during warm period (37.9% vs 23.6%; p < 0.001).  相似文献   

8.
This study was designed to investigate the impact of buserelin acetate (BA) or human chorionic gonadotropin (hCG) administration on the day of first artificial insemination (AI) on subsequent luteal profile (diameter of corpus luteum (CL) and plasma progesterone) and conception rate in Murrah buffalo. The present experiment was carried out at two locations in 117 buffalo that were oestrus‐synchronized using cloprostenol (500 μg) administered (i.m.) 11 days apart followed by AI during standing oestrus. Based on treatment (i.m.) at the time of AI, buffalo were randomly categorized (n = 39 in each group) into control (isotonic saline solution, 5 ml), dAI‐BA (buserelin acetate, 20 μg) and dAI‐hCG (hCG, 3000 IU) group. Out of these, 14 buffalo of each group were subjected to ovarian ultrasonography on the day of oestrus to monitor the preovulatory follicle and on days 5, 12, 16 and 21 post‐ovulation to monitor CL diameter. On the day of each sonography, jugular vein blood samples were collected for the estimation of progesterone concentrations. All the buffalo (n = 117) were confirmed for pregnancy on day 40 post‐ovulation. The conception rate was better (p < 0.05) in dAI‐BA (51.3%) and dAI‐hCG (66.7%) groups as compared to their control counterparts (30.8%). Furthermore, the buffalo of dAI‐hCG group had improved (p < 0.05) luteal profile, whereas the buffalo of dAI‐BA group failed (p > 0.05) to exhibit stimulatory impact of treatment on luteal profile when compared to control group. In brief, buserelin acetate or hCG treatment on the day of first AI leads to an increase in conception rate; however, an appreciable impact on post‐ovulation luteal profile was observed only in hCG‐treated Murrah buffalo.  相似文献   

9.
Embryonic mortality is found to be the main source of reproductive wastage in domestic ruminants. Many genes are involved in the growth and development of the embryo, and the interferon‐stimulated gene 15 (ISG 15) is one of the major gene stimulated by interferon tau, the maternal recognition of pregnancy signal in ruminants. In this study, both genomic and cDNA sequences of ISG 15 from Bos indicus (Deoni breed) were amplified and characterized. The genomic sequence of Deoni ISG 15 exhibited 99% identity with Bos taurus and 97% identity with that of Bos mutus and Bubalus bubalis. Moreover qRT‐PCR analysis revealed constitutive expression of the ISG 15 mRNA in peripheral blood mononuclear cells of Deoni heifers and multiparous cows during early pregnancy. Fourteen Deoni heifers and fifteen multiparous Deoni cows were synchronized for timed AI by CIDR‐Ovsynch protocol, and six animals were kept as cyclic control in each group. Blood samples were collected on days 7, 14, 16, 18, 21, 30 and 45 from the day of AI. Pregnancy was confirmed by plasma progesterone level through ELISA. A significantly higher expression of ISG 15 mRNA was found on day 16 (< .05) and day 18 (< .05) of pregnancy in nulliparous heifers. Although in multiparous Deoni cows ISG 15 expression was greater in pregnant cows, difference was statistically non‐significant. The result of this study indicates that ISG 15 gene expression is upregulated during 16–18 days of pregnancy and could be used as an early pregnancy marker in dairy cows especially in heifers.  相似文献   

10.
The objective of the study was to investigate whether a treatment with hCG 4 days after AI could reduce pregnancy losses in lactating dairy cows. Cows of a dairy herd presented to the veterinarian in a fixed reproductive management protocol were treated with an Ovsynch protocol if no corpus luteum (CL) could be palpated per rectum (Group OV). Cows with a CL received cloprostenol (0.15 mg). After 2 days, these cows were treated with buserelin (0.01 mg) and received timed AI 16–20 h later (Group PG). In both treatment protocols, cows were assigned to two groups to receive 2500 IU of hCG i.v. 4 days after AI or to serve as untreated controls (Groups OV‐hCG, OV‐Control, PG‐hCG and PG‐Control). Pregnancy diagnosis was carried out 27 days after AI via ultrasonography and 39 days after AI by rectal palpation. Pregnancy losses were defined as cows being pregnant on day 27 but not pregnant on day 39 after AI. Pregnancy rate (PR) by day 27 did not differ among the four groups (35.4, 35.0, 37.0 and 38.0% for Groups OV‐hCG, OV‐Control, PG‐hCG and PG‐Control, respectively). Pregnancy losses between day 27 and day 39 after AI were smaller in hCG treated animals in summer but not in autumn and spring. Pregnancy rate by day 39 after AI was higher in PG than in OV groups, but independent of hCG‐treatment. In conclusion, treatment with hCG 4 days after AI did not significantly increase PR on 39 days after AI. A positive effect of hCG on pregnancy losses during the summer months warrants further investigation.  相似文献   

11.
The objective of this study was to characterize the effect of dose and type of cloprostenol (CLO) on the luteolytic response of dairy cattle during the Ovsynch protocol under different oestrus cycle and physiological characteristics. Twelve non‐lactating dairy cows and 111 lactating dairy cows were used in three experiments. In Experiment I, cows were synchronized so that they had only a 5.5‐ to 6‐day‐old corpus luteum (CL) at the time of the prostaglandin F (PGF) treatment of Ovsynch. In Experiment II, cows were synchronized so that they had at least a CL of approximately 14 days old at the time of PGF treatment and an accessory CL if they had responded to the first GnRH of Ovsynch. Furthermore, in each experiment, cows received either a standard or a double dose of d‐CLO as the luteolytic treatment. In Experiment III, lactating cows were blocked by parity and assigned to one of three luteolytic treatments during Ovsynch: 500 μg d,l‐CLO, 150 or 300 μg of d‐CLO. In Experiment I, the dose of d‐CLO had an effect (p = 0.08) on the percentage of cows with full luteolysis, but not in Experiment II (p > 0.1). More cows in Experiment II had full luteolysis than did cows of Experiment I (87% vs 58%, respectively; p = 0.007). In Experiment III, 87.1%, 84.4% and 86.2% lactating dairy cows had full luteolysis and 37.8%, 36.8% and 36.1% of cows became pregnant after treatment with 500 μg d,l‐CLO, 150 or 300 μg of d‐CLO, respectively (p > 0.05).  相似文献   

12.
The objective of this study was to ascertain whether mRNA and protein expressions of implantation‐related genes (erythropoietin‐producing hepatocellular receptor–ligand A1, Eph‐ephrin A1 and leptin receptor–leptin, LEPR‐LEP) differed between pigs with high and low number of embryos, and whether these differences in gene expression might affect embryo implantation. Experimental pig groups (n = 24) for high and low number of embryos were prepared by altering the number of eggs ovulated in pre‐pubertal gilts treated with 1.5 × (High) or 1.0 × (Low) PG600 ([400 IU PMSG + 200 IU hCG]/dose, AKZO‐NOBEL). Gilts expressing oestrus were artificially inseminated twice and maintained in breeding and gestation until the reproductive tract was collected on day 22 of pregnancy. At slaughter, the reproductive tracts from each pregnant gilt from each treatment were immediately processed to collect samples for RNA and protein analysis. Within each gilt, three conceptus points were sampled, one from each horn and then a random conceptus within the tract. At each conceptus point, endometrial attachment site, chorion–allantois and embryo were collected and immediately frozen in liquid nitrogen. Number of corpus luteum (CL) (35.4 vs. 12.6) and total embryo number (18.8 vs. 10.2) were greater in the high‐embryo compared to the low‐embryo group, respectively (< .05). Real‐time qPCR results showed that Eph‐ephrin A1 mRNA expression was less in the high‐embryo (< .05) compared to the low‐embryo group. In addition, Western blotting analysis indicated that Eph‐ephrin A1 and LEP protein expression at endometrial attachment site in high‐embryo was less (< .05) compared to low‐embryo group. It was also noted that mRNA expression of Eph‐ephrin A1 and LEPR‐LEP was greater in pregnant than non‐pregnant gilts (< .05). Moreover, mRNA expression of Eph‐ephrin A1 (< .05) and LEPR‐LEP was greatest at endometrial attachment site among all three tissues. There was a positive correlation between expressions of Eph‐ephrin A1, LEPR‐LEP and embryo length with the correlation coefficient 0.31–0.59. For Eph‐ephrin A1, the highest correlation coefficient appeared between Eph A1 expression and normal embryo number, between ephrin A1 expression and embryo length. For LEPR‐LEP, the highest correlation coefficient appeared between LEPR‐LEP expression and ovary weight (0.79 for both, < .05), followed by embryo length and weight. The results of this study suggest that low expression of Eph‐ephrin A1 and LEPR‐LEP is somehow related to increased embryo number during implantation and that endometrial attachment site might be the main target tissue of these gene products. Yet, the increased expression of Eph‐ephrin A1 and LEPR‐LEP appeared associated with increased embryo growth (length and weight) and ovary weight, Eph‐ephrin A1 and LEPR‐LEP might play roles in the regulation of embryo implantation in pigs.  相似文献   

13.
Strategic supplementation of P4 may be used to increase conception rates in cattle, but timing of supplementation in relation to ovulation, mass of supplementary P4 and formulation of the P4‐containing supplement has not been determined for beef cattle. Effects of supplementation of long‐acting progesterone (P4) on Days 2 or 3 post‐ovulation on development, function and regression of corpus luteum (CL) were studied in beef cattle. Cows were synchronized with an oestradiol/P4‐based protocol and treated with 150 or 300 mg of long‐acting P4 on Day 2 or 3 post‐ovulation (6–7 cows/group). Colour‐doppler ultrasound scanning and blood sample collection were performed from Day 2–21.5. Plasma P4 concentrations were greater (p < 0.05) from Day 2.5–5.5 in the Day 2‐treated groups and from Day 3.5–5.5 in the Day 3‐treated cows than in the control group. CL area and blood flow during Day 2–8.5 did not differ (p > 0.05) among groups, suggesting no effect of P4 treatment on luteal development. The frequency of cows that began luteolysis before Day 15 was greater (p < 0.04) in cows treated with 300 mg than in the controls, but there were no differences between non‐treated and 150 mg‐treated cows. The interval from pre‐treatment ovulation to functional and structural luteolysis was shorter (p < 0.01) in the combined P4‐treated groups than in the control cows. In conclusion, was showed for the first time that long‐acting P4 supplementation on Day 2 or 3 post‐ovulation increases P4 concentrations for ≥3 day, has no effect on luteal development, but anticipates the beginning of luteolysis in beef cattle.  相似文献   

14.
The importance of the amino acid L‐arginine (ARG) for conceptus growth and litter size has been demonstrated in various species. L‐arginine is part of embryo‐derived polyamines, a substrate for nitric oxide synthase and stimulates protein synthesis by the embryo. In the present study, we have investigated whether dietary L‐arginine supplementation stimulates early conceptus growth in mares. Warmblood mares with singleton pregnancies received either an arginine‐supplemented diet (approximately 0.0125% of body weight, n = 12) or a control diet (n = 11) from days 15 to 45 after ovulation. Diameter of the embryonic vesicle (days 14, 17, 20 of pregnancy) and size of the embryo respective foetus (length and maximal diameter, days 25–45 of pregnancy at 5‐day intervals) were determined by transrectal ultrasound. At foaling, weight and size of the foal and the placenta were determined. Blood for determination of equine chorionic gonadotrophin (eCG) and progestin concentrations was collected repeatedly. Neither eCG nor progestin concentration in plasma of mares differed between groups at any time. No effects of arginine treatment on diameter of the embryonic vesicle between days 14 and 20 of pregnancy were detected. Diameter of the embryo/foetus on days 40 to 45 of pregnancy strongly tended to be enhanced by arginine supplementation (p = 0.06). Weight and size of neither the foal nor placenta at birth differed between groups. In conclusion, L‐arginine supplementation was without negative effects on early equine embryos and may support embryonic growth at the beginning of placentation.  相似文献   

15.
Production from the corpus luteum (CL) and/or hepatic steroid inactivation impacts peripheral concentrations of P4, which can alter reproductive performance. Our primary objective was to examine hepatic steroid inactivating enzymes, portal blood flow, and luteal blood perfusion at 10 days post‐insemination in pregnant versus non‐pregnant beef and dairy cows. Twenty early lactation Holstein cows and 20 lactating commercial beef cows were utilized for this study. At day 10 post‐insemination, hepatic portal blood flow and CL blood perfusion were measured via Doppler ultrasonography. Liver biopsies were collected and frozen for later determination of cytochrome P450 1A (CYP1A), 2C (CYP2C), 3A (CYP3A), uridine diphosphate‐glucuronosyltransferase (UGT) and aldo‐keto reductase 1C (AKR1C) activities. Pregnancy was determined at day 30 post‐insemination and treatment groups were retrospectively assigned as pregnant or non‐pregnant. Data were analyzed using the mixed procedure of SAS. Steroid metabolizing enzyme activity was not different (> .10) between pregnant versus non‐pregnant beef or dairy cows. Hepatic portal blood flow tended (< .10) to be increased in pregnant versus non‐pregnant dairy cows. Luteal blood perfusion was increased (< .05) in pregnant versus non‐pregnant dairy cows. Pregnant dairy cows appear to have an increased rate of hepatic clearance of P4 in combination with increased synthesis from the CL. This could account for the lack of difference in peripheral P4 concentrations between pregnant and non‐pregnant dairy cows. This study highlights the relevance of further investigation into steroid secretion and inactivation and their impact on the maintenance of pregnancy in cattle.  相似文献   

16.
This study investigated the feasibility of applying fixed‐time (cryopreserved) embryo transfer in ewes. Embryos (n = 106) were non‐surgically recovered from superovulated donors (n = 39) on day 6–7 after oestrus. Straws containing one or two embryos (morulae and/or blastocysts) subjected to either slow freezing (SF, n = 62) or vitrification (VT, n = 44) were randomly used within fixed‐time embryo transfer on Day 8.5. Recipient ewes were nulliparous (n = 58) bearing corpora lutea after synchronous oestrous induction protocol. The pregnancy rate was higher (p = .03) in SF (39.4%) than VT (16.9%) and survival rate tended (p = .08) to be higher in SF than in VT (25.8% vs. 15.9%). Lambing rates were similar (p = .13) between SF (20.9%) and VT (15.9%). Embryos recovered by non‐surgical route after cervical dilation treatment and later cryopreserved by either slow freezing or vitrification produced reasonable pregnancy rates after FTET.  相似文献   

17.
An experiment was conducted to investigate the effect of plasma concentrations of the metabolic hormones [Growth hormone (GH), insulin and insulin‐like growth factor –I (IGF‐I)] and nutritional metabolites (Glucose, cholesterol, total protein, albumin, globulin, urea and creatinine) on the resumption of post‐partum ovarian activity in sixteen Friesian–Sanga cows grazing extensively on native grassland. Blood samples were taken from cows from week 1 to 16 post‐partum. Cows were classified as having resumed ovarian activity when a plasma progesterone concentration of ≥ 1.0 ng/ml was recorded for two consecutive weekly samples. Based on the resumption of ovarian activity, cows were classified as early‐cycling, late‐cycling or non‐cycling. The concentrations of the metabolic hormones were measured from week 1 to 10, while those of the nutritional metabolites were measured during week 1, 3, 5, 7 and 9 during the study period. The concentrations of the metabolic hormones, GH and insulin were similar (p > 0.05) in the three ovarian activity groups, likewise the concentrations of the nutritional metabolites, glucose, total protein, globulin, urea and creatinine. Plasma IGF‐I concentration was higher (p < 0.001) in early‐cycling (18.7 ± 0.74 ng/ml) than in late‐cycling (12.4 ± 0.75 ng/ml) and non‐cycling (10.4 ± 0.91 ng/ml) cows. Plasma cholesterol concentrations were significantly lower (p < 0.05) in early‐cycling (1.94 ± 0.15 mmol/l) compared with late‐cycling (2.48 ± 0.12 mmol/l) and non‐cycling (2.61 ± 0.11 mmol/l) cows. For plasma albumin concentrations, the levels recorded for early‐cycling cows were higher (40.7 ± 2.85 g/l) than in late‐cycling (34.4 ± 1.97 g/l) and non‐cycling (33.6 ± 2.66) cows. The results suggest that cows with lower plasma concentrations of IGF‐I and albumin, but higher plasma cholesterol concentrations were at risk of delayed resumption of post‐partum ovarian activity.  相似文献   

18.
The present study was conducted to determine the difference in plasma prostaglandin F2α metabolite concentrations following oxytocin (OT) challenge between pregnant and non‐pregnant cows. Experiment 1: cows were subjected to the OT challenge test on days 12, 14 or 16 (day of estrus = day 0) with or without prior insemination and plasma 13,14‐dihydro‐15‐keto prostaglandin F2α (PGFM) concentrations were measured from ?30 to 180 min after OT injection. On day 16, the increment of plasma PGFM concentrations in response to OT injection was significantly smaller in pregnant than that in cyclic cows. On days 12 and 14, there was little OT‐induced PGFM secretion and no difference in PGFM increase between the pregnant and cyclic cows. Experiment 2: cows were inseminated on day 0 and subjected to the OT challenge test on day 16. Cows were classified into non‐pregnant/early embryonic death (NP/EED), late embryonic death (LED) and pregnant (PREG) groups. The increment of PGFM concentrations in response to OT injection was less in both PREG and LED groups than that in the NP/EED group. In conclusion, plasma PGFM secretion induced by OT is suggested as the base of pregnancy diagnosis prior to returning estrus in cows.  相似文献   

19.
Decreased fertility associated with maternal ageing is a well‐known critical problem, and progesterone (P4) concentration decreases during the menopause transition in women. The corpus luteum (CL) secretes P4, thereby supporting the implantation and maintenance of pregnancy. It is proposed that a bovine model is suitable for studying age‐associated decline of fertility in women because the physiology of cows is similar to that of women and cows have a greater longevity compared with other animal models. Thus, we investigated the age‐dependent qualitative changes and inflammatory responses in the bovine CL. In vivo experiment: Cows were divided into three groups, namely, young (mean age: 34.8 months), middle (80.1 months) and aged (188.9 months). Blood samples were collected on days 7 and 12 during the estrous cycle. In vitro experiments: Cows were divided into young (mean age: 27.6 months) and aged (183.1 months). The CL tissues of these groups were collected from a local slaughterhouse and used for tissue culture experiments. An in vivo experiment, plasma P4 concentration in aged cows was significantly lower than that in young cows, whereas no difference was found regarding the area of CL. An in vitro examination in the bovine CL tissues showed that the luteal P4 concentration, P4 secretion, and mRNA expression of StAR and 3β‐HSD were lower in aged cows compared with young cows, especially in the early luteal phase. However, no differences were detected in the mRNA expression of inflammation‐ and senescence‐related factors and inflammatory responses to lipopolysaccharides between the CL tissues from young and aged cows, indicating that an age‐dependent increase in inflammation is not involved in the luteal function. P4 production and secretion from the bovine CL diminish in old cows, especially during the early luteal phase, suggesting that senescence may affect the luteal function in cows.  相似文献   

20.
We evaluated the lactation performance, liver lipid content and plasma metabolites indicating the energy balance of dairy cows supplemented with conjugated linoleic acid (CLA) pre‐ and post‐partum (PP) vs. only PP. A total of 60 cows were divided into three groups (n = 20). Daily diet of cows was supplemented with 14 g of CLA (7 g cis‐9, trans‐11 and 7 g trans‐10, cis‐12 isomers) from week 3 before the expected date of calving (group CLA1), or from the day of calving (group CLA2) until 77–91 days PP. Control cows were fed an isocaloric, isonitrogenous and isolipidic diet without CLA. Between week 3 and week 6 PP, the milk yield of cows in both CLA‐treated groups was approximately 4.5 kg higher (p < 0.05) than in control. Milk fat concentrations decreased from week 3 and were lower in both CLA groups than in control (p < 0.01). Body condition score loss was lower (p < 0.05) in the CLA1 than in the control group on week 5 PP. By week 11 PP, the body condition of both CLA1 and CLA2 groups exceeded that of control. Plasma non‐esterified fatty acid was lower in CLA1 compared to CLA2 and control during the early PP period (p < 0.05), while this difference faded away by the late PP period. Beta‐hydroxybutyrate (BHBA) increased rapidly in all groups following calving. In CLA1 group, it began to decrease sooner than in CLA2 and control. The prevalence of subclinical ketosis (BHBA > 1.2 mm ) was lower in CLA1 group than in CLA2 and control (p < 0.05). Liver biopsy analyses showed that CLA1 treatment decreased (p < 0.05) the total lipid content of liver compared to control at week 5 after calving. Our results show that CLA supplementation is more efficient in alleviating body mass mobilization and decreasing the incidence of subclinical ketosis when applied as early as 3 weeks before calving than started feeding after calving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号