首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.  相似文献   

2.
Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.  相似文献   

3.
Kerr RA 《Science (New York, N.Y.)》2000,288(5472):1714-1715
Meteoriticists have long been puzzled by the fact that the most common meteorites, so-called ordinary chondrites, don't appear to have come from the most common asteroids, the S-types. Last week, however, a group of researchers attending the spring meeting of the American Geophysical Union here announced that the 31-kilometer-long S-type asteroid Eros now being orbited by the NEAR Shoemaker spacecraft is made of the same stuff as ordinary chondrites. That conclusion comes from NEAR Shoemaker's first-ever analysis of the elemental composition of an asteroid.  相似文献   

4.
Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in (16)O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.  相似文献   

5.
The evolution of asteroidal orbits initially near the Kirkwood Gap at the 1:2 commensurability with Jupiter's period provides a mechanism for the production of meteorites from the asteroid belt without excessive velocity change. The resulting yield ( approximately 10(9) grams per year) and the orbital elements of Earth-crossing objects are in agreement with observational data on meteorites.  相似文献   

6.
The Hayabusa spacecraft successfully recovered dust particles from the surface of near-Earth asteroid 25143 Itokawa. Synchrotron-radiation x-ray diffraction and transmission and scanning electron microscope analyses indicate that the mineralogy and mineral chemistry of the Itokawa dust particles are identical to those of thermally metamorphosed LL chondrites, consistent with spectroscopic observations made from Earth and by the Hayabusa spacecraft. Our results directly demonstrate that ordinary chondrites, the most abundant meteorites found on Earth, come from S-type asteroids. Mineral chemistry indicates that the majority of regolith surface particles suffered long-term thermal annealing and subsequent impact shock, suggesting that Itokawa is an asteroid made of reassembled pieces of the interior portions of a once larger asteroid.  相似文献   

7.
Although ordinary chondrite material dominates meteorite falls, the identification of a main-belt asteroid source has remained elusive. From a new survey of more than 80 small main-belt asteroids comes the discovery of one having a visible and near-infrared reflectance spectrum similar to L6 and LL6 ordinary chondrite meteorites. Asteroid 3628 BoZnemcová has an estimated diameter of 7 kilometers and is located in the vicinity of the 3:1 Jovian resonance, a predicted meteorite source region. Although the discovery of a spectral match may indicate the existence of ordinary chondrite material within the main asteroid belt, the paucity of such detections remains an unresolved problem.  相似文献   

8.
Single-particle analyses of stratospheric aerosol show that about half of the particles contain 0.5 to 1.0 weight percent meteoritic iron by mass, requiring a total extraterrestrial influx of 8 to 38 gigagrams per year. The sodium/iron ratio in these stratospheric particles is higher and the magnesium/iron and calcium/iron ratios are lower than in chondritic meteorites, implying that the fraction of material that is ablated must lie at the low end of previous estimates and that the extraterrestrial component that resides in the mesosphere and stratosphere is not of chondritic composition.  相似文献   

9.
Although ordinary chondrite (OC) meteorites dominate observed falls, the identification of near-Earth and main-belt asteroid sources has remained elusive. Telescopic measurements of 35 near-Earth asteroids ( approximately3 kilometers in diameter) revealed six that have visible wavelength spectra similar to laboratory spectra of OC meteorites. Near-Earth asteroids were found to have spectral properties that span the range between the previously separated domains of OC meteorites and the most common (S class) asteroids, suggesting a link. This range of spectral properties could arise through a diversity of mineralogies and regolith particle sizes, as well as through a time-dependent surface weathering process.  相似文献   

10.
The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.  相似文献   

11.
Abundant fossil meteorites in marine, condensed Lower Ordovician limestones from Kinnekulle, Sweden, indicate that accretion rates of meteorites were one to two orders of magnitude higher during an interval of the Early Ordovician than at present. Osmium isotope and iridium analyses of whole-rock limestone indicate a coeval enhancement of one order of magnitude in the influx rate of cosmic dust. Enhanced accretion of cosmic matter may be related to the disruption of the L chondrite parent body around 500 million years ago.  相似文献   

12.
Minerals partly composing the surfaces of 14 asteroids are determined by using asteroid reflectance spectra and optical properties of meteorites and other materials. Individual electronic absorption features are identified in the asteroids' spectra. The energies, relative strengths, and shapes of these features are interpreted by using laboratory and theoretical studies. Analysis of the initial 14 asteroid reflectance spectra indicates the presence of the following types of surface materials: six carbonaceous chondrite-like; two stony-iron-like (metal/silicate approximately 1); one iron meteorite-like; one basaltic achondrite-like; and four silicate-metal assemblages (metal/silicate approximately 0.25). These results support the conclusion that the asteroid belt is a source of at least some meteoritic material, and they show a relation between certain asteroids and certain classes of meteoritcs.  相似文献   

13.
Binzel RP  Xu S 《Science (New York, N.Y.)》1993,260(5105):186-191
For more than two decades, asteroid 4 Vesta has been debated as the source for the eucrite, diogenite, and howardite classes of basaltic achondrite meteorites. Its basaltic achondrite spectral properties are unlike those of other large main-belt asteroids. Telescopic measurements have revealed 20 small (diameters 相似文献   

14.
Eighty-five percent of the iron meteorites collected outside Antarctica are assigned to 13 compositionaily and structurally defined groups; the remaining 15 percent are ungrouped. Of the 31 iron meteorites recovered from Antarctica, 39 percent are ungrouped. This major difference in the two sets is almost certainly not a stochastic variation, a latitudinal effect, or an effect associated with differences in terrestrial ages. It seems to be related to the median mass of Antarctic irons, which is about 1/100 that of non-Antarctic irons. During impacts on asteroids, smaller fragments tend to be ejected into space at higher velocities than larger fragments, and, on average, small meteoroids have undergone more changes in orbital velocity than large ones. As a result, the set of asteroids that contributes small meteoroids to Earth-crossing orbits is larger than the set that contributes large meteoroids. Most small iron meteorites may escape from the asteroid belt as a result of impact-induced changes in velocity that reduce their perihelia to values less than the aphelion of Mars.  相似文献   

15.
Infrared reflectance spectra have been obtained for the meteorites Shergotty and Allan Hills (ALHA) 77005, a unique achondrite apparently related to the shergottites. Comparisons with the reflectance spectra of eucrites and asteroid 4 Vesta indicate that the surface of Vesta is covered with eucrite-like basalts and that, if shergottite-like basalts are present on the surface of Vesta, they must be a minor rock type. The paradox that both the eucrite and shergottite parent bodies should presently exist is examined. The preferred solution is that both eucrites and shergottites are derived from Vesta, and that this asteroid is compositionally and isotopically heterogeneous; however, other possible solutions cannot be ruled out.  相似文献   

16.
Extraterrestrial cause for the cretaceous-tertiary extinction   总被引:3,自引:0,他引:3  
Platinum metals are depleted in the earth's crust relative to their cosmic abundance; concentrations of these elements in deep-sea sediments may thus indicate influxes of extraterrestrial material. Deep-sea limestones exposed in Italy, Denmark, and New Zealand show iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given to indicate that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is suggested which accounts for the extinctions and the iridium observations. Impact of a large earth-crossing asteroid would inject about 60 times the object's mass into the atmosphere as pulverized rock; a fraction of this dust would stay in the stratosphere for several years and be distributed worldwide. The resulting darkness would suppress photosynthesis, and the expected biological consequences match quite closely the extinctions observed in the paleontological record. One prediction of this hypothesis has been verified: the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the Cretaceous and Tertiary limestones, which are chemically similar to each other. Four different independent estimates of the diameter of the asteroid give values that lie in the range 10 +/- 4 kilometers.  相似文献   

17.
Ott U 《Science (New York, N.Y.)》2000,288(5472):1761-1762
Small grains of halite in meteorites are generally interpreted as a sign of the former presence of water. In his Perspective, Ott discusses the unexpected discovery of halites in relatively highly metamorphosed meteorites. According to the age determined by Whitby et al. for halite crystals in one of these meteorites, they are among the oldest known materials in the solar system.  相似文献   

18.
Eucrites are a class of basaltic meteorites that share common mineralogical, isotopic, and chemical properties and are thought to have been derived from the same parent body, possibly asteroid 4 Vesta. The texture, mineralogy, and noble gas data of the recently recovered meteorite, Northwest Africa (NWA) 011, are similar to those of basaltic eucrites. However, the oxygen isotopic composition of NWA011 is different from that of other eucrites, indicating that NWA011 may be derived from a different parent body. The presence of basaltic meteorites with variable oxygen isotopic composition suggests the occurrence of multiple basaltic meteorite parent bodies, perhaps similar to 4 Vesta, in the early solar system.  相似文献   

19.
Hallam A 《Science (New York, N.Y.)》1987,238(4831):1237-1242
The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle.  相似文献   

20.
Two large magnetic field rotations were recorded by the spacecraft Galileo 1 minute before and 2 minutes after its closest approach to the asteroid Gaspra. The timing and the geometry of the field changes suggest a connection with Gaspra, and the events can be interpreted as the result of the draping of the solar wind field around a magnetospheric obstacle. Gaspra's surface field is inferred to be within an order of magnitude of Earth's surface field, and its magnetic moment per unit mass is in the range observed for iron meteorites and highly magnetized chondrites. The location of the magnetic signatures suggests that perturbations are carried by waves in the magnetosonic-whistler mode with wavelengths between electron and ion gyro radii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号